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The stability issue is investigated for a class of stochastic neural networks with time delays in the leakage terms. Different from
the previous literature, we are concerned with the almost sure stability. By using the LaSalle invariant principle of stochastic delay
differential equations, Itô’s formula, and stochastic analysis theory, some novel sufficient conditions are derived to guarantee the
almost sure stability of the equilibrium point. In particular, the weak infinitesimal operator of Lyapunov functions in this paper is
not required to be negative, which is necessary in the study of the traditional moment stability. Finally, two numerical examples and
their simulations are provided to show the effectiveness of the theoretical results and demonstrate that time delays in the leakage
terms do contribute to the stability of stochastic neural networks.

1. Introduction

During the past decades, a great deal of attention has been
paid to investigate the dynamics behaviors such as stability,
periodic oscillatory behavior, almost periodic oscillatory
behavior, and chaos and bifurcation of neural networks.
Particularly, the stability of neural networks is one of the
best topics sincemany important applications depend heavily
on the stability of the equilibrium point. Therefore, there
have appeared a large number of works on the stability of
the equilibrium point of various neural networks such as
Hopfield neural networks, cellular neural networks, recurrent
neural networks, Cohen-Grossberg neural networks, and
bidirectional associativememory (BAM) neural networks [1–
9].

As is well known, time delay is one of the most significant
phenomena that occur in many different fields such as
biology, chemistry, economy, and communication networks.
Moreover, it is inevitably encountered in both neural process-
ing and signal transmission due to the limited bandwidth of
neurons and amplifiers. However, the existence of time delays
may cause oscillation, divergence, chaos, instability, or other

poor performance in neural networks, which are usually
harmful to the applications of neural networks. Therefore,
the stability analysis for neural networks with time delays has
attracted many researchers’ much attention in the literature.
The existing works on the stability of neural networks with
time delays can be simply classified into four categories:
constant delays, time-varying delays, distributed delays, and
mixed time delays.

It should be mentioned that a new class of delays, called
leakage delays (also named time delays in the “forgetting” or
leakage terms), was initially introduced by Gopalsamy [10] in
the study of neural networks. In [10], Gopalsamy pointed out
that the leakage delays often have a tendency to destabilize the
neural networks and theywere very difficult to handle.Hence,
to investigate the stability of neural networks with leakage
delays has been an interesting and challenging topic. It is
inspiring that there have beenmany interesting results on the
stability of neural networks with leakage delays reported in
the literature [11–17]. For example, Liu in [11] investigated the
existence of a unique equilibrium and globally exponential
stability for a class of BAM neural networks with time-
varying delays in the leakage terms by using the fixed
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point theorem and Lyapunov functional theory. By using
the Lyapunov-Krasovskii functional having triple integral
terms and model transformation technique, Zhu et al. in [12]
obtained somenovel sufficient delay-dependent conditions to
ensure the globally exponential stability in the mean square
of impulsive bidirectional associative memory (BAM) neural
networks with bothMarkovian jump parameters and leakage
delays. In [13], Wang et al. discussed the stability of recurrent
neural networks with time delays in the leakage terms under
impulsive perturbations. By applying a new stability lemma,
Itô’s formula, Lyapunov-Krasovskii functional, stochastic
analysis theory, and matrix inequalities technique, Xie et al.
in [15] studied the exponential stability in the mean square
for a class of stochastic neural networks with leakage delays
and expectations in the coefficients.

On the other hand, noise disturbance is a major source
of instability and poor performances in neural networks.
Usually, many real nervous systems are affected by external
perturbations which in many cases are of great uncertainty
and hence may be treated as random. Just as Haykin pointed
out, the synaptic transmission can be regarded as a noisy
process introduced by random fluctuations from the release
of neurotransmitters and other probabilistic causes. There-
fore, we should consider the effect of noise disturbances
when studying the stability of neural networks. Generally
speaking, neural networks with noise disturbances are called
stochastic neural networks. Recently, there have appeared a
large number of results on the stability of stochastic neural
networks (see, e.g., [3–5, 7, 9, 13, 14]). Unluckily, those criteria
presented in [3–5, 7, 9, 13, 14] require a strict condition
that the derivative of the considered Lyapunov-Krasovskii
functional is negative; that is, L𝑉(𝑡, 𝑥(𝑡)) < 0 for any
𝑥(𝑡) ̸= 0, where L𝑉(𝑡, 𝑥(𝑡)) is a weak infinitesimal operator
and 𝑉(𝑡, 𝑥(𝑡)) is a positive Lyapunov-Krasovskii functional.
However,L𝑉(𝑡, 𝑥(𝑡))may not be negative inmany real cases,
which leads to the fact that the criteria obtained in [3–5, 7, 9,
13, 14] fail in this case.

Motivated by the above discussion, in this paper we
study the stability problem for a class of stochastic neural
networks with time delays in the leakage terms. Different
from the previous literature, we aim to remove the restriction
of L𝑉(𝑡, 𝑥(𝑡)) < 0 for any 𝑥(𝑡) ̸= 0. By using the LaSalle
invariant principle of stochastic delay differential equations,
Itô’s formula, and stochastic analysis theory, some novel
sufficient conditions are derived to guarantee the almost sure
stability of the equilibrium point. Moreover, two numerical
examples and their simulations are provided to show the
effectiveness of the theoretical results and demonstrate that
time delays in the leakage terms do contribute to the stability
of stochastic neural networks.

The remainder of this paper is organized as follows. In
Section 2, we introduce the model of a class of stochastic
neural networks with time delays in the leakage terms
and present the definition of almost sure stability as well
as some necessary assumptions. By means of the LaSalle
invariant principle of stochastic delay differential equations,
Itô’s formula, and stochastic analysis theory, our main results
are established in Section 3. In Section 4, two numerical
examples are given to show the effectiveness of the obtained

results. Finally, in Section 5, the paper is concludedwith some
general remarks.

Notation 1. The notations used in this paper are quite
standard. R𝑛 and R𝑛×𝑛 denote the 𝑛-dimensional Euclidean
space and the set of all 𝑛 × 𝑛 real matrices, respectively. The
superscript “𝑇” denotes the transpose of a matrix or vector,
and the symbol “⋆” denotes the symmetric termof thematrix.
Trace (⋅) denotes the trace of the corresponding matrix and 𝐼

denotes the identity matrix with compatible dimensions. For
any matrix 𝐴, 𝜆max(𝐴) (resp., 𝜆min(𝐴)) denotes the largest
(resp., smallest) eigenvalue of 𝐴. For square matrices𝑀

1
and

𝑀
2
, the notation 𝑀

1
> (≥, <, ≤) 𝑀

2
denotes that 𝑀

1
−

𝑀
2
is positive definite (positive semidefinite, negative, and

negative semidefinite) matrix. Let 𝑤(𝑡) = (𝑤
1
, . . . , 𝑤

𝑛
)
𝑇

be 𝑛-dimensional Brownian motion defined on a complete
probability space (Ω,F, 𝑃) with a natural filtration {F

𝑡
}
𝑡≥0

.
Also, let 𝜏 > 0 and 𝐶([−𝜏, 0];R𝑛) denote the family of
continuous function 𝜙 from [−𝜏, 0] to R𝑛 with the uniform
norm ‖𝜙‖ = sup

−𝜏≤𝜃≤0
|𝜙(𝜃)|. Denote by 𝐿

2

F
𝑡

([−𝜏, 0];R𝑛) the
family of allF

𝑡
measurable, 𝐶([−𝜏, 0];R𝑛)-valued stochastic

variables 𝜉 = {𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} such that ∫0
−𝜏

E|𝜉(𝑠)|2𝑑𝑠 <

∞, where E[⋅] stands for the correspondent expectation
operator with respect to the given probability measure 𝑃.

2. Model Description and
Problem Formulation

In this paper, we consider a class of neural networks with
mixed time delays, which is described by the following
integrodifferential equations:

𝑑𝑥 (𝑡) = [−𝐷𝑥 (𝑡 − 𝛽) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛽) , 𝑥 (𝑡 − 𝜏
1
) , 𝑥 (𝑡 − 𝜏

2
)) 𝑑𝑤 (𝑡) ,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 is the state vector asso-

ciated with the 𝑛 neurons and the diagonal matrix
𝐷 = diag(𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
) has positive entries 𝑑

𝑖
> 0 (𝑖 =

1, 2, . . . , 𝑛). The matrices 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐶 =

(𝑐
𝑖𝑗
)
𝑛×𝑛

, and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

are the connection weight
matrix, the constant delay connection weight matrix, the
time-varying delay connection weight matrix, and the
distributed delay connection weight matrix, respectively.
𝑓(𝑥(𝑡)) = [𝑓

1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡))]
𝑇, 𝑔(𝑥(𝑡)) =

[𝑔
1
(𝑥
1
(𝑡)), 𝑔

2
(𝑥
2
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡))]
𝑇 and ℎ(𝑥(𝑡)) =

[ℎ
1
(𝑥
1
(𝑡)), ℎ

2
(𝑥
2
(𝑡)), . . . , ℎ

𝑛
(𝑥
𝑛
(𝑡))]
𝑇 are the neuron acti-

vation functions. The noise perturbation 𝜎 : R𝑛 × R𝑛 ×

R𝑛 × R𝑛 → R𝑛×𝑛 is a Borel measurable function, and 𝛽 > 0

denotes the leakage delay. 𝜏
1
and 𝜏
2
are constant delays.

Throughout this paper, the following assumptions are
assumed to hold.
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Assumption H1. There exist diagonal matrices 𝑈
−

𝑖
=

diag(𝑢−
𝑖1
, 𝑢
−

𝑖2
, . . . , 𝑢

−

𝑖𝑛
) and 𝑈

+

𝑖
= diag(𝑢+

𝑖1
, 𝑢
+

𝑖2
, . . . , 𝑢

+

𝑖𝑛
), 𝑖 =

1, 2, 3, satisfying

𝑢
−

1𝑗
≤

𝑓
𝑗
(𝛼) − 𝑓

𝑗
(𝛽)

𝛼 − 𝛽
≤ 𝑢
+

1𝑗
,

𝑢
−

2𝑗
≤

𝑔
𝑗
(𝛼) − 𝑔

𝑗
(𝛽)

𝛼 − 𝛽
≤ 𝑢
+

2𝑗
,

𝑢
−

3𝑗
≤

ℎ
𝑗
(𝛼) − ℎ

𝑗
(𝛽)

𝛼 − 𝛽
≤ 𝑢
+

3𝑗
,

(2)

for all 𝛼, 𝛽 ∈ R, 𝛼 ̸= 𝛽, and 𝑗 = 1, 2, . . . , 𝑛.

Assumption H2. There exist positive definite matrices 𝑅
1
,

𝑅
2
, 𝑅
3
, and 𝑅

4
such that

trace [𝜎𝑇 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) 𝜎 (𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
)]

≤ 𝑥
𝑇

1
𝑅
1
𝑥
1
+ 𝑥
𝑇

2
𝑅
2
𝑥
2
+ 𝑥
𝑇

3
𝑅
3
𝑥
3
+ 𝑥
𝑇

4
𝑅
4
𝑥
4

(3)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
∈ R𝑛.

Assumption H3. Consider

𝑓 (0) = 𝑔 (0) = ℎ (0) = 0,

𝜎 (0, 0, 0, 0) ≡ 0.

(4)

Let 𝑥(𝑡; 𝜉) denote the state trajectory from the initial data
𝑥(𝜃) = 𝜉(𝜃) on −𝜏 ≤ 𝜃 ≤ 0 in 𝐿

2

F
0

([−𝜏, 0];R𝑛). Clearly, under
Assumptions H1–H3, system (1) admits a trivial solution
𝑥(𝑡; 0) ≡ 0 corresponding to the initial data 𝜉 = 0. For
simplicity, we write 𝑥(𝑡; 𝜉) = 𝑥(𝑡).

Now we give the concept of almost sure stability for
system (1).

Definition 1. The equilibrium point of (1) is said to be almost
surely stable if for every 𝜉 ∈ 𝐿

2

F
0

([−𝜏, 0];R𝑛)

lim
𝑡→∞

𝑥 (𝑡; 𝜉) = 0, a.s., (5)

where “a.s.” denotes “almost surely.”

The following lemma is needed to prove our main results.

Lemma 2 (see [18]). For any positive definite matrix 𝐺 > 0,
a scalar 𝜏 > 0, and a function Φ : [0, 𝜏] → R𝑛 such that the
integrations concerned arewell defined, the following inequality
holds:

(∫

𝜏

0

Φ (𝑡) 𝑑𝑡)

𝑇

𝐺(∫

𝜏

0

Φ (𝑡) 𝑑𝑡)

≤ 𝜏(∫

𝜏

0

Φ
𝑇

(𝑡) 𝐺Φ (𝑡) 𝑑𝑡) .

(6)

3. Main Results and Proofs

In this section, the almost sure stability of the equilibrium
point for system (1) is investigated under Assumptions H1–
H3.

Theorem 3. Under Assumptions H1–H3, the equilibrium
point of (1) is almost surely stable, if there exist a positive scalar
𝜆, positive diagonal matrices 𝑄

1
, 𝑄
2
, and 𝑄

3
, and positive

definitematrices𝑃, 𝐸, 𝐹, 𝐺, and𝐻 such that the following linear
matrix inequalities (LMIs) hold:

𝑃 ≤ 𝜆𝐼, (7)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

0 0 𝑃𝐴 𝑃𝐵 0 0 0 Γ
19

⋆ Γ
22

0 0 0 0 0 0 0

⋆ ⋆ Γ
33

0 0 0 0 0 0

⋆ ⋆ ⋆ −𝑄
1

0 0 0 0 Γ
49

⋆ ⋆ ⋆ ⋆ −𝑄
2

0 0 0 Γ
59

⋆ ⋆ ⋆ ⋆ ⋆ Γ
66

0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐾 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐿 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Γ
99

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (8)

where

Γ
11

= −2𝑃𝐷 + 𝜆𝑅
1
+ 𝜆𝑅
4
+ 𝐸 + 𝐹 + 𝐺 + 𝛽

2

𝐾 + 𝜏
2

1
𝐿

+ 𝑈
1
𝑄
1
𝑈
1
+ 𝑈
3
𝑄
3
𝑈
3
,

Γ
22

= −𝐸 + 𝜆𝑅
2
,

Γ
33

= −𝐹 + 𝜆𝑅
3
+ 𝑈
2
𝑄
2
𝑈
2
,

Γ
66

= −𝑄
3
+ 𝜏
2

2
𝐻,

Γ
19

= 𝑃𝐶 + 𝐷
𝑇

𝑃𝐷,

Γ
49

= 𝐷
𝑇

𝑃𝐴,

Γ
59

= 𝐷
𝑇

𝑃𝐵,

Γ
99

= −𝐻 − 𝐷
𝑇

𝑃𝐶.

(9)

Proof. Fixing 𝜉 ∈ 𝐿
2

F
0

([−𝜏, 0];R𝑛) arbitrarily and writing
𝑥(𝑡; 𝜉) = 𝑥(𝑡), we first define an infinitesimal generator L
of the Markov process acting on 𝑉(𝑡, 𝑥(𝑡)) as follows:

L𝑉 (𝑡, 𝑥 (𝑡)) fl lim
Δ→0+

1

Δ

⋅ sup [E {𝑉 (𝑡 + Δ, 𝑥 (𝑡 + Δ)) | 𝑥 (𝑡)} − 𝑉 (𝑡, 𝑥 (𝑡))] .

(10)

Let 𝐶
2

1
(R+ × R𝑛;R+) denote the family of all nonnegative

functions 𝑉(𝑡, 𝑥) on R+ × R𝑛 which are continuously twice
differentiable in 𝑥 and differentiable in 𝑡. If 𝑉 ∈ 𝐶

2

1
(R+ ×
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R𝑛;R𝑛), then along the trajectory of system (1) we define an
operatorL𝑉 from R+ × R𝑛 to R by

L𝑉 (𝑡, 𝑥 (𝑡)) = 𝑉
𝑡
(𝑡, 𝑥 (𝑡)) + 𝑉

𝑥
(𝑡, 𝑥 (𝑡)) [−𝐷𝑥 (𝑡)

+ 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠] +
1

2

⋅ trace [𝜎𝑇 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛽) , 𝑥 (𝑡 − 𝜏
1
) , 𝑥 (𝑡 − 𝜏

2
))

⋅ 𝑉
𝑥𝑥

(𝑡, 𝑥 (𝑡))

⋅ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛽) , 𝑥 (𝑡 − 𝜏
1
) , 𝑥 (𝑡 − 𝜏

2
))] ,

(11)

where

𝑉
𝑡
(𝑡, 𝑥 (𝑡)) =

𝜕𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑡
,

𝑉
𝑥
(𝑡, 𝑥 (𝑡)) = (

𝜕𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑥
1

, . . . ,
𝜕𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑥
𝑛

) ,

𝑉
𝑥𝑥

(𝑡, 𝑥 (𝑡)) = (
𝜕
2

𝑉 (𝑡, 𝑥 (𝑡))

𝜕𝑥
𝑖
𝜕𝑥
𝑗

)

𝑛×𝑛

.

(12)

Now, let us consider the following Lyapunov-Krasovskii
functional:

𝑉 (𝑡, 𝑥 (𝑡)) = (𝑥 (𝑡) − 𝐷∫

𝑡

𝑡−𝛽

𝑥 (𝑠) 𝑑𝑠)

𝑇

⋅ 𝑃 (𝑥 (𝑡) − 𝐷∫

𝑡

𝑡−𝛽

𝑥 (𝑠) 𝑑𝑠)

+ ∫

𝑡

𝑡−𝛽

𝑥
𝑇

(𝑠) 𝐸𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) 𝐹𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
2

𝑥
𝑇

(𝑠) 𝐺𝑥 (𝑠) 𝑑𝑠

+ 𝜏
2
∫

0

−𝜏
2

∫

𝑡

𝑡+𝜃

ℎ
𝑇

(𝑥 (𝑠))𝐻ℎ (𝑥 (𝑠)) 𝑑𝑠

+ 𝛽∫

0

−𝛽

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝐾𝑥 (𝑠) 𝑑𝑠

+ 𝜏
1
∫

0

−𝜏
1

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠) 𝐿𝑥 (𝑠) 𝑑𝑠.

(13)

Then, it follows from (1) and (11) that

L𝑉 (𝑡, 𝑥 (𝑡)) = 2 [𝑥 (𝑡) − 𝐷∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

⋅ 𝑃 [−𝐷𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠] + trace [𝜎𝑇 (𝑡) 𝑃𝜎 (𝑡)]

+ 𝑥
𝑇

(𝑡) 𝐸𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝛽) 𝐸𝑥 (𝑡 − 𝛽) + 𝑥
𝑇

(𝑡)

⋅ 𝐹𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝐹𝑥 (𝑡 − 𝜏

1
) + 𝑥
𝑇

(𝑡) 𝐺𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
2
) 𝐺𝑥 (𝑡 − 𝜏

2
) + 𝜏
2

2
ℎ
𝑇

(𝑥 (𝑡))𝐻ℎ (𝑥 (𝑡))

− 𝜏
2
∫

𝑡

𝑡−𝜏
2

ℎ
𝑇

(𝑥 (𝑠))𝐻ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝛽
2

𝑥
𝑇

(𝑡)

⋅ 𝐾𝑥 (𝑡) − 𝛽∫

𝑡

𝑡−𝛽

𝑥
𝑇

(𝑠) 𝐾𝑥 (𝑠) 𝑑𝑠 + 𝜏
2

1
𝑥
𝑇

(𝑡) 𝐿𝑥 (𝑡)

− 𝜏
1
∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) 𝐿𝑥 (𝑠) 𝑑𝑠 = 𝑥
𝑇

(𝑡) (−2𝑃𝐷) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃𝐴𝑓 (𝑥 (𝑡)) + 2𝑥
𝑇

(𝑡) 𝑃𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 2𝑥
𝑇

(𝑡) 𝑃𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠

+ 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐷𝑥 (𝑡)

− 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐴𝑓 (𝑥 (𝑡))

− 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

− 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠

+ trace [𝜎𝑇 (𝑡) 𝑃𝜎 (𝑡)] + 𝑥
𝑇

(𝑡) 𝐸𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝛽)

⋅ 𝐸𝑥 (𝑡 − 𝛽) + 𝑥
𝑇

(𝑡) 𝐹𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝐹𝑥 (𝑡 − 𝜏

1
)

+ 𝑥
𝑇

(𝑡) 𝐺𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜏
2
) 𝐺𝑥 (𝑡 − 𝜏

2
)

+ 𝜏
2

2
ℎ
𝑇

(𝑥 (𝑡))𝐻ℎ (𝑥 (𝑡))

− 𝜏
2
∫

𝑡

𝑡−𝜏
2

ℎ
𝑇

(𝑥 (𝑠))𝐻ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝛽
2

𝑥
𝑇

(𝑡)

⋅ 𝐾𝑥 (𝑡) − 𝛽∫

𝑡

𝑡−𝛽

𝑥
𝑇

(𝑠) 𝐾𝑥 (𝑠) 𝑑𝑠 + 𝜏
2

1
𝑥
𝑇

(𝑡) 𝐿𝑥 (𝑡)

− 𝜏
1
∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) 𝐿𝑥 (𝑠) 𝑑𝑠,

(14)
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where 𝜎(𝑡) fl 𝜎(𝑥(𝑡), 𝑥(𝑡−𝛽), 𝑥(𝑡−𝜏
1
), 𝑥(𝑡−𝜏

2
)). On the other

hand, by Assumption H2 and condition (7), we obtain

trace [𝜎𝑇 (𝑡) 𝑃𝜎 (𝑡)] ≤ 𝜆 trace [𝜎𝑇 (𝑡) 𝜎 (𝑡)]

≤ 𝜆𝑥
𝑇

(𝑡) 𝑅
1
𝑥 (𝑡)

+ 𝜆𝑥
𝑇

(𝑡 − 𝛽) 𝑅
2
𝑥 (𝑡 − 𝛽)

+ 𝜆𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑅
3
𝑥 (𝑡 − 𝜏

1
)

+ 𝜆𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑅
4
𝑥 (𝑡 − 𝜏

2
) ,

(15)

which together with (14) gives

L𝑉 (𝑡, 𝑥 (𝑡))

≤ 𝑥
𝑇

(𝑡) (−2𝑃𝐷) 𝑥 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝐴𝑓 (𝑥 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 2𝑥
𝑇

(𝑡) 𝑃𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠

+ 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐷𝑥 (𝑡)

− 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐴𝑓 (𝑥 (𝑡))

− 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

− 2 [∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠]

𝑇

𝐷
𝑇

𝑃𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠

+ 𝜆𝑥
𝑇

(𝑡) 𝑅
1
𝑥 (𝑡) + 𝜆𝑥

𝑇

(𝑡 − 𝛽) 𝑅
2
𝑥 (𝑡 − 𝛽)

+ 𝜆𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑅
3
𝑥 (𝑡 − 𝜏

1
)

+ 𝜆𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑅
4
𝑥 (𝑡 − 𝜏

2
) + 𝑥
𝑇

(𝑡) 𝐸𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛽) 𝐸𝑥 (𝑡 − 𝛽) + 𝑥
𝑇

(𝑡) 𝐹𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝐹𝑥 (𝑡 − 𝜏

1
) + 𝑥
𝑇

(𝑡) 𝐺𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
2
) 𝐺𝑥 (𝑡 − 𝜏

2
)

+ 𝜏
2

2
ℎ
𝑇

(𝑥 (𝑡))𝐻ℎ (𝑥 (𝑡))

− 𝜏
2
∫

𝑡

𝑡−𝜏
2

ℎ
𝑇

(𝑥 (𝑠))𝐻ℎ (𝑥 (𝑠)) 𝑑𝑠

+ 𝛽
2

𝑥
𝑇

(𝑡) 𝐾𝑥 (𝑡) − 𝛽∫

𝑡

𝑡−𝛽

𝑥
𝑇

(𝑠) 𝐾𝑥 (𝑠) 𝑑𝑠

+ 𝜏
2

1
𝑥
𝑇

(𝑡) 𝐿𝑥 (𝑡) − 𝜏
1
∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) 𝐿𝑥 (𝑠) 𝑑𝑠.

(16)

By employing Lemma 2, we have

− 𝛽∫

𝑡

𝑡−𝛽

𝑥
𝑇

(𝑠) 𝐾𝑥 (𝑠) 𝑑𝑠

≤ −(∫

𝑡

𝑡−𝛽

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐾(∫

𝑡

𝑡−𝛽

𝑥 (𝑠) 𝑑𝑠) ,

− 𝜏
1
∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) 𝐿𝑥 (𝑠) 𝑑𝑠

≤ −(∫

𝑡

𝑡−𝜏
1

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐿(∫

𝑡

𝑡−𝜏
1

𝑥 (𝑠) 𝑑𝑠) ,

− 𝜏
2
∫

𝑡

𝑡−𝜏
2

ℎ
𝑇

(𝑥 (𝑠))𝐻ℎ (𝑥 (𝑠)) 𝑑𝑠

≤ −(∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝐻(∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠) .

(17)

On the other hand, it follows from Assumptions H1 and H3
that

𝑓
𝑇

(𝑥 (𝑡)) 𝑄
1
𝑓 (𝑥 (𝑡)) ≤ 𝑥

𝑇

(𝑡) 𝑈
1
𝑄
1
𝑈
1
𝑥 (𝑡) , (18)

𝑔
𝑇

(𝑥 (𝑡 − 𝜏
1
)) 𝑄
2
𝑔 (𝑥 (𝑡 − 𝜏

1
))

≤ 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑈
2
𝑄
2
𝑈
2
𝑥 (𝑡 − 𝜏

1
) ,

(19)

ℎ
𝑇

(𝑥 (𝑡)) 𝑄
3
ℎ (𝑥 (𝑡)) ≤ 𝑥

𝑇

(𝑡) 𝑈
3
𝑄
3
𝑈
3
𝑥 (𝑡) . (20)

Hence, by (14), (16), (17), (18), (19), and (20), we get

L𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝜁
𝑇

(𝑡) Π𝜁 (𝑡) − 𝜆𝑥
𝑇

(𝑡) 𝑅
4
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏
2
) (𝜆𝑅
4
− 𝐺) 𝑥 (𝑡 − 𝜏

2
) ,

(21)

where

𝜁
𝑇

(𝑡)

= [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝛽) 𝑥
𝑇

(𝑡 − 𝜏
1
) 𝑓
𝑇

(𝑥 (𝑡)) 𝑔
𝑇

(𝑥 (𝑡 − 𝜏
1
)) ℎ
𝑇

(𝑥 (𝑡)) (∫
𝑡

𝑡−𝛽

𝑥 (𝑠) 𝑑𝑠)

𝑇

(∫
𝑡

𝑡−𝜏
1

𝑥 (𝑠) 𝑑𝑠)

𝑇

(∫
𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠)

𝑇

] ,
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Π =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

0 0 𝑃𝐴 𝑃𝐵 0 0 0 Γ
19

⋆ Γ
22

0 0 0 0 0 0 0

⋆ ⋆ Γ
33

0 0 0 0 0 0

⋆ ⋆ ⋆ −𝑄
1

0 0 0 0 Γ
49

⋆ ⋆ ⋆ ⋆ −𝑄
2

0 0 0 Γ
59

⋆ ⋆ ⋆ ⋆ ⋆ Γ
66

0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐾 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐿 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Γ
99

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Γ
11

= −2𝑃𝐷 + 𝜆𝑅
1
+ 𝜆𝑅
4
+ 𝐸 + 𝐹 + 𝐺 + 𝛽

2

𝐾 + 𝜏
2

1
𝐿 + 𝑈

1
𝑄
1
𝑈
1
+ 𝑈
3
𝑄
3
𝑈
3
,

Γ
22

= −𝐸 + 𝜆𝑅
2
,

Γ
33

= −𝐹 + 𝜆𝑅
3
+ 𝑈
2
𝑄
2
𝑈
2
,

Γ
66

= −𝑄
3
+ 𝜏
2

2
𝐻,

Γ
19

= 𝑃𝐶 + 𝐷
𝑇

𝑃𝐷,

Γ
49

= 𝐷
𝑇

𝑃𝐴,

Γ
59

= 𝐷
𝑇

𝑃𝐵,

Γ
99

= −𝐻 − 𝐷
𝑇

𝑃𝐶.

(22)

By conditions (7) and (8), we see that Π < 0. Let 𝛾 =

𝜆min(−Π). Then we claim that 𝛾 > 0. This fact together with
(20) yields

L𝑉 (𝑡, 𝑥 (𝑡)) ≤ −𝛾𝑥
𝑇

(𝑡) 𝑥 (𝑡) − 𝜆𝑥
𝑇

(𝑡) 𝑅
4
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏
2
) (𝜆𝑅
4
− 𝐺) 𝑥 (𝑡 − 𝜏

2
)

= −𝑥
𝑇

(𝑡) (𝛾𝐼 + 𝜆𝑅
4
) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏
2
) (𝜆𝑅
4
− 𝐺) 𝑥 (𝑡 − 𝜏

2
) .

(23)

Let𝑤
1
(𝑥(𝑡)) = 𝑥

𝑇

(𝑡)(𝛾𝐼+𝑅
4
)𝑥(𝑡) and𝑤

2
(𝑥(𝑡)) = 𝑥

𝑇

(𝑡)(𝜆𝑅
4
−

𝐺)𝑥(𝑡). It is obvious that𝑤
1
(𝑥(𝑡)) > 𝑤

2
(𝑥(𝑡)) for any 𝑥(𝑡) ̸= 0.

Therefore, by Definition 1 and the LaSalle invariant principle
of stochastic differential delay equations (e.g., see Corollary 1
in [19]) we see that the zero solution for system (1) is almost
surely stable. This completes the proof of Theorem 3.

Remark 4. If we ignore the effect of time delays in the leakage
terms, then system (1) is reduced to the following:

𝑑𝑥 (𝑡) = [−𝐷𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
) , 𝑥 (𝑡 − 𝜏

2
)) 𝑑𝑤 (𝑡) .

(24)

Correspondingly, we revise Assumptions H2 and H3 as
follows.

Assumption H󸀠2.There exist positive definitematrices𝑅
1
,𝑅
2
,

and 𝑅
3
such that

trace [𝜎𝑇 (𝑥
1
, 𝑥
2
, 𝑥
3
) 𝜎 (𝑥
1
, 𝑥
2
, 𝑥
3
)]

≤ 𝑥
𝑇

1
𝑅
1
𝑥
1
+ 𝑥
𝑇

2
𝑅
2
𝑥
2
+ 𝑥
𝑇

3
𝑅
3
𝑥
3

(25)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ R𝑛.

Assumption H󸀠3. Consider𝑓(0) = 𝑔(0) = ℎ(0) = 0 and
𝜎(0, 0, 0) ≡ 0.

Under Assumptions H1, H󸀠2, and H󸀠3, we have the
following result.

Theorem 5. Under Assumptions H1, H󸀠2, and H󸀠3, the equi-
librium point of (24) is almost surely stable, if there exist a
positive scalar 𝜆, positive diagonal matrices 𝑄

1
, 𝑄
2
, and 𝑄

3
,
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and positive definite matrices 𝑃, 𝐸, 𝐹, 𝐺, and 𝐻 such that the
following linear matrix inequalities (LMIs) hold:

𝑃 ≤ 𝜆𝐼,

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Γ
11

0 𝑃𝐴 𝑃𝐵 0 0 𝑃𝐶

⋆ Γ
22

0 0 0 0 0

⋆ ⋆ −𝑄
1

0 0 0 0

⋆ ⋆ ⋆ −𝑄
2

0 0 0

⋆ ⋆ ⋆ ⋆ Γ
55

0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝐺 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝐻

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(26)

where

Γ
11

= −2𝑃𝐷 + 𝜆𝑅
1
+ 𝜆𝑅
3
+ 𝐸 + 𝐹 + 𝜏

2

1
𝐺 + 𝑈

1
𝑄
1
𝑈
1

+ 𝑈
3
𝑄
3
𝑈
3
,

(27)

Γ
22

= −𝐸 + 𝜆𝑅
2
+ 𝑈
2
𝑄
2
𝑈
2
, (28)

Γ
55

= −𝑄
3
+ 𝜏
2

2
𝐺. (29)

Proof. Consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑡, 𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) 𝐸𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏
2

𝑥
𝑇

(𝑠) 𝐹𝑥 (𝑠) 𝑑𝑠

+ 𝜏
2
∫

0

−𝜏
2

∫

𝑡

𝑡+𝜃

ℎ
𝑇

(𝑥 (𝑠)) 𝐺ℎ (𝑥 (𝑠)) 𝑑𝑠

+ 𝜏
1
∫

0

−𝜏
1

∫

𝑡

𝑡+𝜃

𝑥
𝑇

(𝑠)𝐻𝑥 (𝑠) 𝑑𝑠.

(30)

Similar to the proof of Theorem 3, we can obtain the desired
result by a direct computation. The proof of Theorem 5 is
completed.

Remark 6. Theorems 3 and 5 present some novel sufficient
conditions for a class of stochastic neural networks with or
without time delays in the leakage terms to ascertain the
almost sure stability of the equilibrium point by constructing
a different Lyapunov-Krasovskii functional.These conditions
are easy to be verified and can be applied in practice as
they can be checked by using recently developed algorithms
in solving LMIs. It is worth pointing out that Theorem 3
depends on all the delay constants 𝛽, 𝜏

1
, and 𝜏

2
, whereas

Theorem 5 only depends on the delay constants 𝜏
1
, 𝜏
2
.

Therefore, Theorem 3 is less conservative thanTheorem 5.

Remark 7. It is worth pointing out that L𝑉(𝑡, 𝑥(𝑡)) in
Theorems 3 and 5 may not be negative. However, the stability
criteria obtained in the earlier literature [3–5, 7, 9, 13, 14]
require L𝑉(𝑡, 𝑥(𝑡)) < 0 for any 𝑥(𝑡) ̸= 0. Hence, the LMI
criteria existing in all the previous literature (e.g., see [3–
5, 7, 9, 13, 14]) fail in our results.

4. Illustrative Examples

In this section, two numerical examples are given to illustrate
the effectiveness of the obtained results.

Example 1. Consider a two-dimensional stochastic neural
network with time delays in the leakage terms:

𝑑𝑥 (𝑡) = [−𝐷𝑥 (𝑡 − 𝛽) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛽) , 𝑥 (𝑡 − 𝜏
1
) , 𝑥 (𝑡 − 𝜏

2
)) 𝑑𝑤 (𝑡) ,

(31)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇 and 𝑤(𝑡) is a two-dimensional

Brownian motion. Let

𝑓
𝑖
(𝑥
𝑖
) = 𝑔
𝑖
(𝑥
𝑖
) = ℎ
𝑖
(𝑥
𝑖
)

=
{

{

{

−0.3𝑥
𝑖
, 𝑥

𝑖
≤ 0,

0.4 (
󵄨󵄨󵄨󵄨𝑥𝑖 + 1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑥𝑖 − 1

󵄨󵄨󵄨󵄨) 𝑥
𝑖
> 0,

(𝑖 = 1, 2) .

(32)

Consider 𝜏
1

= 0.8 and 𝜏
2

= 0.9. Then system (31) satisfies
Assumption H1 with 𝑈

−

1
= 𝑈
−

2
= 𝑈
−

3
= 𝑈
−

4
= −0.3𝐼 and

𝑈
+

1
= 𝑈
+

2
= 𝑈
+

3
= 𝑈
+

4
= 0.4𝐼. Take

𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝛽) , 𝑥 (𝑡 − 𝜏
1
) , 𝑥 (𝑡 − 𝜏

2
))

= (

0.3𝑥
1
(𝑡) 0.3 (𝑥

1
(𝑡 − 𝜏
1
) + 𝑥
1
(𝑡 − 𝛽))

0.1𝑥
1
(𝑡 − 𝛽) 0.3 (𝑥

1
(𝑡) + 𝑥

2
(𝑡 − 𝜏
2
))

) ,

(33)

and then system (31) satisfies Assumptions H2 and H3 with
𝑅
1
= 0.27𝐼, 𝑅

2
= 0.19𝐼, 𝑅

3
= 0.18𝐼, and 𝑅

4
= 0.09𝐼.

Other parameters of network (31) are given as follows:

𝐴 = [

0.2 −0.3

0.3 0.4
] ,

𝐵 = [

0.5 −0.6

0.3 0.4
] ,

𝐶 = [

0.2 0.4

−0.3 0.5
] ,

𝐷 = [

1.2 0

0 1.2
] .

(34)
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By using theMatlab LMI toolbox, we can obtain the following
feasible solution for LMIs (7) and (8):

𝑃 = [

60.7096 0.7275

0.7275 62.5844
] ,

𝐸 = [

16.8611 1.0530

1.0530 16.8494
] ,

𝐹 = [

16.2448 1.0620

1.0620 16.2320
] ,

𝐺 = [

3.3060 0.7361

0.7361 3.2838
] ,

𝐻 = [

74.4931 −2.4553

−2.4553 75.8647
] ,

𝐾 = [

13.7310 1.8158

1.8158 13.7116
] ,

𝐿 = [

7.3728 1.3497

1.3497 7.3441
] ,

𝑄
1
= [

60.8188 0

0 60.8188
] ,

𝑄
2
= [

8.7548 0

0 8.7548
] ,

𝑄
3
= [

119.4932 0

0 119.4932
] ,

𝜆 = 66.0946.

(35)

Therefore, it follows from Theorem 3 that network (31) is
almost surely stable.

By using the Euler-Maruyama numerical scheme, simu-
lation results are as follows: 𝑇 = 160 and step size 𝛿𝑡 = 0.02.
Figure 1 is the state response of network (31) with the initial
condition [−0.6, 0.8]

𝑇, for −1.2 ≤ 𝑡 ≤ 0.

Example 2. Consider a two-dimensional stochastic neural
network without time delays in the leakage terms:

𝑑𝑥 (𝑡) = [−𝐷𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏
1
))

+ 𝐶∫

𝑡

𝑡−𝜏
2

ℎ (𝑥 (𝑠)) 𝑑𝑠] 𝑑𝑡

+ 𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏
1
) , 𝑥 (𝑡 − 𝜏

2
)) 𝑑𝑤 (𝑡) ,

(36)

where
𝜎 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏

1
) , 𝑥 (𝑡 − 𝜏

2
))

= (

0.3𝑥
1
(𝑡) 0.3 (𝑥

1
(𝑡 − 𝜏
1
) + 𝑥
1
(𝑡 − 𝜏
2
))

0.1𝑥
1
(𝑡 − 𝜏
1
) 0.3 (𝑥

1
(𝑡) + 𝑥

2
(𝑡 − 𝜏
2
))

) .

(37)

x
1

x
2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

16040 60 80 100 120 140200
t

Figure 1: The state response of network (31) with 𝛽 = 0.6.

All other parameters of network (36) are the same as
in Example 1. It is easy to check that system (36) satisfies
Assumptions H1, H󸀠2, and H󸀠3.

By using the Matlab LMI toolbox, we can obtain the
following feasible solution for LMIs (26):

𝑃 = [

43.0480 0.0049

0.0049 42.9616
] ,

𝐸 = [

20.7689 0.0804

0.0804 21.1338
] ,

𝐹 = [

8.4703 0.1123

0.1123 8.9483
] ,

𝐺 = [

10.1886 0.0254

0.0254 10.3041
] ,

𝐻 = [

19.1260 −0.7029

−0.7029 21.7975
] ,

𝑄
1
= [

18.4632 0

0 18.4632
] ,

𝑄
2
= [

20.4571 0

0 20.4571
] ,

𝑄
3
= [

26.8521 0

0 26.8521
] ,

𝜆 = 52.4720.

(38)
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x
1

x
2
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−0.8

−0.6

−0.4

−0.2

0
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0.6

0.8

1

16040 60 80 100 120 140200
t

Figure 2: The state response of network (36) with 𝛽 = 0.

Therefore, it follows from Theorem 3 that network (36) is
almost surely stable.

By using the Euler-Maruyama numerical scheme, simu-
lation results are as follows: 𝑇 = 160 and step size 𝛿𝑡 = 0.02.
Figure 2 is the state response of network (36) with the initial
condition [−0.6, 0.8]

𝑇, for −1.2 ≤ 𝑡 ≤ 0.

Remark 8. Examples 1 and 2 show that two-dimensional
stochastic neural networks with and without time delays in
the leakage terms are both almost surely stable. However,
we know from Figures 1 and 2 that the stability speed of
stochastic neural network with time delays in the leakage
terms is clearly faster than that of stochastic neural network
without time delays in the leakage terms.This fact reveals that
time delays in the leakage terms do contribute to the stability
of stochastic neural networks.

5. Concluding Remarks

In this paper, we have investigated the almost sure stability
analysis problem for a class of stochastic neural networkswith
timedelays in the leakage terms. Somenovel delay-dependent
conditions are obtained to ensure that the suggested system
is almost surely stable, which is quite different from the
moment stability. Our method is mainly based on the LaSalle
invariant principle of stochastic delay differential equations,
Itô’s formula, and stochastic analysis theory. Moreover, the
stability criteria given in this paper are expressed in terms
of LMIs, which can be solved easily by recently developed
algorithms. In addition, we use two examples to show that
time delays in the leakage terms do contribute to the stability
of stochastic neural networks. Finally, we point out that it
is possible to generalize our results to some more complex

stochastic neural networks with time delays in the leakage
terms (e.g., consider the effect of fractional-order factor [20]).
Research on this topic is in progress.
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