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Abstract

This study presents a new method of detecting individual
treetops from lidar data and applies marker-controlled
watershed segmentation into isolating individual trees in
savanna woodland. The treetops were detected by searching
local maxima in a canopy maxima model (CMM) with vari-
able window sizes. Different from previous methods, the
variable windows sizes were determined by the lower-limit
of the prediction intervals of the regression curve between
crown size and tree height. The canopy maxima model was

created to reduce the commission errors of treetop detection.

Treetops were also detected based on the fact that they
are typically located around the center of crowns. The
tree delineation accuracy was evaluated by a five-fold,
cross-validation method. Results showed that the absolute
accuracy of tree isolation was 64.1 percent, which was
much higher than the accuracy of the method, which only
searched local maxima within window sizes determined
by the regression curve (37.0 percent).

Introduction

Isolating individual trees and extracting relevant tree struc-
ture information from remotely sensed data have significant
implications in a variety of applications. For example,
detailed information at the individual tree level can be used
for monitoring forest regeneration (Gougeon and Leckie,
1999; Clark et al., 2004a and 2004b), reducing fieldwork
required for forest inventory (Gong et al., 1999) and assess-
ing forest damage (Leckie et al., 1992; Levesque and King,
1999; Kelly et al., 2004). To study the interactions between
vegetation and climate, we are applying an individual tree-
based model, called MAESTRA, over an eddy covariance
tower site in Ione, California for quantifying the carbon
fluxes. To parameterize the individual tree-based model,
our research is ongoing to extract individual tree structure
parameters such as tree height, crown height, crown size,
leaf area index (LAI), and biomass using small-footprint
lidar data over an area of 800 m by 800 m around the eddy
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covariance tower. However, to obtain such individual tree
parameters, the initial process is to isolate individual trees
and delineate tree crown boundaries.

Intensive research has been done on isolating individual
trees using remotely sensed data. However, previous data
focuses on large-scale aerial photos or high-spatial resolution
remotely sensed imagery. The methods for isolating individ-
ual trees from imagery or photos include: local maxima
detection (Dralle and Rudemo, 1996), local maxima filtering
with fixed or variable window sizes (Wulder et al., 2000;
Pouliot et al., 2002), valley-following (Gougeon, 1995),
edge detection using scale-space theory (Brandtberg and
Walter, 1998), template-matching (Pollock, 1996; Larsen and
Rudemo, 1998), local transect analysis (Pouliot et al., 2002),
3D modeling (Sheng et al., 2001; Gong et al., 2002), and
watershed segmentation (Schardt et al., 2002; Wang et al.,
2004). When isolating trees from a monocular image or
photo, these methods are mostly based on the assumption
that there are “peaks” of reflectance around the treetops and
“valleys” along the canopy edges. However, the “peaks” and
“valleys” are not always distinct since canopy reflectance is
affected by various factors such as illumination conditions,
canopy spectral properties, and complex canopy structure.

Recently, researchers have begun to apply lidar data into
individual tree isolation and canopy information extrac-
tion (Hyyppé et al., 2001; Persson et al., 2002; Brandtberg
et al., 2003; Leckie et al., 2003; Popescu et al., 2003; Popescu
and Wynne, 2004). Compared with passive imaging, lidar
has the advantage of directly measuring the three-dimen-
sional coordinates of canopies. Therefore, the geometric,
rather than spectral, “peaks” and “valleys” can be detected.
Several studies have extended methods developed for
optical imagery and aerial photos into lidar data for tree
detection (Brandtberg et al., 2003; Leckie et al., 2003;
Popescu et al., 2003). Brandtberg et al. (2003) extended
the scale-space theory to detecting crown segments. Leckie
et al. (2003) applied the valley-following approach into
both lidar and multi-spectral imagery and found that the
lidar can easily eliminate most of the commission errors
that occur in the open stands while the optical imagery
performs better for isolating trees in Douglas-fir plots.

This study attempts to use marker-controlled watershed
segmentation in tree isolation. Watershed segmentation,
first proposed by Beucher and Lantuejoul (1979), is a well-
known image segmentation method that incorporates the
advantages of other segmentation methods such as region-
growing and edge-detection (Soille, 2003). To avoid the over-
segmentation problem, Meyer and Beucher (1990) introduced
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marker-controlled watershed segmentation. The idea is to
perform watershed segmentation around user-specified
markers rather than the local maxima in the input image.
The image indicating the locations of markers is called a
marker function and the image for producing watersheds is
called a segmentation function. Marker-controlled watershed
segmentation is well-suited for tree isolation. With appropri-
ate marker and segmentation functions, marker-controlled
watershed segmentation can be used to delineate the bound-
aries of individual crowns. This characteristic makes it
superior to local transect or profile methods (Pouliot et al.,
2002; Popescu et al., 2003), which can only obtain crown
radii for limited directions.

Marker-controlled watershed segmentation was applied
for tree isolation in a Compact Airborne Spectrographic
Imager (CASI) image (Wang et al., 2004). Schardt et al. (2002)
used the threshold for isolating spruce trees in lidar data
and suspected it to be unsuitable for deciduous tree species
due to their complex canopy structure. In marker-controlled
watershed segmentation, the forms of marker and segmenta-
tion functions play a key role in partitioning an image to
meaningful objects. In particular, marker functions corre-
sponding to treetops are crucial for its successful application
in tree isolation. This study hypothesizes that individual
trees can be isolated for deciduous trees only if appropriate
marker and segmentation functions are generated from lidar
data. Based on these, the objectives of this study are to
present methods for generating treetop marker and segmen-
tation functions from lidar data and test their application
into tree isolation in savanna woodland

This paper is organized as follows: first, the methods of
treetop detection with variable window sizes are discussed
and a new method of creating marker and segmentation
functions is introduced; next, the performance of these
markers and segmentation functions is evaluated and rele-
vant errors are analyzed; and finally, the conclusions are
presented.

Methods

Study Area and Lidar Data

The study site is an open oak savanna woodland, located near
Ione, California (latitude: 38.26° N, longitude: 120.57° W)
(Figure 1). The site is on a private ranch and is part of the
AmeriFlux network of eddy covariance field sites (Baldocchi
et al., 2004). The landscape is characterized by flat terrain
(with a maximum slope of less than 15 percent) with a scat-
tered, clumped distribution of blue oaks (Quercus douglasii
H.&A.) and a minority of grey pines over a continuous layer
of Mediterranean annual grasses. On 24 August 2003, laser
altimetry data were acquired with Optech ALTM 2025, which
recorded both first and last returns for each laser pulse. The
scanning pattern was z-shape. The claimed vertical accuracy
from the data provider is 18 cm with 95 percent confidence
and the horizontal accuracy is 1/3000 of the flying height.
The swath is approximately 300 m and the flying altitude

is approximately 500 m. The footprint size is about 18 cm.
The average posting density is 9.5 points per square meter,
resulting in an average spot spacing of about 32 cm. To obtain
such a high pulse density, the site was flown twice. The data
covering 800 m by 800 m around the eddy covariance tower
was used in this study to isolate individual trees.

Digital Elevation Model

The tree isolation from lidar data is typically based on a
canopy height model (CHM), which is the difference between
canopy surface height and a digital elevation model (DEM) of
the earth surface. The research on generating a DEM from
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Figure 1. A cAsl image covering the study area.

laser altimetry data, also called filtering, is still being devel-
oped. Typically, the laser pulses are classified iteratively
into terrain and non-terrain returns, and the extracted terrain
pulses are used to generate a DEM by interpolation (Hyyppéd
et al., 2001; Persson et al., 2002; Brandtberg et al., 2003).

In this study, the basic procedure of generating a DEM is as
follows:

First, a grid with cell size of 1 m by 1 m was created.
Each cell recorded the lowest last return of all pulses falling
in the cell; this grid is denoted as gn;,. If some cells have
no pulses within them, they were filled with the nearest
cell value; this filled grid is denoted as gyin. Then, a surface
approximating the terrain, denoted as gy(min), Was created by
morphologically opening the filled grid g, An initial set
of terrain pulses were identified by calculating the differ-
ence between g, and gsi,. The cells with absolute value of
difference less than 0.5 m were treated as cells where terrain
pulses are located. The triplex {X;, Y;, gnin; from these cells
were used to create a DEM by kriging. A new set of terrain
pulses were obtained by comparing the elevation of last
return of each pulse with its DEM value. If their absolute
value of difference was less than 0.5 m, it was classified as
a terrain pulse. The details on the algorithm are presented
in another companion paper (Chen et al., 2007). Figure 2
shows the DEM.

To assess the accuracy of filtering, three plots, each
with an area of 100 m by 100 m, were randomly located
and the pulses were manually classified into terrain and
vegetation returns, and this layer acted as subsequent
ground truth. The accuracy of filtering was evaluated by
calculating the type I, type II and total error (Sithole and
Vosselman, 2003). Type I error is the percentage of terrain
returns misclassified as vegetation returns. Type II error
is the percentage of vegetation returns misclassified as
terrain returns. Total error is the error weighted with the
portion of each category of reference returns. The accuracy
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Figure 2. The DEM generated from lidar data.

TABLE 1. FILTERING ACCURACY ASSESSMENT TABLE FOR ALL PLOTS
Filtered
Error
All Plots Terrain Vegetation  Total (%)
Reference Terrain 218189 2305 220494 1.04
Vegetation 1650 92479 94129 1.75
Total 18647 19363 314623 1.26

is summarized in Table 1. The high accuracy of filtering is
partially due to the flat terrain over the study area.

Canopy Height Model

After the DEM has been created, the relative canopy height of
laser pulses can be calculated and interpolated into a CHM.
Previous research used kriging (Popescu and Wynne, 2004),
active contour algorithm (Persson et al., 2002), or VDEMINT
program in PCI EASI (Leckie et al., 2003) to create a CHM or
digital surface model (DSM). In Popescu and Wynne (2004),
at first a grid was created, each cell of which recorded the
elevation of the highest first-return of laser pulses within it;
then, the elevations within these cells were interpolated into
a CHM by kriging. This method is used in this study. The
cell size of the grid is an important parameter in construct-
ing a CHM. A large cell size will reduce the variations of
canopy height and make the “peaks” and “valleys” difficult
to detect in the interpolated CHM. Nevertheless, a very small
cell size could dramatically increase the data storage. If first-
return density A (returns/m?) does not change over the study
area, the average distance between pulses is:

=5 (1)

and cell size can be set to d. In practice, pulse density
varies because there are side overlaps between swaths and
pulse density is higher along the edges of a swath for this
dataset. Therefore, a small cell size should be used when
there are large pulse densities locally. The variations of A
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were investigated by overlaying a grid of 1 m by 1 m cells
over the first-returns. Results showed that A varied from

0 to 115 returns per m? A large A was chosen by calculating
the p'" quantile of A. In this study, p was set to be 0.99 and
its corresponding A value was 44. With Equation 1, the cell
size was set to be 0.2 m.

Variable Window Sizes in Treetops Detection

Treetops can be detected by finding the local maxima
(Hyyppd et al., 2001; Persson et al., 2002) or local maxima
within fixed or variable window sizes in a CHM (Dralle and
Rudemo, 1996; Wulder et al., 2000). The main problem
encountered when using local maxima to detect treetops

is large commission errors, that is, non-treetop local maxima
are incorrectly classified as treetops. Wulder et al. (2000)
detected treetops from high spatial resolution optical imagery
by searching local maxima within variable window sizes.
The window sizes were adaptively calculated based on the
semivariance range or local breaks in slope. Popescu and
Wynne (2004) derived variable window sizes by assuming

a relationship between tree height and crown size and used
them to detect treetops from lidar data. The Popescu and
Wynne (2004) method was tested in this dataset.

To obtain a relationship between tree height and crown
size, tree height and crown size were measured manually
from the CHM. Tree height is the maximum height within
a manually determined crown. Crown size is the average
crown diameter along two perpendicular directions. The
trees were sampled systematically over the whole study area
with horizontal and vertical intervals of 53 m. If there were
no trees in the sampling locations, the nearest tree was
selected. The final sample size was 196 trees.

There are several reasons for measuring tree height and
crown sizes from the CHM rather than in the field. First,
due to high pulse density of this lidar dataset, it is easy to
identify individual trees from the CHM manually. Second,
sampling in a CHM can greatly reduce the workload and
is not limited by factors such as accessibility in the field.
To evaluate the accuracy, another 26 trees were randomly
chosen and their tree height and crown size of measured
from both CHM and the field. In the field, the height of each
tree was measured with a hypsometer for eight times and
the measurements were averaged. Crown size was measured
along two perpendicular directions, and the average value
was used. The mean absolute differences of tree height and
crown size between CHM and field measurements were 0.37 m
and 0.58 m, respectively. This indicates that the accuracy is
acceptable when sampling trees from CHM.

It was found that crown size has larger variability when
a tree is higher (Figure 3), which will violate the assumption
of homoscadasticity if a linear model is fitted. To avoid this
issue, a nonlinear power model was fitted:

Crown size = 1.7425 X (Tree height)®¥%, (2)

Variable Window Size from Prediction Interval

Using Equation (2), the commission errors can be reduced,
since it will search local maxima within larger window sizes
for higher trees. However, this will also lead to large
omission errors. Statistically, a half number of the trees at a
certain height have smaller crown sizes than the fitted value
at this height (Figure 3). The treetops of these trees will
possibly be missed if the window size is equal to the fitted
value. In this study, the window sizes were determined by
another curve which is the 1-« lower limit of one-sided
prediction interval of the regression model (Figure 3).
Consider a regression model Y, = 87 x + . The curve is
determined by:
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Figure 3. The relationship between crown size and tree
height. The solid line is the regressive curve and the
dashed line is the lower limit of the prediction intervals.

?X =Y — t(1-an-2)Vs® + xSx’ (3)

where Y, is the lower prediction limit at a given tree height
x, s* is the mean squared error, t is the inverse of Student’s
t cumulative distribution function, S is the covariance
matrix of the coefficient estimates, (XTX) s?, and Y is the
fitted value at x. When « is 0.5, the lower limit Y, is exactly
located at the fitted regression curve. When using this
curve to determine window sizes for detecting treetops,

the omission errors can be reduced by using a small a.
However, a smaller « will lead to larger commission errors
(see Figures 4b and 4c). Only if the window size is smaller
than the crown size of a tree, there is a risk of including
irrelevant local maxima as treetops.

Canopy Maxima Model

The previous analysis demonstrated that commission and
omission errors of treetop detection cannot be decreased
simultaneously by adjusting « when a canopy height model
was used. This problem can be greatly alleviated when
detecting treetops from a canopy maxima model (CMM),
which is a regular grid with each cell recording the maxi-
mum laser height within its neighborhood. Compared with a
CHM, many irrelevant local maxima can be removed in the
cMM (Figure 4d). As detecting treetop markers, variable
window sizes are used to creating a CMM. To prevent the
“valleys” among crowns from being filled, the window size
need to be smaller than the crown size of the smallest tree
at a given height. This can be approximated statistically by
obtaining the lower limit of one-sided prediction interval
with a very small a in Equation 3. Previous researchers have
reported that the tree density for blue oaks on gentle slopes
has a maximum tree density of about 200 trees/ha (Kiang,
2002). Corresponding to such a number there is a maximum
of about 12,800 trees for the study area of 800 m by 800 m.
Based on this, « is set to be 0.0001. The tree height from the
CHM was used to determine the window sizes with Equation 3.

Gaussian Filtering

In the cMM, not all of the non-treetop local maxima could be
removed since the neighborhood window size used for
creating the cMM is usually smaller than the crown size,
especially for trees which have large crowns at a certain
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Figure 4. Treetops detected using different methods
and parameters. (a) Treetops detected from a CHM by
searching local regional maxima, (b) treetops detected
from a CHM using variable window size when a = 0.5,
(c) treetops detected from a CHM using variable window
sizes when a = 0.1, and (d) treetops detected from a
CMM using variable window size when a = 0.1.

height. Gaussian filtering is a typical procedure for suppress-
ing irrelevant local maxima in treetop detection (Dralle and
Rudemo, 1996; Hyypp4 et al., 2001; Persson et al., 2002;
Pouliot et al., 2002; Schardt et al., 2002; Wang et al., 2004).
Dralle and Rudemo (1996) found that the standard deviation o
of a Gaussian filter is not very important. This conclusion
was confirmed in this study and the value of o was set to be
2. However, the filter size has a significant impact on the
smoothed cMM. This study used the criteria that the filter
size should not be larger than the crown size of the smallest
(in terms of crown) tree over the study area. The determina-
tion of the smallest crown size was based on the crown
sizes of the sampled trees from the CHM. The smallest crown
size can be approximated from the sample by calculating
the lower limit of the one-sided prediction intervals for

k future observations at confidence level (1-a) (Hahn and
Meeker, 1991):

_ 1
Lower Limit = X — tl—g(n - 1)5\/“_77 ) (4]
x n

where X, s, n are the mean, standard deviation, and size of
the sample of crown size, respectively (Table 2); a was set
to be 0.05. Based on the previous analysis, k was set to be
12,800.

When checking the crown size distribution of the
sample, it was found that the distribution was skewed to the
right. A Jarque-Bera test for the goodness-of-fit of normal
distribution indicated that the p-value was 0.0016, which
was significantly different from a normal distribution at 5
percent level. When transformed into logarithm scale (with
natural base e), the p-value was 0.2224. Therefore, Equation 4
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TABLE 2. DESCRIPTIVE STATISTICS OF SAMPLED TREES (N = 196)

Variables Min(m) Max(m) Mean(m) Std.(m)
Tree height 2.0 12.2 5.8 2.1
Crown size 1.2 20.9 8.8 4.4

was used to get the lower limit of the one-sided prediction
interval of crown sizes at the logarithmic scale. After trans-
formed back to the original scale, a value of 1.0 m was
obtained for the minimal crown size, which was used as
the Gaussian filter size.

In a smoothed cmM, the spurious local maxima other
than treetops were greatly reduced (see Figures 4c and 4d)
and the change of « in Equation 4 would affect mostly the
omission errors not the commission errors. Applying such
a “divide-and-conquer” strategy, both the omission and
commission errors for treetop detection can be reduced.
After treetops had been detected, they were used for seg-
menting individual crowns.

Segmentation with cmm

The process of watershed segmentation can be illustrated
in terms of flooding simulations (Soille, 2003). Figure 5a
shows a cMM. To simulate the process of flooding, we first
calculated the complement of the cMM (Figure 5b), which
resembles two catchment basins. Assume that each basin
has a hole punched at its minimum. Then, when immers-
ing it gradually into water, the catchment basins will be
flooded. This algorithm can be thought to automatically
build dams along the divide line to prevent water in two
neighboring catchment basins from merging (Figure 5c). The
constructed dams are called watershed lines and will be
used to partition trees.

In marker-controlled watershed segmentation, the
complement of the cMM is filtered by minima imposition
before computing its watersheds so that all non-treetop
minima have been removed. Suppose there is an image f,
which is the complement of the cMM in this case, and a
marker image f;, has been specified at each pixel p:

0, if p belong to a marker,
tmax + 19

fulp) = {

where tp,, is the maximum value of the input image f.
Minima imposition is to first calculate a pixel-wise mini-
mum between f + 1 and the marker image f;,, denoted as (f
+ 1) A f;,, and then perform a morphological reconstruction
by erosion of (f + 1) A f,, from the marker image f,;:

fmp = HEC+1]Aﬁ,,(fm), (6)

where f,,, is the image after minima imposition, R{j1)., (f)
is defined as the geodesic erosion of (f + 1) A f,, with
respect to f,, iterated until stability is reached (Soille, 2003).
The geodesic erosion of (f + 1) A f,,, with respect to f;, is

to perform morphological erosion for f,, but the value of

(f + 1) A fi, is used only if the value after erosion is smaller
than (f + 1) A fy. Minima imposition can reconstruct the
complement of CMM so that there are only minima corre-
sponding to marked treetops. This illustration highlights the
importance of finding a correct treetop marker function when
applying marker-controlled watershed segmentation method.

otherwise.

Segmentation with Distance-Transformed Image

Deciduous trees, such as oak, have a relatively flat canopy

surface making treetops difficult to detect from the cMM or

CHM (Figure 6a). Since treetops are typically located around
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Figure 5. An illustration of watershed
segmentation Algorithm. (a) A cmmMm,

(b) the complement of the cmMm, and
(c) dams built at the divide line.

the center of crowns, this fact can be exploited to further
detect treetops. To implement that, at first, a binary image
was created, where the canopy had values of ones while
watershed lines and the background had values of zeros
(Figure 6b). Then, a distance transform was performed

on the binary image to calculate the distance from each
non-zero pixel to its nearest zero pixel (Figure 6c). In the
distance-transformed image, the center of a crown had large
values. Like the cMM, the complement of this distance-
transformed image, denoted as DIST,, can be used for
segmentation. Treetops were detected from DIST, using
h-minima transformation which suppressed all minima
shallower than h. The h-minima transformation of the DIST,
is to perform the reconstruction by erosion of DIST, from
DIST, + h.

DISTc,hmin = REDISTC(DISTC + h] [7)
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Figure 6. Distance-transformed image for treetops
detection. (a) Treetops found in cMM, (b) segmentation
results using treetops in cMM, (c) distance-transformed
image and treetops detected using h-minima transform,
and (d) segmentation results based on distance-
transformed image.
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Figure 7. Flow chart of the method for tree isolation.

where DIST, i, is the h-minima transformation of DIST..

The regional minima of DIST, ., was marked as treetops.

With these treetop markers and the segmentation function

928 August 2006

DIST,, marker-controlled watershed segmentation was used
for delineating tree crown segments (Figure 6d). Note that
the threshold h directly affects the performance of detecting
treetops. An optimal value of h was obtained from the
training data.

Because there are some dead trunks and some instru-
ments for ecological studies in the sites, the segments were
post-processed by removing all segments which are shorter
than 2 m. Also all segments adjoining the boundary of the
study site were removed. The whole procedure for isolating
individual trees is illustrated in Figure 7.

Results and Discussions

Accuracy Assessment
To evaluate accuracy, a ground truth crown map for two
transects (Figure 8), each with an area of 100 m by 300 m,
was acquired by manually delineating the crowns boundaries
on the prints of the CHM in the field. Airphotos were used
in the field to aid the delineation of tree crowns. After the
crown boundaries had been outlined in the field, they were
further verified and refined by examining the laser point
cloud with a 3D visualization software (ArcGIS® 3D Analyst,
ESRI™) in the laboratory. There are a total of 772 trees in the
two transects. The absolute accuracy for tree isolation (AATI)
was used for evaluating delineation accuracy:

Nl,l

AATI =

(8)
where N, ; is the number of crowns which has one-to-one
relationship with the ground truth crown polygon, N; is the
number of crowns in the field, and N is the total number of
automatically delineated segments. One-to-one relationship
means that the overlaying area S, between a ground truth
crown polygon and one segment overlaying with it is
within the range of S, = 10%*S,, where S, is the area of

the reference crown polygon.

There are two free parameters in the tree isolation
method: « in Equation 4 and h in Equation 7. The tree
isolation accuracy was assessed by the five-fold, cross-
validation method, which divided the ground truth data into
five folds randomly. Each time four folds were used for
training and the parameters that achieved the highest AATI
for the training data were used to evaluate the accuracy of
the fold left out. This process was repeated for five times
and the accuracies for five folds were averaged. When
parameters were tuned, the domains of & and h were limited
to be {0.01, 0.1, 0.2, 0.3, 0.4, 0.5} and {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7}, respectively. It was found that when any four folds
were used for training, the highest AATI was obtained when
the highest AATI was obtained when « was 0.01 and h was
0.5 m. The AATI for different folds varied from 61.3 percent
to 68.2 percent. The average cross-validation accuracy was
64.1 percent. With these parameters values, there were a
total of 9,386 segments delineated (Figure 8).

Because different studies use different accuracy assess-
ment methods, it is difficult to compare our accuracy with
those from other studies. Persson et al. (2002) delineated
crown segments of conifers such as Norway spruce, Scot
pines, and Birch in southern Sweden. They linked the
segments with field trees by searching all segments within
two pixels (two-thirds of a meter) around a field tree. In
total, 71 percent of trees were correctly detected. Brandtberg
et al. (2003) adopted the fuzzy concept to quantify the
accuracy of the segmentation results and designed an index
A, the value of which is 1 if the segment polygon overlaid
perfectly with the delineated polygon in the field. Finally,
their A values varied from 0.21 to 0.35 for six one-hectare
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of transects for accuracy assessment.
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Figure 8. Crown delineation map (¢ = 0.01 and h = 0.5m). The two rectangles show the locations

plots in a deciduous forest with species including oaks,
maple and poplar. Leckie et al. (2003) treated it as a
“perfect” match when there is a one-to-one correspondence
between ground reference polygons and delineated seg-
ments and their overlaps are greater than 50 percent. They
obtained a 59 percent “perfect” match for a conifer forest.
When compared with these studies, the criteria for accuracy
assessment used in this study are much stricter. Therefore,
the accuracy obtained with our method is encouraging.

Effects of a and h

To examine the effects of @ and h, the AATIs for all combina-
tions of these two parameters were calculated for all trees in
the ground truth transects (Table 3). When investigating the
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effects of the threshold h on tree isolation accuracy, there
was a consistent pattern showing that h = 0.5 m is the best
value for this dataset (Figure 9a). When h is very small,
spurious local minima could be counted as treetops and tree
crowns will be over-segmented. When h is very large,
treetops will be missed, leading to the under-segmentation
issues. Therefore, when h lies between these two extrema,
the highest accuracy can be obtained. For «, it seems that
the tree isolation accuracy increases when decreasing a. One
of the possible reasons is that when using smoothed cMM to
detect treetops, the commission errors have been greatly
reduced. As a result, decreasing « will reduce the omission
errors while having little effects on the commission errors
(Figure 9b).
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TaBLE 3. TREE ISOLATION ACCURACY

AATI h =01 h =02 h =0.3 h=o04 h = 0.5 h =06 h =07
a = 0.01 59.2% 60.8% 62.0% 62.8% 64.1% 63.3% 62.3%
a=0.1 58.4% 59.2% 60.5% 61.9% 62.8% 61.7% 60.1%
a = 0.2 57.9% 58.2% 58.8% 60.4% 62.6% 61.3% 59.8%
a=03 57.3% 57.1% 57.6% 58.4% 59.7% 58.4% 56.9%
a =04 57.0% 56.9% 57.5% 58.2% 59.2% 58.2% 56.9%
a =05 56.7% 56.6% 57.3% 57.8% 58.8% 57.5% 56.1%
Tree isolation accuracy vs. h with different a 70.0% 1 84.1%
65.0% } 60.0% -
64.0% ——0a=0.01 50.0% -
63.0% - )
—&—0=0.1
62.0% 1 — 400% -  370%
61.0% —A—0=0.2 E
= <
5 60.0% —%—0a=0.3 30.0% A
59.0% 1 —%—0=0.4 .
58.0% - 20.0% -
——0a=0.5
57.0%
10.0% -
56.0%
o I 2 03 o4 05 06 07 08 Sk ‘ I
o oo R Method Method2 Method3 Method4
Figure 10. Comparison of tree isolation accuracy from
(a) X .
different treetop detection methods. Method 1: detect
Tree isolation accuracy vs. a with different h treetops from cHM and window sizes are based on the
fitted regression curve; Method 2: detect treetops from
65.0% - cMM and window sizes are based on the lower-limit of
64.0% | —¢—h=0.1 the prediction interval of the regression curve; Method
63.0% | —-8-h=0.2 3: treetops are local maxima within cHM; and Method 4:
- —a—h=03 detect treetops from distance-transformed image in
62.0%1 addition to Method 3.
_ 61.0% - —h=0.4
< 600% | —%-h=0.5
59.0% —e—h=0.6
58.0% 1 ——h=07 The AATIs for these three methods were 37.0 percent,
57.0% 1 54.4 percent, and 48.6 percent, respectively (Figure 10). The
56.0% - method based on Popescu and Wynne (2004) had the lowest
55.0% : . ; : . , accuracy. This is not surprising since previous analysis shows
0 0.1 02 03 0.4 05 06 that potentially about a half number of trees would be missed
a if window sizes are determined by the fitted regression curve.
(b) In the second method, the accuracy was much higher than

Figure 9. The effects of parameters on tree isolation.

Comparison of Different Treetop-detection Methods

In addition to the above method, three other methods of
treetop detection were applied into marker-controlled
watershed segmentation for tree isolation: (a) the first
method was based on Popescu and Wynne (2004), which
detected treetops by searching local maxima within variable
window sizes in the CHM. The window sizes were deter-
mined by the fitted regression curve, (b) in the second
method, treetops were detected from the CMM and variable
window sizes were determined by the lower-limit of the
prediction interval of the regression curve, but the distance-
transformed image was not used for detecting treetops, and
(c) in the third method, treetops were detected by finding
local maxima in the CHM. For all of these three methods, the
segmentation function is the CHM.
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that in the first method when treetops were detected from the
CcMM and the window sizes were determined by the lower-
limit of the prediction interval. Compared with the second
method, the method which additionally detected treetops
from distance-transformed image can increase the accuracy by
about 10 percent. The accuracy from the third method is also
higher than the Popescu and Wynne (2004) method. This is
because the omission errors in this method are low.

Error Analysis

The omission and commission errors will lead to under- or
over-segmentation of tree crowns. When the branches of
neighboring trees are intertwined or trees with different
heights are growing closely, it is usually difficult to separate
them. The over-segmentation problem mostly occurred for
very old oak trees. These old and large oak trees usually
grow in open space. With little competition of light and
nutrient with surrounding trees, their branches can reach far
in various directions and grow into irregular shape. When
each large branch looks like a tree, the over-segmentation
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problem happens. When the “valleys” among trees were not
discernable in CMM or distance-transformed image, the
crown boundaries were wrongly delineated.

Conclusion

In this study, previous methods of detecting treetops by
searching local maxima within variable window sizes were
revisited and it was found that using fitted regression curve
to determine window sizes could lead to large omission
errors. The proposed method intended to reduce the omis-
sion and commission errors in three means: (a) creating a
CMM to reduce the spurious local maxima, (b) detecting
treetops from the cMM using variable window sizes which
were based on the lower limit of the prediction intervals,
and (c) detecting treetops using distance-transform, which
was based on the fact that treetops are located around

the center of each crowns. The first means was to reduce
commission errors and the rest two were to reduce omission
errors. It was found that this “divide-and-conquer” method
can achieve much higher accuracy than traditional methods.
Also, applying distance-transform image to detect treetops
can significantly increase the tree isolation accuracy. How-
ever, compared with previous methods, this method requires
field data to train two additional parameters « and h. More
research is needed to test this method over other forest types
and examine the effects of « and h. Overall, the accuracy of
this method is encouraging, especially considering the strict
criteria used in accuracy assessment. The results showed
that marker-controlled watershed segmentation can be used
for isolating individual trees for deciduous tree species.

The tree isolation results can be further used to extract other
forest parameters such as tree height, crown size, biomass,
and LAL With individual tree information extracted from
remotely sensed data, biogeochemistry models can be para-
meterized to scale up from individual trees to landscapes for
better understanding of various ecological processes.
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