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Safety verification determines whether any trajectory starting from admissible initial states would intersect with a set of unsafe
states. In this paper, we propose a numerical method for verifying safety of a network of interconnected hybrid dynamical systems
with a state constraint based on bilinear sum-of-squares programming. The safety verification is conducted by the construction of
a function of states called barrier certificate. We consider a finite number of interconnected hybrid systems satisfying the input-
to-state property and the networked interconnections satisfying a dissipativity property. Through constructing a barrier certificate
for each subsystem and imposing dissipation-inequality-like constraints on the interconnections, safety verification is formulated
as a bilinear sum-of-squares feasibility problem. As a result, safety of the interconnected hybrid systems could be determined by
solving an optimization problem, rather than solving differential equations. The proposed method makes it possible to verify the
safety of interconnected hybrid systems, which is demonstrated by a numerical example.

1. Introduction

The problem of safety verification of hybrid dynamical sys-
tems has always been a fundamental issue within the systems,
control, and computer communities. In principle, safety
verification of hybrid dynamical systems aims to determine
that any trajectory starting at admissible initial states cannot
evolve to unsafe region in the state space [1]. Numerous
methods have been developed for the past two decades
[2] and a variety of dynamical characteristics have been
researched. Particularly, we concentrate on safety verification
of a special kind of nonlinear hybrid dynamical system called
polynomial hybrid system. Polynomial hybrid systems are
hybrid systems where both the dynamical behavior descrip-
tion and the states constraints are given in terms of poly-
nomial nonlinearities. A wide range of applications could
be modeled as, transformed into, or approximated by poly-
nomial hybrid systems, for example, in power systems [3]

and process control [4]. In [5–7], computational verification
methods based on symbolic computation have been pro-
posed; those methods are mainly based on the theory of
ideal over polynomial ring together with techniques such as
abstract interpretation. On the other hand, computational
verificationmethods based on numerical computation which
originated from [8] have also been well developed. One of
the typicalmethods called barrier certificate generalizes these
numerical verification methods and imposes its theoretical
foundation on linear matrix inequalities (LMI), semidefinite
programming (SDP), sum-of-squares (SOS) programming,
and bilinear SOS programming.

Generally speaking, barrier certificate is a function of
states whose zero level set separates an unsafe region from all
system trajectories starting from an admissible set of initial
states. The existence of a barrier certificate is sufficient for
safety of dynamical systems, which is analogous to the suffi-
ciency of the existence of a Lyapunov function for asymptotic
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stability of dynamical systems. As an important numerical
method of safety verification of dynamical systems, barrier
certificates have been well developed under the frameworks
of general nonlinear systems [9], time-delayed systems [10,
11], stochastic systems [12], interconnected continuous sys-
tems [13, 14], and hybrid systems [1, 15]. Besides, converse
theorem of barrier certificates was discussed recently in
[16].

Hybrid systems are dynamical systems exhibiting both
continuous and discrete dynamic behaviors, and intercon-
nected hybrid systems are an interconnection of several
hybrid systems consisting of assignments relating the inputs
and outputs of the individual hybrid systems. Therefore,
safety of interconnected hybrid systems relies on both safety
of the individual subsystems and their interconnections.
In this paper, we propose compositional barrier certificates
for safety verification of interconnected hybrid systems. As
we know, many networked embedded systems, particularly
recently proposed Internet-of-Things and Cyber-Physical
Systems [17], are characterized by interconnected hybrid
systems; however, safety verification for interconnected
hybrid systems has not been well developed. Thus, there is a
need to study safety verification method for interconnected
hybrid systems. Motivated by the above-mentioned reasons
and the practical background, we consider the issue of devel-
oping compositional barrier certificates of interconnected
hybrid systems for their safety verification. To the best of our
knowledge, safety verification has been discussed only for
interconnected continuous systems [13, 18–20], but not for
interconnected hybrid systems yet, which also motivated our
research.

Due to the new features deriving from interconnected
hybrid systems, finding a compositional barrier certificate
for safety verification presents more technical challenges.
Considering that the existences of barrier certificates of each
interconnected hybrid system are not sufficient for safety
of interconnected hybrid systems, additional dissipation-
inequality-like constraints are required to be imposed on
interconnections. Compositional barrier certificates in our
paper impose additional dissipation-inequality-like coupling
constraints on a set of individual barrier certificates for each
subsystem. Furthermore, constructing compositional barrier
certificates satisfying dissipation-inequality-like constraints
is intractable in general; however, through applying SOS
relaxation and generalized S-procedure, some conservative
compositional barrier certificates could be derived through
numerical computation. Once these compositional barrier
certificates composed of individual barrier certificates and
coupling constraints are feasible, bilinear SOS programming
could be applied to construct such compositional barrier
certificates through purely numerical computation. Numer-
ical SOS programming solvers such as SOSTOOLS [21] and
SOSOPT [22] are developed for such computations. With
this methodology, we are able to verify safety of intercon-
nected hybrid systems without resorting exhaustive simula-
tions.

The paper is organized as follows. Section 2 introduces
the notations as well as some preliminary definitions. Section
3 adopts the compositional hybrid I/O automata framework

to describe interconnected hybrid systems and presents the
formal definition of safety. Section 4 explains how to formu-
late the verification problem by incorporating interconnec-
tions satisfying diagonal stability property with individual
barrier certificates. Section 5 shows how to construct the
compositional barrier certificates through solving a feasibility
problem of bilinear SOS programming. Section 6 presents
a numerical example to show the validity of the proposed
method and Section 7 comprises conclusions.

2. Mathematical Preliminaries

Notations. Let R denote the field of real numbers, and R𝑛

stand for the 𝑛-dimensional real vector space. R
>0
,N
>0

refer to the sets of positive real numbers and positive
natural numbers, respectively. Lower case alphabets such as
𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛 represent variables, while symbols such as 𝑥⃗, 𝑢⃗, ⃗𝑦
are vectorial variables. ‖ ⋅ ‖ refers to the Euclidean vector
norm. For matrices or vectors, the superscript “𝑇” denotes
matrix transposition. 𝐼𝑚×𝑚 is the identity matrix, 0⃗ denotes
zero vector, 0 is scalar, and 0𝑚×𝑛 is an𝑚 × 𝑛 zero matrix. The
notation diag{⋅} indicates a square diagonal matrix with the
arguments along the diagonal. 𝐴−1 is the inverse of matrix
𝐴.

Definition 1 (positive-definite polynomial and its Lie-deriva-
tive). Let 𝑥⃗ denote the 𝑛-tuple (𝑥

1
, . . . , 𝑥

𝑛
),P𝑚
𝑛
will be taken

as the polynomial field over variables in 𝑥⃗ with the highest
degree of𝑚, and a polynomial function 𝑝(𝑥⃗) ∈ P𝑚

𝑛
is said to

be positive definite iff

𝑝 (𝑥⃗) > 0 (1)

for all 𝑥⃗ ∈ R𝑛 \ {0⃗} with 𝑝(0⃗) = 0. The first-order Lie-
derivative of 𝑝(𝑥⃗) along a continuous flow𝑓(𝑥⃗) = (𝑓

1
(𝑥⃗), . . . ,

𝑓
𝑛
(𝑥⃗)) is as follows:

L
𝑓( ⃗𝑥)
𝑝 (𝑥⃗) =

𝑛

∑

𝑖

𝜕𝑝 (𝑥⃗)

𝜕𝑥
𝑖

𝑓
𝑖
(𝑥⃗) . (2)

Definition 2 (SOS polynomial). A multivariate polynomial
𝑝(𝑥⃗) is an SOS polynomial if there exist finite polynomials
𝑝
1
(𝑥⃗), . . . , 𝑝

𝑘
(𝑥⃗) such that

𝑝 (𝑥⃗) =

𝑘

∑

𝑖=1

𝑝
2

𝑖
(𝑥⃗) . (3)

Let Σ2𝑚
𝑛

(Σ
𝑛
for short) denote the set of all SOS polynomials

in 𝑥⃗ under the degree of 2𝑚.

Definition 3 (semialgebraic set). A set {𝑥⃗ ∈ R𝑛 : 𝑝
1
(𝑥⃗) ≥

0, . . . , 𝑝
𝑠
(𝑥⃗) ≥ 0} is called a semialgebraic set iff 𝑝

1
(𝑥⃗), . . . ,

𝑝
𝑠
(𝑥⃗) ∈ P𝑚

𝑛
and 𝑠 ∈N

>0
is finite.

Definition 4 (K polynomial function). A polynomial func-
tion 𝛼(‖𝑥⃗‖) :R

≥0
→R
≥0
is of classK; equivalently 𝛼(‖𝑥⃗‖) ∈

P𝑚
𝑛
∩K, if it is strictly increasing and 𝛼(0⃗) = 0.
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Definition 5 (Kronecker product). Let𝐴 = [𝑎
𝑖,𝑗
] ∈R𝑚×𝑛,𝐵 ∈

R𝑝×𝑞 denote two matrices, and then the Kronecker product
of 𝐴 and 𝐵 is defined as the matrix:

𝐴 ⊗ 𝐵 = (

𝑎
1,1
𝐵 ⋅ ⋅ ⋅ 𝑎

1,𝑛
𝐵

.

.

. d
.
.
.

𝑎
𝑚,1
𝐵 ⋅ ⋅ ⋅ 𝑎

𝑚,𝑛
𝐵

). (4)

Definition 6 (≤ for matrices). For two matrices 𝐴 = [𝑎
𝑖,𝑗
] ∈

R𝑚×𝑛, 𝐵 = [𝑏
𝑖,𝑗
] ∈R𝑚×𝑛, 𝐴 ≤ 𝐵 if and only if

𝑎
𝑖,𝑗
≤ 𝑏
𝑖,𝑗
∀1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. (5)

The bilinear SOS program is a subclass of nonlinear pro-
gram which takes the following form.

Definition 7 (bilinear SOS program, see [22]). Standard
bilinear SOS program form is

Min scalar variable 𝑡

s.t. 𝑡𝑏
𝑘
(𝑥⃗,
⃗
𝑑) − 𝑎

𝑘
(𝑥⃗,
⃗
𝑑) ∈ Σ

𝑛
, 𝑘 = 1, . . . , 𝑁

𝑔

𝑏
𝑘
(𝑥⃗,
⃗
𝑑) ∈ Σ

𝑛
, 𝑘 = 1, . . . , 𝑁

𝑔

𝑐
𝑗
(𝑥⃗,
⃗
𝑑) = 0, 𝑘 = 1, . . . , 𝑁

𝑒
,

(6)

where 𝑡 ∈ R, 𝑥⃗ ∈ R𝑛, and ⃗𝑑 ∈ R𝑟 are decision variables.
{𝑎
𝑘
(𝑥⃗,
⃗
𝑑)}, {𝑏

𝑘
(𝑥⃗,
⃗
𝑑)}, {𝑐

𝑗
(𝑥⃗,
⃗
𝑑)} are polynomials with given

data and affine in ⃗𝑑.

3. Formal Models of Interconnected Systems

Throughout this paper, we adopt the compositional hybrid
I/O automata framework discussed in [23] for describing
interconnected hybrid systems. Interactions of individual
hybrid dynamics occur at both the continuous and discrete
levels. In this section, we would like to present the formal
model of compositional hybrid I/O automata H which is
a composition of finite hybrid I/O automaton H

𝑖∈I indexed
by the finite set I. To provide the formal definition of
compositional hybrid I/O automata, we initially consider the
individual hybrid I/O automata.

Definition 8 (individual hybrid I/O automaton). An individ-
ual hybrid I/O automaton H

𝑖
of H is a tuple H

𝑖
= {X

𝑖
,

U
𝑖
,Y
𝑖
,S
𝑖
,Q
𝑖
,G
𝑖
, F
𝑖
, T
𝑖
,X0
𝑖
,X𝑢
𝑖
} with the following compo-

nents:

(i) X
𝑖
⊆ R𝑛𝑖 is a set of real-valued system internal vari-

ables 𝑥⃗
𝑖
∈ X
𝑖
. The number 𝑛

𝑖
is called the dimension

of H
𝑖
.

(ii) U
𝑖
⊆R𝑟 is a set of real-valued system external inputs

𝑢⃗
𝑐

𝑖
, 𝑢⃗
𝑑

𝑖
∈ U
𝑖
, where 𝑢⃗𝑐

𝑖
denotes the continuous input

while 𝑢⃗𝑑
𝑖
denotes the discrete input.U

𝑖
is disjoint from

X
𝑖
.

(iii) Y
𝑖
⊆R𝑟 is a set of real-valued system external outputs
⃗𝑦
𝑐

𝑖
, ⃗𝑦
𝑑

𝑖
∈ Y
𝑖
, where ⃗𝑦𝑐

𝑖
denotes the continuous output

while ⃗𝑦𝑑
𝑖
denotes the discrete output. Y

𝑖
is disjoint

fromX
𝑖
∪ U
𝑖
.

(iv) S
𝑖
is a finite set of indexes of switching signals. The

index function 𝜎(𝑡) : [0, 𝑇] → S
𝑖
= {1
𝑖
, . . . , 𝑗

𝑖
,

𝑙
𝑖
, . . . , 𝑠

𝑖
} denotes the sequence of activated switching

signals S
𝑖
over the continuous-time interval [0, 𝑇].

(v) Q
𝑖
is a finite set of modes. The overall state space of

individual hybrid systems H
𝑖
is Q
𝑖
× X
𝑖
, and a state

is denoted by (𝑞
𝑖
, 𝑥⃗
𝑖
) ∈ Q

𝑖
× X
𝑖
. 𝑞𝑗
𝑖
, 𝑞
𝑘

𝑖
∈ Q
𝑖
denote

different modes of H
𝑖
when 𝑗 ̸= 𝑘.

(vi) G
𝑖
⊆ X
𝑖
is the set of guard conditions forH

𝑖
. A switch-

ing is enabled at 𝑡⋆
𝑖
once 𝑥⃗

𝑖
(𝑡
⋆

𝑖
) ∈ G

𝑖
holds, namely, a

state-dependent switching.Throughout this paper, all
switchings of H

𝑖
are assumed to be state-dependent.

Furthermore, C
𝑖
is taken as the complement of G

𝑖

(C
𝑖
= X
𝑖
− G
𝑖
).

(vii) F
𝑖
: C
𝑖
→ 2

X𝑖 is a set of continuous vector fields.
For each state (𝑞

𝑖
, 𝑥⃗
𝑖
) ∈ Q

𝑖
× X
𝑖
, F
𝑖
incorporates

a differential constraint on the continuous evolution
according to the differential equation:

̇
𝑥⃗
𝑖
= 𝑓
𝜎𝑖(𝑡𝑖)

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
) , (7)

where 𝑥⃗ ∈ C
𝑖
, 𝑡
𝑖
∈ (𝑡
𝑘−1

𝑖
, 𝑡
𝑘

𝑖
], 𝑘 ∈N

>0
, and 𝜎

𝑖
(𝑡
𝑖
) ∈ S
𝑖
.

(viii) T
𝑖
: Q
𝑖
× G
𝑖
× S → Q

𝑖
is a relation capturing discrete

switchings between two modes. Here a switching

(𝑞
𝑗

𝑖
, 𝑥⃗
𝑖
(𝑡
⋆

𝑖
), 𝜎
𝑖
(𝑡
⋆

𝑖
))

⃗𝑥𝑖(𝑡
⋆

𝑖
)∈G𝑖

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑞
𝑘

𝑖
indicates that from

mode 𝑞𝑗
𝑖
,H
𝑖
can undergo a switching to themode 𝑞𝑘

𝑖
at

the instant 𝑡⋆
𝑖
. Only finite switchings are allowed over

finite-time intervals.
(ix) X0

𝑖
⊆ X is the set of admissible initial states of H

𝑖
.

(x) X𝑢
𝑖
⊆ X is the set of unsafe states of H

𝑖
.

Trajectories of H
𝑖
start from the admissible initial states

𝑥⃗
0

𝑖
and are concatenations of a sequence of continuous

evolutions in 𝑥⃗
𝑖
and discrete switchings among different

modes 𝑞𝑗
𝑖
, 𝑞
𝑘

𝑖
∈ 𝑄
𝑖
satisfying the following.

Initiation. 𝑥⃗0
𝑖
∈ X0
𝑖
is an admissible initial state of H

𝑖
.

Discrete Consecution. At the instant 𝑡⋆
𝑖
: 𝑥⃗
𝑖
(𝑡
⋆

𝑖
) ∈ G

𝑖
, the

switching signal 𝜎
𝑖
(𝑡
⋆

𝑖
) ∈ S
𝑖

(𝑞
𝑗

𝑖
, 𝑥⃗
𝑖
(𝑡
⋆

𝑖
) , 𝜎
𝑖
(𝑡
⋆

𝑖
))

⃗𝑥𝑖(𝑡
⋆

𝑖
)∈G𝑖

󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑞
𝑘

𝑖
󳨐⇒

lim
𝑡𝑖→𝑡
⋆−

𝑖

𝑞
𝜎𝑖(𝑡𝑖)

𝑖
= 𝑞
𝑗

𝑖
∧ lim
𝑡𝑖→𝑡
⋆+

𝑖

𝑞
𝜎𝑖(𝑡𝑖)

𝑖
= 𝑞
𝑘

𝑖

(8)

activates and produces a discrete output according to

⃗𝑦
𝑑

𝑖
(𝑡
⋆

𝑖
) = ℎ
𝑑

𝑖
(𝑡
⋆

𝑖
, 𝑥⃗
𝑖
(𝑡
⋆

𝑖
)) (9)

simultaneously.
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Continuous Consecution. For an activatingmode 𝑞𝑗
𝑖
∈ Q
𝑖
over

the [𝑡𝑘
𝑖
, 𝑡
𝑘+1

𝑖
)

𝑥⃗
𝑖
(𝑡
𝑖
) ∈ C
𝑖
∧
̇
𝑥⃗
𝑖
= 𝑓

𝑞
𝑗

𝑖

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
) ∀𝑡

𝑖
∈ [𝑡
𝑘

𝑖
, 𝑡
𝑘+1

𝑖
) (10)

holds and produces continuous outputs according to

⃗𝑦
𝑐

𝑖
(𝑡
𝑖
) = ℎ
𝑐

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
)) ∀𝑡

𝑖
∈ [𝑡
𝑘

𝑖
, 𝑡
𝑘+1

𝑖
) (11)

over the continuous interval.
Here, 𝑡⋆−

𝑖
denotes the left limit of 𝑡⋆

𝑖
and 𝑡⋆+

𝑖
denotes

its right limit. Additionally, 𝑓
𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
, 𝑢⃗
𝑐

𝑖
)s, ℎ𝑐(𝑡

𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
))s, and

ℎ
𝑑

(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
))s are all restricted to polynomials throughout this

paper.
Compositional hybrid I/O automaton H is given as an

interconnection of finite individual hybrid I/O automaton
consisting of assignments relating the inputs and outputs of
interconnected H

𝑖
.

Definition 9 (compositional hybrid I/O automaton). A com-
positional hybrid I/O automaton H is a finite set of intercon-
nected hybrid I/O automata H

𝑖
indexed by 𝑖 ∈ I. Formally,

H is a tuple H = {I, ⋃
𝑖∈I{H𝑖},N

𝑐

,N𝑑,K} with the following
components:

(i) I is a finite set of indexes of interconnected hybrid
automaton {H

𝑖
}.Without loss of generality, we assume

I has𝑀 ∈N
>0

elements.
(ii) ⋃

𝑖∈I{H𝑖} is a finite set of interconnected hybrid I/O
automata. X,U,Y ,S,Q, F , T ,X0,X𝑢 of H are the
Cartesian products of each corresponding item of
all individual H

𝑖
s, respectively. Particularly, G =

{⟨𝑥⃗
1
, . . . , 𝑥⃗

𝑖
, . . . , 𝑥⃗

𝑀
⟩ ∈ X : ∃𝑖 ∈ I, 𝑥⃗

𝑖
∈ G
𝑖
}, which

means 𝑥⃗ ∈ G if there exists an 𝑥⃗
𝑖
ofH
𝑖
which intersects

corresponding guard G
𝑖
. Dually, C ⊆ X is defined as

{⟨𝑥⃗
1
, . . . , 𝑥⃗

𝑖
, . . . , 𝑥⃗

𝑀
⟩ ∈ X : ∀𝑖 ∈ I, 𝑥⃗

𝑖
∈ C
𝑖
}. Besides,

only finite switchings are allowed over any finite-time
intervals.

(iii) K represents the static topology of the interconnec-
tion, which is in the form of an𝑀 × 𝑀 matrix 𝐾 =
[𝑎
𝑗,𝑘
]
𝑀×𝑀

, 𝑎
𝑗,𝑘
∈ {0, 1}, 1 ≤ 𝑗, 𝑘 ≤ 𝑀.

(iv) N𝑐 is a finite set of interconnections following contin-
uous assignments

𝑢⃗
𝑐

𝑖
= 𝑔
𝑐

𝑖
(𝑎
𝑖,1
⋅ ⃗𝑦
𝑐

1
, . . . , 0 ⋅ ⃗𝑦

𝑐

𝑖
, . . . , 𝑎

𝑖,𝑀
⋅ ⃗𝑦
𝑐

𝑀
) (12)

over continuous-time intervals, where 𝑢⃗𝑐
𝑖
is the inter-

connection over a continuous-time interval. [𝑎
𝑖,1
, . . . ,

𝑎
𝑖,𝑀
] is the 𝑖th row of K. 𝑔𝑐

𝑖
( ⃗𝑦
𝑐

1
, . . . ,
̂
⃗𝑦
𝑖

𝑐

, . . . , ⃗𝑦
𝑐

𝑀
)s are

assumed to be polynomial functions.
(v) N𝑑 is a finite set of interconnections following discrete

assignments

𝑢⃗
𝑑

𝑖
= 𝑔
𝑑

𝑖
(𝑎
𝑖,1
⋅ ⃗𝑦
𝑑

1
, . . . , 0 ⋅ ⃗𝑦

𝑑

𝑖
, . . . , 𝑎

𝑖,𝑀
⋅ ⃗𝑦
𝑑

𝑀
) (13)

at discrete instants, where 𝑢⃗𝑑
𝑖
is the interconnection

at switching instant, and [𝑎
𝑖,1
, . . . , 𝑎

𝑖,𝑀
] is the 𝑖th row

ofK. 𝑔𝑑
𝑖
( ⃗𝑦
𝑑

1
, . . . ,
̂
⃗
𝑑
𝑖

𝑐

, . . . ,
⃗
𝑑
𝑐

𝑀
)s are assumed to be poly-

nomial functions.

Intuitively, trajectory of H is the composition of trajecto-
ries ofH

𝑖
s under restrictions of the interconnections.We take

𝜙
𝑖
(𝑡
𝑖
, 𝑥⃗
0

𝑖
, 𝑥⃗
𝑖
, 𝑢⃗
𝑐

𝑖
, 𝑢⃗
𝑑

𝑖
, ⃗𝑦
𝑐

𝑖
, ⃗𝑦
𝑑

𝑖
) to represent the trajectory of H

𝑖
;

thus, the trajectory𝜙(𝑡, 𝑥⃗0, 𝑥⃗, 𝑢⃗𝑐, 𝑢⃗𝑑, ⃗𝑦𝑐, ⃗𝑦𝑑) ofH is a Cartesian
product satisfying the following.

Initiation. 𝑥⃗0 = ⟨𝑥⃗0
1
, . . . , 𝑥⃗

0

𝑀
⟩ ∈ X0 for all 𝑥⃗0

𝑖
∈ X0
𝑖
.

Discrete Consecution. For 𝑥⃗ ∈ G, at least one 𝜙
𝑖
(𝑡
𝑖
, 𝑥⃗
0

𝑖
, 𝑥⃗
𝑖
,

𝑢⃗
𝑐

𝑖
, 𝑢⃗
𝑑

𝑖
, ⃗𝑦
𝑐

𝑖
, ⃗𝑦
𝑑

𝑖
)would undergo a switching. Switchings of inter-

connected trajectories are not required to occur simulta-
neously under our framework. At each instant of discrete
consecution, an impulsive interconnection occurs according
to the following algebraic equations:

𝑢⃗
𝑑

1
= 𝑔
𝑑

𝑖
(0 ⋅ ⃗𝑦
𝑑

1
, . . . , 𝑎

1,𝑖
⋅ ⃗𝑦
𝑑

𝑖
, . . . , 𝑎

1,𝑀
⋅ ⃗𝑦
𝑑

𝑀
) ,

𝑎
1,1
, . . . , 𝑎

1,𝑀
∈ {0, 1}

.

.

.

𝑢⃗
𝑑

𝑀
= 𝑔
𝑑

𝑖
(𝑎
𝑀,1
⋅ ⃗𝑦
𝑑

1
, . . . , 𝑎

𝑀,𝑖
⋅ ⃗𝑦
𝑑

𝑖
, . . . , 0 ⋅ ⃗𝑦

𝑑

𝑀
) ,

𝑎
𝑀,1
, . . . , 𝑎

𝑀,𝑀
∈ {0, 1} .

(14)

Continuous Consecution. For 𝑥⃗ ∈ C, states of all trajectories
ofH
𝑖
evolve continuously under the continuous interconnec-

tions according to the following differential equations:

𝑢⃗
𝑐

1
= 𝑔
𝑐

𝑖
(0 ⋅ ⃗𝑦
𝑐

1
, . . . , 𝑎

1,𝑖
⋅ ⃗𝑦
𝑐

𝑖
, . . . , 𝑎

1,𝑀
⋅ ⃗𝑦
𝑐

𝑀
) ,

𝑎
1,1
, . . . , 𝑎

1,𝑀
∈ {0, 1}

.

.

.

𝑢⃗
𝑐

𝑀
= 𝑔
𝑐

𝑖
(𝑎
𝑀,1
⋅ ⃗𝑦
𝑐

1
, . . . , 𝑎

𝑀,𝑖
⋅ ⃗𝑦
𝑐

𝑖
, . . . , 0 ⋅ ⃗𝑦

𝑐

𝑀
) ,

𝑎
𝑀,1
, . . . , 𝑎

𝑀,𝑀
∈ {0, 1} .

(15)

For compositional hybrid I/O automataH, 𝑥⃗ ∈ X evolves
continuously when all trajectories of H

𝑖
s evolve continu-

ously, while switchings occur once there exists a discrete con-
secution among H

𝑖
s.

Based on the concept of trajectories ofH, safety ofH could
be formalized as follows.

Definition 10 (safety of H). Let an interconnected hybrid
I/O automaton H = {I, ⋃

𝑖∈I{H𝑖},N
𝑐

,N𝑑,K} be given. Take
𝜙(𝑡, 𝑥⃗
0

, 𝑥⃗, 𝑢⃗
𝑐

, 𝑢⃗
𝑑

, ⃗𝑦
𝑐

, ⃗𝑦
𝑑

) as the trajectory ofH; thenH is unsafe
if there exists an instant 𝑡⋆

𝑖
∈ [0, 𝑇] such that ∀𝑡 ∈ [0, 𝑇] :

𝜙(𝑡, 𝑥⃗
0

, 𝑥⃗, 𝑢⃗
𝑐

, 𝑢⃗
𝑑

, ⃗𝑦
𝑐

, ⃗𝑦
𝑑

) ∈ X

∃𝑢⃗
𝑐

: 𝜙 (𝑡
⋆

, 𝑥⃗
0

, 𝑥⃗ (𝑡
⋆

𝑖
) , 𝑢⃗
𝑐

(𝑡
⋆

))

∈ X
𝑢

∪ ∃𝑢⃗
𝑑

: 𝜙
𝑖
(𝑡
⋆

, 𝑥⃗
0

, 𝑥⃗ (𝑡
⋆

𝑖
) , 𝑢⃗
𝑑

(𝑡
⋆

)) ∈ X
𝑢

(16)

holds. Furthermore, H is safe when none of the trajectories
of H starting from admissible initial states would intersect
unsafe statesX𝑢 of H.
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4. Compositional Barrier Certificates

In this section, we present a brief introduction to the barrier
certificate method and propose the compositional barrier
certificate for safety verification of compositional hybrid I/O
automaton.

4.1. Intuitive Interpretation of Barrier Certificates. To address
the safety verification, we need to determine whether a
trajectory starting from admissible initial states would reach
the set of unsafe states. Barrier certificate methodology could
certify safety of a dynamical system through constructing a
function called barrier certificate. Generally speaking, barrier
certificate 𝐵 : 𝑋⃗ → R (𝑋⃗ denotes the state space) is a
function of states satisfying a set of constraints on both the
function itself and states evolution along the trajectories, and
states 𝑥⃗ ∈ 𝑋⃗ satisfying 𝐵(𝑥⃗) = 0 form a barrier separating
all unsafe states from possible system trajectories. 𝐵(𝑥⃗) takes
different values on different regions: for example, for each
𝑥⃗ ∈ 𝑋

𝑢 (𝑋𝑢 denotes unsafe states region), it satisfies𝐵(𝑥⃗ > 0),
while for each 𝑥⃗ ∈ 𝑋𝑠 (𝑋𝑠 denotes reachable states region
of trajectories) 𝐵(𝑥⃗ ≤ 0) holds. Thus, system safety could be
certified by the existence of a barrier certificate. An intuitive
illustration of a barrier certificate is presented in Figure 1. As
shown in the figure, unsafe states region is separated from
states of trajectories by the barrier certificate.

4.2. Compositional Barrier Certificates. In the following, we
present two lemmas to show sufficiency of the existence
of barrier certificates for safety of individual hybrid I/O
automaton and discuss how to impose inequality constraints
on interconnections to construct compositional barrier cer-
tificates.

Lemma 11 (conservative barrier certificates for H
𝑖
). Let

an interconnected individual hybrid I/O automaton H
𝑖
=

{X
𝑖
,U
𝑖
,Y
𝑖
,S
𝑖
,Q
𝑖
,G
𝑖
, F
𝑖
, T
𝑖
,X0
𝑖
,X𝑢
𝑖
} be given. For each 𝑢⃗𝑐

𝑖
, 𝑢⃗
𝑑

𝑖
∈

U
𝑖
, suppose there exists a function 𝐵

𝑖
(𝑥⃗
𝑖
) for all𝑚

𝑖
modes ofH

𝑖
.

𝐵
𝑖
(𝑥⃗
𝑖
) is piecewise differentiable with respect to its state variable

and satisfies

𝐵
𝑖
(𝑥⃗
𝑖
) > 0, ∀𝑥⃗

𝑖
∈ X
𝑢

𝑖
, (17)

𝐵
𝑖
(𝑥⃗
𝑖
) ≤ 0, ∀𝑥⃗

𝑖
∈ X
0

𝑖
, (18)

𝜕𝐵
𝑖
(𝑥⃗
𝑖
)

𝜕𝑥⃗
𝑖

𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
) ≤ 0,

∀𝑥⃗
𝑖
∈ X
𝑖
∧ 𝐵
𝑖
(𝑥⃗
𝑖
) = 0,

(19)

𝐵
𝑖
(𝑞
𝑘

𝑖
) ≤ 𝐵
𝑖
(𝑞
𝑗

𝑖
) ,

∀𝑥⃗
𝑖
∈ G
𝑖
, 𝑞
𝑘

𝑖
̸= 𝑞
𝑗

𝑖
, 𝑞
𝑗

𝑖
, 𝑞
𝑘

𝑖
∈ Q
𝑖
,

(20)

where, for the case in (20),H
𝑖
undergoes a switching frommode

𝑞
𝑗

𝑖
to mode 𝑞𝑘

𝑖
. If such 𝐵

𝑖
(𝑥⃗
𝑖
) exists, then the safety ofH

𝑖
is guar-

anteed.

Initial state: B(x) ≤ 0

Trajectory: B(x) ≤ 0

Admissible initial states region: B(x) ≤ 0

Unsafe states region: B(x) > 0

Barrier certificate: B(x) = 0

−6

−4

−2

0

2

4

6

x
2

−4 −2 0 2 4 6−6
x1

Figure 1: Intuitive interpretation of barrier certificates.

Proof (by contradiction). For each 𝑢⃗𝑐
𝑖
, assume that barrier

certificates 𝐵𝑗
𝑖
(𝑥⃗
𝑖
) satisfying (17)–(20) can be found and

suppose there exists an instant 𝑡⋆
𝑖
∈ [0, 𝑇] when 𝑥⃗

𝑖
(𝑡
⋆

𝑖
) ∈ X𝑢

𝑖
.

Suppose there exist two sequences of instants 0 = 𝑡0
𝑖
< 𝑡
1

𝑖
<

⋅ ⋅ ⋅ < 𝑡
𝑝𝑖

𝑖
= 𝑡
⋆

𝑖
and 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑝 = 𝑡⋆

𝑖
. 𝑝
𝑖
, 𝑝 ∈N

>0
are

either finite or infinite. At each 𝑡𝑝𝑖
𝑖
, mode 𝑞𝑝𝑖

𝑖
∈ Q
𝑖
is activated,

while, at each 𝑡𝑝, an impulsive interconnection rather than
the continuous-time interconnection is activated. From (17),
we derive 𝐵𝑞

𝑝𝑖

𝑖

𝑖
(𝑥⃗
𝑖
(𝑡
⋆

)) > 0. The impulsive interconnection 𝑢⃗𝑑
𝑖

could be omitted considering

𝑝

∑

𝑙=1

∫

𝑡
𝑙

𝑡
𝑙

𝜕𝐵
𝑖
(𝑥⃗
𝑖
)

𝜕𝑥⃗
𝑖

𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑑

𝑖
) = 0 (21)

for any finite 𝑝. And from (20), it concludes that 𝐵
𝑖
(𝑥⃗
𝑖
)

decreases at each switching. Over the continuous-time inter-
val [0, 𝑡⋆

𝑖
], we have

𝐵
𝑖
(𝑥⃗
𝑖
(𝑡
⋆

𝑖
)) = 𝐵

𝑖
(𝑥⃗
𝑖
(𝑡
0

𝑖
))

+

𝑝𝑖

∑

𝑙=1

∫

𝑡
𝑙+1

𝑖

𝑡
𝑙

𝑖

𝜕𝐵
𝑗

𝑖
(𝑥⃗
𝑖
)

𝜕𝑥⃗
𝑖

𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
)

+

𝑝

∑

𝑙=1

(𝑢⃗
𝑑

𝑖
)

𝑇

𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
))

+

𝑝

∑

𝑙=1

(𝐵
𝑖
(𝑥⃗
𝑖
) − 𝐵
𝑙

𝑖
(𝑥⃗
𝑖
))

≤ 𝐵
𝑖
(𝑥⃗
𝑖
(𝑡
0

𝑖
))

+

𝑝𝑖

∑

𝑙=1

∫

𝑡
𝑙+1

𝑖

𝑡
𝑙

𝑖

𝜕𝐵
𝑖
(𝑥⃗
𝑖
)

𝜕𝑥⃗
𝑖

𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
)

≤ 𝐵
𝑖
(𝑥⃗
𝑖
(𝑡
0

𝑖
)) +

𝑝𝑖

∑

𝑙=1

ln𝐵
𝑖
(𝑥⃗
𝑖
(𝑡
𝑙+1

𝑖
))

− ln𝐵
𝑖
(𝑥⃗
𝑖
(𝑡
𝑙

𝑖
)) ≤ 𝐵

𝑖
(𝑥⃗
𝑖
(𝑡
0

𝑖
)) ≤ 0.

(22)

Therefore, the derived 𝐵
𝑖
(𝑥⃗
𝑖
(𝑡
⋆

𝑖
)) ≤ 0 contradicts the assump-

tion 𝐵
𝑖
(𝑥⃗
𝑖
(𝑡
⋆

𝑖
)) > 0. Thus, we conclude that any trajectory

starting from admissible initial states would not intersect
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unsafe states. In conclusion, the existence of barrier certifi-
cates 𝐵

𝑖
(𝑥⃗
𝑖
) is sufficient for safety of H

𝑖
.

Remark 12. Intuitively, the value of 𝐵
𝑖
(𝑥⃗
𝑖
) decreases along

both continuous flows as well as switchings, since 𝐵
𝑖
(𝑥⃗
0

𝑖
) < 0,

all states of trajectories ofH
𝑖
are negative, and reachable states

would not intersect with the unsafe states region. It should
be admitted that 𝐵

𝑖
(𝑥⃗
𝑖
) derived in Lemma 11 is conservative;

however, for the safety of interconnected hybrid systems H,
this conservatism is justified.

For the convenience of expression, output as well as
feedback ℎ𝑐

𝑖
(𝑥⃗
𝑖
), 𝑔𝑐
𝑖
( ⃗𝑦
𝑐

1
, . . . , ⃗𝑦

𝑐

𝑀
) is rewritten as

ℎ
𝑐

𝑖
(𝑥⃗
𝑖
) 𝑔

𝑐

𝑖
( ⃗𝑦
𝑐

1
, . . . , ⃗𝑦

𝑐

𝑀
)

𝐻
𝑖
= (

ℎ
1,1
⋅ ⋅ ⋅ ℎ

1,𝑀𝑖

.

.

. d
.
.
.

ℎ
𝑀𝑖 ,1
⋅ ⋅ ⋅ ℎ
𝑀𝑖 ,𝑀

)(

𝑥
1,1𝑖

.

.

.

𝑥
𝑀𝑖 ,1𝑖

) 𝐺
𝑖
= (

𝑔
1,1
⋅ ⋅ ⋅ 𝑔

1,𝑀

.

.

. d
.
.
.

𝑔
𝑀,1
⋅ ⋅ ⋅ 𝑔
𝑀,𝑀

)(

⃗𝑦
𝑐

1

.

.

.

⃗𝑦
𝑐

𝑀

)

, (23)

where 𝑥⃗
𝑖
= [𝑥
1,1𝑖
, . . . , 𝑥

𝑀𝑖 ,1𝑖

]
𝑇 (𝑥
1,1𝑖

denotes the 1st-row, 1st-
column element of vector 𝑥⃗

𝑖
) and [ ⃗𝑦𝑐

1
, . . . , ⃗𝑦

𝑐

𝑀
]
𝑇 is a concat-

enation of vectors ⃗𝑦𝑐
1
, . . . , ⃗𝑦

𝑐

𝑀
. Additionally, 𝐻

𝑖
, 𝐺
𝑖
are poly-

nomial matrices; please distinguish them from the symbols
H
𝑖
,G
𝑖
.

Lemma 13 (coupling constraints on interconnections). Let
an interconnected I/O automaton H be given. For each inter-
connected individual hybrid system H

𝑖
, define 𝐻 = [𝐻

1

𝑇

, . . . ,

𝐻
𝑀

𝑇

] and 𝐺 = [𝐺
1

𝑇

, . . . , 𝐺
𝑀

𝑇

], if there exists Γ = diag{𝛾
1
,

. . . , 𝛾
𝑀
} > 0
𝑀×𝑀 such that

𝐺 ⊗ 𝐼
𝑟×𝑟

≤ Γ𝐻
𝑇

𝐾
𝑇

𝐾𝐻 ⊗ 𝐼
𝑟×𝑟 (24)

holds, where 𝛾
1
, . . . , 𝛾

𝑀
∈ R
>0
. Then there exits 𝑢⃗𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
−

𝛾
𝑖
⃗𝑦
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
≤ 0, ∀𝑖 = 1, 2, . . . ,𝑀, satisfying

𝜕𝐵
𝑖
(𝑥⃗
𝑖
)

𝜕𝑥⃗
𝑖

𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
) ≤ 𝑢⃗
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
− 𝛾
𝑖
⃗𝑦
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
,

∀𝑥⃗
𝑖
∈ X
𝑖
∧ 𝐵
𝑖
(𝑥⃗
𝑖
) = 0

(25)

for all 𝑖 ∈ I.

Proof. Since there exists Γ = diag{𝛾
1
, . . . , 𝛾

𝑀
} > 0

𝑀×𝑀 with
𝛾
1
, . . . , 𝛾

𝑀
∈ R
>0

such that 𝐺 ⊗ 𝐼𝑟×𝑟 ≤ Γ𝐻𝑇𝐾𝑇𝐾𝐻 ⊗ 𝐼𝑟×𝑟, it
could be verified that each column of𝐺⊗𝐼𝑟×𝑟 ≤ Γ𝐻𝑇𝐾𝑇𝐾𝐻⊗
𝐼
𝑟×𝑟

= 𝑢⃗
𝑐𝑇

⃗𝑦
𝑐

− Γ ⃗𝑦
𝑐𝑇

⃗𝑦
𝑐

≤ 0 through matrix computation;
therefore, ∀𝑖 ∈ I : 𝑢⃗𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
− 𝛾
𝑖
⃗𝑦
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
stands. Under con-

straint (19), the rest is proved by contradiction. Assume that,
∀𝛾
𝑖
∈ R
>0

satisfying (24), (𝜕𝐵
𝑖
(𝑥⃗
𝑖
)/𝜕𝑥⃗
𝑖
)𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
), 𝑢⃗
𝑐

𝑖
) ≥

𝑢⃗
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
− 𝛾
𝑖
⃗𝑦
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
holds; then take Γ = ( ⃗𝑦𝑐)−1𝑢⃗𝑐𝑇, and derive

(𝜕𝐵
𝑖
(𝑥⃗
𝑖
)/𝜕𝑥⃗
𝑖
)𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
), 𝑢⃗
𝑐

𝑖
) ≥ 0, which is contradiction to

constraint (19). Therefore, Γ satisfying (24) is sufficient for
(𝜕𝐵
𝑖
(𝑥⃗
𝑖
)/𝜕𝑥⃗
𝑖
)𝑓
𝑗

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
), 𝑢⃗
𝑐

𝑖
) ≤ 𝑢⃗

𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
− 𝛾
𝑖
⃗𝑦
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
, ∀𝑥⃗
𝑖
∈ X
𝑖
∧

𝐵
𝑖
(𝑥⃗
𝑖
) = 0.

Remark 14. Note that if inequality constraint (24) is satisfied,
then Lie-derivative of 𝐵

𝑖
(𝑥⃗
𝑖
) is negative definite under the

constraint of 𝑢⃗𝑐
𝑖

𝑇

⃗𝑦
𝑐

𝑖
− 𝛾
𝑖
⃗𝑦
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
. Those constraints imposed on

interconnections are enlightened by the dissipation inequal-
ities, which guarantees the structural stability of intercon-
nected hybrid systems. It should be noticed that such dissipa-
tion-inequality-like constraints are imposed on nondefinite
barrier functions, while dissipation inequalities impose con-
straints on positive-definite energy functions.

Theorem 15 (compositional barrier certificate for H). Let an
interconnected hybrid I/O automaton H be given. For each
interconnected individual hybrid system H

𝑖
, suppose that both

𝐵
𝑖
(𝑥⃗
𝑖
) satisfying constraints (17)–(20) in Lemma 11 and a vector

Γ = diag{𝛾
1
, . . . , 𝛾

𝑀
} satisfying (24) in Lemma 13 have been

found, if there exists a diagonalmatrix𝐷 = diag{𝑑
1
, . . . , 𝑑

𝑀
} >

0
𝑀×𝑀 such that

𝐷 (𝐺𝐾 − Γ) + (𝐾𝐺 − Γ)
𝑇

𝐷 ≤ 0, (26)

where 𝑑
1
, . . . , 𝑑

𝑀
∈R
>0
; then H is safe.

Proof. Since 𝐵
𝑖
(𝑥⃗
𝑖
)s satisfying (17)–(20) and Γ = diag{𝛾

1
, . . . ,

𝛾
𝑀
} satisfying (24) exist, and there is a diagonal matrix 𝐷 =

diag{𝑑
1
, . . . , 𝑑

𝑀
} > 0

𝑀×𝑀 satisfying (26), a compositional
function 𝐵(𝑥⃗) is built as

𝐵 (𝑥⃗) = ∑

𝑖∈I

𝛾
𝑖
𝐵
𝑖
(𝑥⃗
𝑖
) . (27)

Since we have 𝐵
𝑖
(𝑥⃗
0

𝑖
) < 0, for 𝑥⃗ = {𝑥⃗0

𝑖
} ∈ X0, it yields

𝐵(𝑥⃗) = 𝛾
1
𝐵
1
(𝑥⃗
0

1
) + ⋅ ⋅ ⋅ + 𝛾

𝑀
𝐵
𝑀
(𝑥⃗
0

𝑀
) < 0. Similarly, ∀𝑥⃗ =

{𝑥⃗
𝑢

𝑖
} ∈ X𝑢 : 𝐵(𝑥⃗) ≥ 0 is derived. Through introducing (24)

and (26), for all 𝑥⃗ ∈ X −X𝑢, we derive

𝜕𝐵 (𝑥⃗)

𝜕𝑥⃗

⃗
𝑓 (𝑡, 𝑥⃗ (𝑡) , 𝑢⃗

𝑐

) = ∑

𝑖∈I

𝜕𝐵
𝑖
(𝑥⃗
𝑖
)

𝜕𝑥⃗
𝑖

𝑓
𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
)

≤ ∑

𝑖∈I

𝑑
𝑖
𝑢⃗
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖
− 𝛾
𝑖
⃗𝑦
𝑐

𝑖

𝑇

⃗𝑦
𝑐

𝑖

= ⃗𝑦
𝑐

𝑖

𝑇

(𝐷 ⊗ 𝐼
𝑀×𝑀

) 𝑢⃗
𝑐

𝑖
− ⃗𝑦
𝑐

𝑖

𝑇

((𝐷Γ) ⊗ 𝐼
𝑀×𝑀

) ⃗𝑦
𝑐

𝑖

= ⃗𝑦
𝑐

𝑖

𝑇

(𝐷 ⊗ 𝐼
𝑀×𝑀

) (𝐾𝐺 ⊗ 𝐼
𝑀×𝑀

) ⃗𝑦
𝑐

𝑖

− ⃗𝑦
𝑐

𝑖

𝑇

((𝐷Γ) ⊗ 𝐼
𝑀×𝑀

) ⃗𝑦
𝑐

𝑖
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= ⃗𝑦
𝑐

𝑖

𝑇

(𝐷 (𝐺𝐾 − Γ) + (𝐾𝐺 − Γ)
𝑇

𝐷) ⊗ 𝐼
𝑀×𝑀

⃗𝑦
𝑐

𝑖

≤ 0.

(28)

Considering ∀𝑖 ∈ I ∀𝑥⃗
𝑙
∈ G
𝑖
: 𝐵
𝑖
(𝑞
𝑘

𝑖
) ≤ 𝐵

𝑖
(𝑞
𝑗

𝑖
), where

𝑞
𝑘

𝑖
̸= 𝑞
𝑗

𝑖
, 𝑞𝑗
𝑖
, 𝑞
𝑘

𝑖
∈ Q
𝑖
, we derive ∑

𝑙∈I,𝑙 ̸=𝑖 𝛾𝑙𝐵𝑙(𝑥⃗𝑙) + 𝐵𝑖(𝑞
𝑘

𝑖
) ≤

∑
𝑙∈I,𝑙 ̸=𝑖 𝛾𝑙𝐵𝑙(𝑥⃗𝑙)+𝐵𝑖(𝑞

𝑗

𝑖
); equivalently, 𝐵(𝑥⃗) is nonincreasing at

mode switchings. Therefore, 𝐵(𝑥⃗) is the barrier certificate for
H; furthermore, safety of H is guaranteed.

Remark 16. On the assumption of existences of barrier cer-
tificates for each H

𝑖
and appropriate 𝐷 = diag{𝑑

1
, . . . , 𝑑

𝑀
} >

0
𝑀×𝑀, Lie-derivatives of each 𝐵

𝑖
(𝑥⃗
𝑖
) would be negative

definite consistently. Then, 𝐵(𝑥⃗) is negative definite along
their trajectories of states under the restrictions of intercon-
nections. Naturally, safety of H is guaranteed.

5. Computation of Barrier Certificates

In this section, we discuss how to construct compositional
barrier certificates from the conditions set up in Section 4.
Bilinear SOS programming is applied to support the com-
putation of barrier certificates for H. H is defined on semi-
algebraic sets with all vector fields that are restricted to be
polynomial equality aswell as inequality.Here, we parameter-
ize the barrier certificates 𝐵

𝑖
(𝑥⃗
𝑖
)s as polynomials and require

the state space and initial, unsafe, and guard sets to be given
by polynomial equality or inequality constraints. Through
applying generalized S-procedure, constraints in the forms
of semialgebraic sets could be incorporated into constraints
(17)–(20); then Lemma 11 is formulated as a bilinear SOS
program (feasibility problem). With the help of numerical
solvers such as SOSTOOLS [21] and SOSOPT [22], those
barrier certificates could be computed automatically.

5.1. Computation of Individual Barrier Certificates for H
𝑖
s. To

compute individual barrier certificates, all the sets of states in
(17)–(20) should be transformed into semialgebraic sets. Let
X
𝑖
= {𝑥⃗
𝑖
: 𝑝X𝑖
(𝑥⃗
𝑖
) ≥ 0}, X0

𝑖
= {𝑥⃗
𝑖
: 𝑝X0

𝑖

(𝑥⃗
𝑖
) ≥ 0}, X𝑢

𝑖
= {𝑥⃗
𝑖
:

𝑝X𝑢
𝑖

(𝑥⃗
𝑖
) ≥ 0}, and G

𝑖
= {𝑥⃗
𝑖
: 𝑝G𝑖
(𝑥⃗
𝑖
) ≥ 0} be given as vectors

of polynomials 𝑝X𝑖(𝑥⃗𝑖), 𝑝X0𝑖 (𝑥⃗𝑖), 𝑝X𝑢𝑖 (𝑥⃗𝑖), 𝑝G𝑖(𝑥⃗𝑖) ∈ P𝑛𝑖 in 𝑥⃗𝑖,
where those inequalities are satisfied entry-wise. For example,
when X is defined as {𝑥⃗

𝑖
: 𝑥⃗min ≤ 𝑥⃗𝑖 ≤ 𝑥⃗max}, it is equivalent

to the semialgebraic set X = {𝑥⃗
𝑖
: 𝑝X𝑖
(𝑥⃗
𝑖
) = (𝑥⃗max − 𝑥⃗𝑖)(𝑥⃗𝑖 −

𝑥⃗min) ≥ 0}.
Generalized S-procedure is then introduced to corpo-

rate those semialgebraic sets constraints with (17)–(20) and
Lemma 11 is formulated as a bilinear SOS program.

Lemma 17 (generalized S-procedure, see [24]). Given func-
tions 𝑝

0
(𝑥⃗), 𝑝
1
(𝑥⃗), . . . , 𝑝

𝑚
(𝑥⃗) ∈ P

𝑛
, if there exist 𝑠

1
(𝑥⃗),

𝑠
2
(𝑥⃗), . . . , 𝑠

𝑚
(𝑥⃗) ∈ Σ

𝑛
such that 𝑝

0
(𝑥⃗) − ∑

𝑚

𝑖=1
𝑠
𝑖
(𝑥⃗)𝑝
𝑖
(𝑥⃗) ∈ Σ

𝑛
,

then it holds that

{𝑥⃗ ∈R
𝑛

: 𝑝
1
(𝑥⃗) , . . . , 𝑝

𝑚
(𝑥⃗) ≥ 0}

⊆ {𝑥⃗ ∈R
𝑛

: 𝑝
0
(𝑥⃗) ≥ 0} .

(29)

For more details on generalized S-procedure, please refer
to [24].

Theorem 18 (barrier certificates as bilinear SOS program).
Let an interconnected hybrid I/O automaton H

𝑖
= {X

𝑖
,U
𝑖
,

Y
𝑖
,S
𝑖
,Q
𝑖
,G
𝑖
, F
𝑖
, T
𝑖
,X0
𝑖
,X𝑢
𝑖
} be given, and X

𝑖
,X0
𝑖
,X𝑢
𝑖
,G
𝑖
have

been transformed into semialgebraic sets. The polynomial
barrier certificate 𝐵

𝑖
(𝑥⃗
𝑖
) could be computed through solving the

following bilinear SOS program:

𝐵
𝑖
(𝑥⃗
𝑖
) − 𝜖
𝑖
− 𝑠
1
(𝑥⃗
𝑖
) (𝑥⃗) 𝑝X𝑢

𝑖

(𝑥⃗
𝑖
) ∈ Σ
𝑛
, (30)

− 𝐵
𝑖
(𝑥⃗
𝑖
) − 𝑠
2
(𝑥⃗
𝑖
) (𝑥⃗
𝑖
) 𝑝X0

𝑖

(𝑥⃗
𝑖
) ∈ Σ
𝑛
, (31)

−

𝜕𝐵
𝑖
(𝑥⃗
𝑖
)

𝜕𝑥⃗
𝑖

𝑓
𝑞𝑖

𝑖
(𝑡
𝑖
, 𝑥⃗
𝑖
(𝑡
𝑖
) , 𝑢⃗
𝑐

𝑖
) + 𝑠
3
(𝑥⃗
𝑖
) 𝑝G𝑖
(𝑥⃗
𝑖
)

+ 𝜆
𝑖
(𝑥⃗
𝑖
) 𝐵
𝑖
(𝑥⃗
𝑖
) ∈ Σ
𝑛
, ∀𝑞

𝑖
∈ Q
𝑖
,

(32)

− ]
𝑖
− 𝑠
4
(𝑥⃗
𝑖
) 𝑝G𝑖
(𝑥⃗
𝑖
) ∈ Σ
𝑛
, (33)

where 𝜆
𝑖
(𝑥⃗
𝑖
) ∈ P

𝑛
is a polynomial decision variable, 𝜖

𝑖
, ]
𝑖
∈

R
>0

are scalar decision variables, and 𝑠
1
(𝑥⃗
𝑖
), 𝑠
2
(𝑥⃗
𝑖
), 𝑠
3
(𝑥⃗
𝑖
),

𝑠
4
(𝑥⃗
𝑖
) are all SOS polynomial decision variables.

Proof. Notice that there exists a coupling between the polyno-
mial decision variables 𝜆

𝑖
(𝑥⃗
𝑖
) and 𝐵

𝑖
(𝑥⃗
𝑖
), and this program-

ming problem is bilinear. Here is the sketch of a proof. Since
X𝑢
𝑖
= {𝑥⃗
𝑖
: 𝑝X𝑢

𝑖

(𝑥⃗
𝑖
) ≥ 0}, and ∀𝑥⃗

𝑖
∈ X𝑢
𝑖
: 𝐵
𝑖
(𝑥⃗
𝑖
) ≥ 0, the

positive definiteness could be guaranteed by 𝐵
𝑖
(𝑥⃗
𝑖
) − 𝜖
𝑖
−

𝑠
1
(𝑥⃗
𝑖
)(𝑥⃗)𝑝X𝑢

𝑖

(𝑥⃗
𝑖
) ∈ Σ

𝑛
by applying generalized S-procedure.

Similarly, (31)–(33) could be derived. Scalar ]
𝑖
decision

variable introduced in (33) is for the switching. Therefore,
𝐵
𝑖
(𝑥⃗
𝑖
) derived by solving the bilinear SOS program satisfying

(30)–(33) is a barrier certificate for H
𝑖
.

Remark 19. Loosely speaking, generalized S-procedure is for
determining satisfaction of an inequality constraint𝑝

0
(𝑥⃗) ≥ 0

when other inequality constraints 𝑝
1
(𝑥⃗) ≥ 0, . . . , 𝑝

𝑚
(𝑥⃗) ≥ 0

are fulfilled. Through applying generalized S-procedure, the
above theorem formulates inequalities (30)–(33) together as
a bilinear SOS program computationally tractable for the fea-
sibility of barrier certificates constrained by (17)–(20).

5.2. Computation of Compositional Barrier Certificate for H.
In order to derive the compositional barrier certificate for H,
Γ should be estimated first by solving the following optimiza-
tion problem:

Min Γ = diag {𝛾
1
, . . . , 𝛾

𝑀
}

s.t. 𝐺 ⊗ 𝐼𝑟×𝑟 ≤ Γ𝐻𝑇𝐾𝑇𝐾𝐻 ⊗ 𝐼𝑟×𝑟

Γ > 0
𝑀×𝑀

.

(34)

The above optimization is a linear program problem
which could be solved with the help of linear programming
solvers. With derived Γ, compositional barrier certificates
for H could be computed directly by solving a bilinear SOS
program.
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Theorem 20 (compositional barrier certificate for H as
bilinear SOS program). Let an interconnected hybrid I/O
automatonH be given. For each interconnectedH

𝑖
, there exists

an individual barrier certificate 𝐵
𝑖
(𝑥⃗
𝑖
); then, the compositional

barrier certificate 𝐵(𝑥⃗) could be computed through solving the
following bilinear SOS program:

Min 𝐷 = diag {𝑑
1
, . . . , 𝑑

𝑚
} (35)

s.t. − 𝐷𝐵 (𝑥⃗) − 𝑠
1
(𝑥⃗) (𝑝X𝑠 (𝑥⃗)) ∈ Σ𝑛×𝑚𝑖

(36)

𝐷 − 𝜖 − 𝑠
2
(𝑥⃗) (𝑝X𝑢 (𝑥⃗)) ∈ Σ𝑛×𝑚𝑖

(37)

− 𝐻
𝑇

((𝐷 ⊗ 𝐼
𝑟×𝑟

) (𝐾𝐺 ⊗ 𝐼
𝑟×𝑟

) + (𝐾𝐺 ⊗ 𝐼
𝑟×𝑟

)

𝑇

(𝐷 ⊗ 𝐼
𝑟×𝑟

))𝐻 − 1
𝑇

𝑚
𝐷(−Γ𝐻

2

) + 𝑝 (𝑥⃗)𝐷𝐵 (𝑥⃗) ∈ Σ
𝑛×𝑚𝑖

(38)

𝐷 > 0
𝑚×𝑚

, (39)

where 𝐵(𝑥⃗) = [𝐵
1
(𝑥⃗
1
), . . . , 𝐵

𝑚
(𝑥⃗
𝑚
)]
𝑇, 𝑝X𝑠(𝑥⃗) = [𝑝X𝑠

1

(𝑥⃗
1
), . . . ,

𝑝X𝑠
𝑚

(𝑥⃗
𝑚
)]
𝑇, 𝑝X𝑢(𝑥⃗) = [𝑝X𝑢

1

(𝑥⃗
1
), . . . , 𝑝X𝑢

𝑚

(𝑥⃗
𝑚
)]
𝑇 (∀𝑖 ∈ I :

𝑝X𝑠
𝑖

(𝑥⃗
𝑖
) = 𝑝X𝑖

(𝑥⃗
𝑖
) − 𝑝X𝑢

𝑖

(𝑥⃗
𝑖
)). 𝐷 is a scalar matrix decision

variable, 𝜖 = [𝜖
1
, . . . , 𝜖

𝑚
] is a scalar vectorial decision variable,

𝑠
1
(𝑥⃗), 𝑠
2
(𝑥⃗) are SOS polynomials decision variables, and 𝑝(𝑥⃗)

is a polynomial decision variable.

Proof. Here is the sketch of a proof. As indicated in the above
theorem, 𝐵

1
(𝑥⃗
1
), . . . , 𝐵

𝑚
(𝑥⃗
𝑚
) are barrier certificates for H

𝑖
s.

Constraints (36) and (37) imply that 𝐵(𝑥⃗) is nonpositive on
X𝑢 and positive on X𝑠 = X − X𝑢. Constraints (38) and (39)
imply that

− 𝐻
𝑇

((𝐷 ⊗ 𝐼
𝑟×𝑟

) (𝐾𝐺 ⊗ 𝐼
𝑟×𝑟

)

+ (𝐾𝐺 ⊗ 𝐼
𝑟×𝑟

)

𝑇

(𝐷 ⊗ 𝐼
𝑟×𝑟

))𝐻 + 1
𝑇

𝑚
𝐷(𝐻
𝑇

Γ𝐻)

≥ 0 󳨐⇒

𝐻
𝑇

(𝐺𝐾𝐷 + (𝐷𝐾𝐺)
𝑇

)𝐻 − 1
𝑇

𝑚
𝐷(𝐻
𝑇

Γ𝐻) ≤ 0 󳨐⇒

𝐻
𝑇

(𝐺𝐾𝐷 + (𝐷𝐾𝐺)
𝑇

)𝐻 − 𝐻
𝑇

𝐷
𝑇

Γ𝐷𝐻 ≤ 0 󳨐⇒

𝐷(𝐺𝐾 − Γ) + (𝐾𝐺 − Γ)
𝑇

𝐷 ≤ 0.

(40)

In conclusion, the derived 𝐵(𝑥⃗) satisfies Theorem 15, and
𝐵(𝑥⃗) is the compositional barrier certificate for H; thus, H is
safe.

Remark 21. Since 𝑝(𝑥⃗) is coupled with 𝐷, the above pro-
gramming problem satisfying (36)–(39) is a bilinear SOS
program. Theorem 20 then formulates the construction of a
compositional barrier certificate as a feasibility problem in
bilinear SOS problem. It should be noted that compositional
barrier certificates derived byTheorem 20 aremore conserva-
tive than that by Theorem 15; however, Theorem 20 provides
a theoretically tractable method to construct compositional
barrier certificates. Numerical solvers such as SOSTOOLS
or SOSOPT for MATLAB could be used for solving bilinear
SOS program automatically. More details on the issues of
numerical computation are omitted; we strongly suggest that
readers refer to [21] or [22].

6. Example

In this example, we consider the following interconnected
hybrid systems H consisting of two coupled hybrid systems
H
1
,H
2
:

H
1
: ̇𝑥⃗
1
= 𝐴𝑥⃗
1
+
⃗
𝑘
1
𝑥⃗
2
, 𝑥⃗
1
= [𝑥
11
, 𝑥
12
]
𝑇

𝑥⃗
0

1
= {𝑥⃗
1
: (4 − 𝑥

11
) (𝑥
11
+ 4) ≥ 0, (4 − 𝑥

12
) (𝑥
12
+ 4)

≥ 0} ,

𝑥⃗
𝑢

1
= {𝑥⃗
1
: (10 − 𝑥

11
) (𝑥
11
+ 10)

≥ 0, (10 − 𝑥
12
) (𝑥
12
+ 10) ≥ 0} ,

𝑥
11
𝑥
12
< 0 : 𝐴

1
= (

0.1 −1

2 0.1

) ,

𝑥
11
𝑥
12
≥ 0 : 𝐴

2
= (

0.1 −2

1 0.1

)

⃗
𝑘
1
= (

−2 0

−3 −4

)

H
2
: ̇𝑥⃗
2
= 𝐵𝑥⃗
2
+
⃗
𝑘
2
𝑥⃗
1
, 𝑥⃗
2
= [𝑥
21
, 𝑥
22
]
𝑇

𝑥⃗
0

2
= {𝑥⃗
2
: (4 − 𝑥

21
) (𝑥
21
+ 4) ≥ 0, (4 − 𝑥

22
) (𝑥
22
+ 4)

≥ 0} ,

𝑥⃗
𝑢

2
= {𝑥⃗
2
: (10 − 𝑥

21
) (𝑥
21
+ 10)

≥ 0, (10 − 𝑥
22
) (𝑥
22
+ 10) ≥ 0} ,

𝑥
21
𝑥
22
< 0 : 𝐵

1
= (

−5 −4

−1 −2

) ,

𝑥
21
𝑥
22
≥ 0 : 𝐵

2
= (

−2 −4

20 −2

)

⃗
𝑘
2
= (

−1 0

0 1

) ,

(41)
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where 𝑥⃗0
1
, 𝑥⃗
0

2
are admissible initial states, 𝑥⃗𝑢

1
, 𝑥⃗
𝑢

2
are unsafe

states, and inequalities 𝑥
11
𝑥
12
< 0, 𝑥

11
𝑥
12
≥ 0, 𝑥

21
𝑥
22
<

0, and 𝑥
21
𝑥
22
≥ 0 are switching conditions. 𝐴

1
, 𝐴
2
and

𝐵
1
, 𝐵
2
are modes of H

1
and H

2
, respectively. ⃗𝑘

1
,
⃗
𝑘
2
are

interconnection matrices. The derived barrier certificate is
−0.01𝑥

3

11
− 1.88𝑥

2

11
𝑥
12
− 0.3𝑥

2

11
𝑥
21
− 476.42𝑥

2

11
+ 5.77𝑥

11
𝑥
2

12
−

0.03𝑥
11
𝑥
12
𝑥
21
− 0.03𝑥

11
𝑥
12
𝑥
22
+ 77.25𝑥

11
𝑥
12
− 16.43𝑥

11
𝑥
2

21
+

0.03𝑥
11
𝑥
21
𝑥
22

+ 475.47𝑥
11
𝑥
21
− 0.03𝑥

11
𝑥
2

22
+ 0.5𝑥

11
𝑥
22
−

0.51𝑥
11
− 0.01𝑥

3

12
+ 0.02𝑥

2

12
𝑥
21
− 0.42𝑥

2

12
𝑥
22
− 154.77𝑥

2

12
+

11.13𝑥
12
𝑥
2

21
+ 0.01𝑥

12
𝑥
21
𝑥
22
+ 254.32𝑥

12
𝑥
21
− 2.1𝑥

12
𝑥
2

22
+

102𝑥
12
𝑥
22
+ 1.12𝑥

12
+ 1.85𝑥2

21
𝑥
22
+ 191.09𝑥

2

21
+ 1.95𝑥

21
𝑥
2

22
−

27.16𝑥
21
𝑥
22
+1.21𝑥

21
−0.01𝑥

3

22
−65.95𝑥

2

22
+1.48𝑥

22
−1847.27.

The software environment to test ourmethod consists of SOS-
TOOLS and SeDuMi on MATLAB (R2013b) and monomials
whose coefficients less than 0.01 are omitted. Since the barrier
certificate exists, safety of H is verified.

7. Conclusion

In this paper, we have considered a network of interconnected
hybrid systems with a safety constraint. We proposed a num-
erical method for verifying safety by constructing a com-
positional barrier certificate comprised of individual barrier
certificates for each subsystem. The constructed composi-
tional barrier function certifies global safety using individual
barrier certificates and diagonal stability property of the
network interconnection. Such a compositional barrier certi-
ficate is then formulated into a bilinear SOS program that
is computationally tractable. With the help of numerical
solvers such as SOSTOOLS and SOSOPT, safety verification
of interconnected hybrid systems could be automatically
accomplished. In the end, a numerical example is presented
to show the validity of the proposed method.
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