
Abstract
The main objective of this study is to evaluate the feasibil-
ity of deriving a land-cover map of the state of Mato
Grosso, Brazil, for the year 2000, using data from the 1 km
SPOT-4 VEGETATION (VGT) sensor. For this purpose we
used a VGT temporal series of 12 monthly composite
images, which were further transformed to physical-
meaningful fraction images of vegetation, soil, and shade.
Classification of fraction images was implemented using
several recent machine learning developments, namely,
filtering input training data and probability bagging in a
classification tree approach.

A 10-fold cross validation accuracy assessment indi-
cates that filtering and probability bagging are effective at
increasing overall and class-specific accuracy. Overall
accuracy and mean probability of class membership were
0.88 and 0.80, respectively. The map of probability of class
membership indicates that the larger errors are associated
with cerrado savanna and semi-deciduous forest.

Introduction
The importance of tropical forests (e.g., the Amazon forest)
and the surrounding environment has been increasing, as
specific threats and problems (e.g., deforestation, timber
logging, infrastructure development, and mining) are
generating increased atmospheric carbon dioxide concentra-
tion, with severe present and future consequences in climate
(Batjes and Sombroek, 1997; Vitousek et al., 1997;
Houghton, 2000; Schulze et al., 2003). The Amazon forest is
a unique ecosystem, driven by its moist climate and is home
to hundreds of thousands of animal and plant species
(Goulding et al., 2003). It is also important to consider the
areas of cerrado savanna and seasonal forest, where defor-
estation has been as intense as in areas of moist forest
(Fearnside, 1993; Miranda et al., 1996; Nepstad et al., 1997;
Kaimowitz and Smith, 2001). In the past thirty to forty
years, the Amazon forest has suffered several aggressions
that led to deforestation of large areas of native forest for
agricultural and pasture uses, as well as for mining and
timber activities (Moran et al., 1994; Nepstad et al., 1997).
Integrated satellite and census data showed that part of the
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state of Mato Grosso within the hydrological borders of the
Amazon and Tocantins rivers has experienced a 50 percent
increase in total agricultural area between 1980 (approxi-
mately 94,115 km2) and 1995 (approximately 140,845 km2),
due to duplication in cropland (soybean and sugar cane
plantations) and triplication of planted pasture, at the
expense of natural pasture (Cardille and Foley, 2003).
Estimates based on manual interpretation of high-resolution
satellite imagery, produced by the Brazil’s National Space
Research Institute (INPE), indicate that in the state of Mato
Grosso (Brazil), deforestation in areas of moist and seasonal
forest reached a value of 143,930 km2 by the end of the year
2000, which is close to 25 percent of the total area defor-
ested in the Brazilian Legal Amazon (INPE, 2002). The Mato
Grosso State Foundation for the Environment (FEMA-MT),
using manual interpretation of high-resolution satellite data,
estimated that deforestation in this state reached a value of
270,283 km2 by the end of 1999 (SEPLAN, 2002). The
difference between INPE’s and FEMA-MT’s estimates is mostly
due to the deforestation in areas of cerrado savanna, consid-
ered by the later. However, a state-level licensing and
enforcement program for clearing by large farmers and
ranchers, implemented by the FEMA-MT since 1999, appears
to become effective at controlling deforestation, with the
observed decreased of deforestation rate between 1999 and
2000 (Fearnside, 2003; Fearnside and Barbosa, 2003). These
dynamics make Mato Grosso one of the most rapidly
changing states within the Brazilian Legal Amazon. Consid-
ering the unique characteristics of the Amazon forest and its
interfaces with other important vegetation types, this state is
representative of the moist forest, cerrado savanna and
seasonal forest, their diverse interfaces, and underlying
changes. Up-to-date, accurate maps of land-cover and land-
use are required for monitoring the impacts on the carbon
and water cycle, biotic diversity, and soil degradation
(Houghton et al., 2000 and 2001; Lambin et al., 2003).

The need for timely and accurate environmental infor-
mation have driven the development of new optical sensors,
e.g., the Moderate Resolution Imaging Spectroradiometer
(MODIS), the VEGETATION (VGT), and the Advanced Along
Track Scanning Radiometer (AATSR) sensors, onboard the
Terra/Aqua, SPOT-4, and ENVISAT satellites, respectively, and
stimulated the improvement of methods for land-cover
mapping (Friedl et al., 2002; Eva et al., 2004). These sensors
were partially designed for land applications, either to
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provide accurate and operational measurements of simple
characteristics of vegetation canopies, and qualitative land-
cover information. The data, with enhanced spectral, spatial,
radiometric, and geometric quality, and acquired on a daily
basis, have the potential for land-cover change monitoring,
especially in these tropical regions where cloud coverage is
high. The use of coarse optical remote sensing imagery has
proven to be a valuable tool to map and monitor land-cover
changes from regional to global scales (Hansen et al., 2000;
Achard et al., 2001; Friedl et al., 2002; Eva et al., 2004).
Hansen et al. (2000) produced a 1 km, 12-class global land-
cover map (i.e., the University of Maryland global land-cover
map), using 1992–1993 data from the Advanced Very High
Resolution Radiometer (AVHRR). Achard et al. (2001), in the
scope of the TRopical Ecosystem Environment observation
by Satellite (TREES) project, mapped several land-cover
classes over the pan-tropical humid forest belt, using early
1990’s AVHRR data. Friedl et al. (2002) produced a 1 km, 17-
class global land-cover map (i.e., the Boston University
global land-cover map), updated at quarterly (96 day)
intervals, using Terra/Aqua MODIS data. Eva et al. (2004)
produced a 1 km, 42-class vegetation map of South America
for the year 2000, as part of the Global Land-Cover 2000
(GLC2000) project, using four sets of satellite information:
Along Track Scanning Radiometer (ATSR-2) onboard the ERS-
2 satellite, SPOT-4 VGT, JERS-1 radar data, and the Defense
Meteorological Satellite Program (DMSP) Operational Lines-
can System (OLS).

Land-cover classification from remote sensing data has
relied on parametric classifiers (distributional assumptions),
such as supervised quadratic discriminant analysis (QDA)
(i.e., maximum likelihood classifier) or unsupervised
clustering methods (Richards, 1986; Lillesand and Kiefer,
1994). Machine learning techniques, such as decision trees,
neural networks, and k-nearest neighbors classifiers have
been applied to land-cover classification at global, continen-
tal, and regional scales (DeFries et al., 1998; Friedl et al.,
1999; Hansen et al., 2000; Franco-Lopez et al., 2001; Friedl
et al., 2002; Brown de Colstoun et al., 2003). Decision trees,
developed by Breiman et al. (1984) as classification and
regression trees (CART), require no distributional assump-
tions, can handle data represented on different measurement
scales, yield a set of explicit rules which are easy to inter-
pret, can handle missing data, and produce a variable
importance score. Some refinements have been introduced
to basic decision tree algorithms, namely the notion of
ensemble (or committee) of classifiers. Bagging (bootstrap
aggregation) (Breiman, 1996) and boosting (Freund and
Schapire, 1996) are methods that generate committees of
classifiers, and combine them by simple or weighted voting
from the individual classifiers (Breiman, 1998). These
methods have proven to be very successful in improving the
classification accuracy of decision tree classifiers (Mclin and
Opitz, 1997; Bauer and Kohavi, 1998; DeFries and Chan,
2000). In land-cover mapping the possibility of obtaining
estimates of probability of class membership is also impor-
tant. Recently, Provost and Domingos (2003), using learning-
curve analysis, showed that simple modifications to tree
induction algorithms (e.g., CART, C4.5) can produce better
probability estimates, especially when rankings based on
probability of class membership are required. Furthermore,
they concluded that probability bagging is successful in
improving probability estimates in several real world
datasets, even more than it improves classification accuracy.
Friedman et al. (2000) have demonstrated boosting as being
equivalent to additive logistic regression. Therefore, using
boosting in association with a classification algorithm (e.g.,
CART), probabilities of class membership (or confidence) can
be assigned to each class at every pixel (McIver and Friedl,

2001; Friedl et al., 2002;). Furthermore, McIver and Friedl
(2001) tested this approach using three different datasets and
demonstrated that incorrectly classified pixels tend to have
low classification confidence, while correctly classified
pixels tend to have higher confidence. Another important
development has been the use of classification algorithms to
identify mislabeled training observations, that can occur for
several reasons, including subjectivity, data-entry error, or
inadequacy of the information used to label each observation
(John, 1995; Brodley and Friedl, 1999). The filtered training
set is then used as input to the final classification algorithm,
thus resulting in a classifier with increasing classification
accuracy (John, 1995; Brodley and Friedl, 1996; Brown de
Colstoun et al., 2003). The filtering procedure is more
important if the final classification algorithm has a tendency
to be fit to errors and/or outliers, as is the case of boosting
(Brodley and Friedl, 1999).

The main objective of this study is to assess the ade-
quacy of a temporal series of monthly composite images of
the SPOT-4 VGT sensor to produce a land-cover map of the
state of Mato Grosso for the year 2000. The dataset used is
the first yearly temporal series of daily 1 km spatial resolu-
tion optical satellite imagery for the Amazon region. Several
studies have demonstrated that land-cover classification can
be achieved more accurately using a multitemporal dataset
that represents the phenological variability of vegetation
(Friedl et al., 1999; Brown de Colstoun et al., 2003). In this
study, we also evaluated the importance of identifying
mislabelled training data and probability bagging as methods
to improve classification accuracy and probability-based
rankings of class membership.

Study Area and Legend Definition
The state of Mato Grosso is located in the western-central
part of Brazil, at 06° to 19° South and 50° to 62° West
(Figure 1), and has an area of 903,358 km2 (IBGE, 2000). At
the end of the 1980s, federal and state governments pro-
posed to the World Bank the Program of Agro-environmental
Development (PRODEAGRO), which, in turn, requested the
elaboration of an Agro-ecological Zoning of Mato Grosso.
Therefore, a 39-class vegetation map (PRODEAGRO) was
produced, basically derived from the 1:250 000 scale
RADAMBRASIL mapping (Brazil, 1980, 1982a, and 1982b), but
represented at a scale of 1:1 500 000. The RADAMBRASIL
project (between 1973 to 1983) intended to represent the
spatial distribution of potential vegetation types, i.e.,
without anthropic influence. For ease of representation and
description of the main land-cover types of Mato Grosso, we
aggregated it into a 4-class map. The main vegetation types
are ombrophyllous forest, seasonal forest, cerrado savanna,
and water (Fearnside and Barbosa, 2003) (Figure 1). The
climate is humid in the northern part of the state (maximum
of two months of dry season), becoming less humid in the
central and south part of the state, where the dry season is
longer (Velloso et al., 1974). Nevertheless, it is common to
consider that the dry season lasts from May to September,
while the wet season goes from October to April. The
ombrophyllous forest is related with the humid climate of
the northern part of the state. The seasonal forest and
cerrado savanna are associated with the less humid areas of
central and south Mato Grosso, respectively. Currently, most
of the deforested areas are under pasture or agricultural use
or, to a lesser extent, left abandoned, permitting the regener-
ation of secondary forest (Moran, 1993; Fearnside, 2003).

The legend used in this study was derived with the
Land-cover Classification System (LCCS) of the Food and
Agriculture Organization (FAO) of the United Nations (Di
Gregorio and Jansen, 2000). It is a standardized classification
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TABLE 1. LEGEND USED IN THIS STUDY, DERIVED FROM FAO/LCCS (DI GREGORIO AND JENSEN, 2000), RESPECTIVE ACRONYMS, 
AND CORRESPONDING PRODEAGRO CLASSES

FAO/LCCS Classes (this study) Legend Acronyms PRODEAGRO Classes

Broadleaved evergreen forest BEF As, As1, As3, Da, Ds, Ds1, ON, Paa, Pab, Pah
Semi-evergreen forest SEF Fa, Fa2, Fb, Fs, Fs2, Fs3, TN
Semi-deciduous forest SDF Cb5, Cs, Cs2, Cs3
Broadleaved Evergreen Woodland BEW Sd, Sd1, Sd2
Broadleaved Evergreen Sparse Trees BEST Sa, Sa1, Sa2
Broadleaved Evergreen Shrubland BES SN, Sp1, Sp2, Sp4, Spf, Sps
Open Grassland OG Sg2, Sg4, Sgf, Sgs, Tg4
Herbaceous Crop(s) HC Not mapped
Natural/Artificial Waterbodies NAW Water

Figure 1. The state of Mato Grosso, Brazil, respective
insertion in South America, and main vegetation types,
as defined by the PRODEAGRO vegetation map. It is also
shown the location of the eight Landsat 5 TM and
Landsat 7 ETM� scenes used for identification of areas
of known land-cover.

system for the definition of land-cover classes, which uses a
combination of independent hierarchically arranged diagnos-
tic criteria. In Mato Grosso, we have defined a 9-class
legend, according to FAO-LCCS principles. The correspon-
dence between this legend and the 39-class PRODEAGRO
vegetation map is shown in Table 1.

The broadleaved evergreen forest (BEF) class corre-
sponds, in general, to the ombrophyllous forest, character-
ized by tall evergreen trees occurring in tropical areas
without a strong biologic dry period (less than 60 days)
(Goulding et al., 2003). The semi-evergreen forest (SEF) class
refers to a combination of dominant broadleaved evergreen
vegetation and with broadleaved deciduous vegetation
covering more than 25 percent (Di Gregorio and Jansen,
2000). The semi-deciduous forest (SDF) class is comparable
to the previous class, though referring to a combination of

broadleaved deciduous vegetation that is dominant and with
broadleaved evergreen vegetation representing more than 25
percent tree cover (Di Gregorio and Jansen, 2000). The two
previous classes define the so-called seasonal forest, occur-
ring in areas characterized by two distinct seasons. The
following four classes represent distinct types of cerrado
savanna, ranging from open grassland (campo limpo) to
closed-canopy forest (cerradão) (Miranda et al., 1996). The
broadleaved evergreen woodland (BEW) class can either be
considered as open-canopy arboreal woodland or as closed
canopy forest (cerradão) (Miranda et al., 1996). The
broadleaved evergreen sparse trees (BEST) and broadleaved
evergreen shrubland (BES) classes are characterized by a
closed (cerrado sensu stricto) or open (campo cerrado)
scrub, respectively, both of which may have scattered trees
(Miranda et al., 1996). The open grassland (OG) class is
dominated by C4 grasses without woody vegetation (campo
limpo), or including a few scattered shrubs (campo sujo)
(Miranda et al., 1996). The herbaceous crops (HC) class is
used here as a proxy for areas that were cleared of its
original vegetation cover in the past, and that presently are
under agricultural or pasture use.

Data
The original data used in this study was a set of daily 1 km
SPOT-4 VGT images spanning the whole of year 2000 and
covering the entire state of Mato Grosso, Brazil (1345
� 1267 pixels) (images from days of the year 39, 45, 58, 77,
134, 178, 213, 220, 230, 252, 280, 292, and 294 were not
available or had unrecoverable errors). We used the S1
product, consisting of 1 km georeferenced, calibrated,
atmospherically corrected surface reflectance data (Passot,
2000). Among other characteristics, the VGT sensor onboard
the SPOT-4 and SPOT-5 satellites provides a better imagery
acquisition geometry and additional reflective bands [blue
0.43 to 0.47 �m, red 0.61 to 0.68 �m, near infrared (NIR)
0.78 to 0.89 �m, and short wave infrared (SWIR) 1.58 to 1.75
�m], when compared with the formerly used AVHRR (Hansen
et al., 2000; Achard et al.,2001), which only has the red
band (0.58 to 0.68 �m) and the NIR band (0.72 to 1.10 �m)
in the reflective part of the electromagnetic spectrum.

We combined the SPOT-4 VGT S1 daily images into 12-
monthly composite images. Each monthly composite image
was produced by combining a monthly compositing criterion
and a transformation of principal components analysis, with
the objective of minimizing cloud cover, while preserving
as much as possible the original spatial structure of the data.
The monthly compositing algorithm uses different criteria
according to the nature of the land-cover, as defined by a
vegetation index, in this case the Soil Adjusted Vegetation
Index (SAVI) (Huete, 1988). If a pixel is considered to represent
a vegetated surface (SAVI above a given threshold) then a date

04-005  7/11/06  3:00 PM  Page 899



900 Augu s t 2006 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 2. ORIGINAL AND FILTERED TRAINING DATASET, DISCRIMINATING THE NUMBER OF TRAINING PIXELS AND TRAINING SITES PER LAND-COVER CLASS,
BEFORE AND AFTER THE APPLICATION OF CONSENSUS FILTERING IN A CLASSIFICATION TREE APPROACH

Variation
Before Filtering After Filtering

FAO/LCCS Classes # Pixels # Sites # Pixels # Sites (%)

Broadleaved evergreen forest 640 160 626 158 2.2
Semi-evergreen forest 840 210 829 210 1.3
Semi-deciduous forest 120 30 102 29 15.0
Broadleaved Evergreen Woodland 160 40 129 39 19.4
Broadleaved Evergreen Sparse Trees 560 140 537 138 4.1
Broadleaved Evergreen Shrubland 400 100 384 100 4.0
Open Grassland 120 30 97 27 19.2
Herbaceous Crop(s) 1960 490 1933 487 1.4
Natural/Artificial Water Bodies 110 40 110 40 0.0
Total 4910 1240 4747 1228 3.3

Figure 2. Flowchart outlining the steps used to
produce the land-cover map and subsequent
accuracy assessment.

of a minimum value of the SWIR band is selected, otherwise
(SAVI below the threshold), indicating a bare ground/sparsely
vegetated pixel, a minimum value of the red band is selected.
Visual inspection and comparison of several SAVI thresholds
indicated that a cut-off value of 0.3 was effective at separating
vegetated from non-vegetated or sparsely vegetated areas.
Furthermore, the Maximum Noise Fraction (MNF) transforma-
tion (Green et al., 1988) was applied to the multitemporal
dataset of monthly composite images and used as a method of
additional signal-to-noise ratio improvement. The back-
transformed dataset using the first ith MNF eigenimages yielded
an accurate reconstruction of monthly composite images from
the dry season (May through September) and enhanced spatial
coherence from wet season images (October through April).
Detailed information about the compositing algorithm can be
found in Carreiras and Pereira (2005).

Identification of areas of known land-cover in VGT data
for image classification was carried out with the help of
several ancillary datasets. The available 39-class PRODEAGRO
vegetation map was used to select areas of homogeneous
land-cover types, which were further refined by visual
inspection of seven Landsat Thematic Mapper (TM)/En-
hanced TM Plus (ETM�) scenes from 2000 and one Landsat
ETM� scene from 2001 (Figure 1). World Reference System
(WRS) scenes 224/067, 224/068, 226/069, 227/067, and
227/068 were obtained from INPE, in the scope of the Prodes
Digital Project (INPE, 2005), and scenes 225/071, 227/071,
and 229/067 from the Global Land Cover Facility (GLCF),
University of Maryland (UMD), U.S. (University of Maryland,
2005). Each training site (i.e., a group of adjacent pixels of
the same class) was not allowed to exceed four pixels, and
was selected far apart enough to minimize spatial-autocorre-
lation problems (Congalton, 1988; Friedl et al., 2000;
Muchoney and Strahler, 2002). The original training dataset
is described in Table 2.

Methods
In the literature (e.g., Hansen et al., 2000; Friedl et al., 2002;
Eva et al., 2004), common procedures for producing a land-
cover map, from remote sensing data, include a first step of
image processing (e.g., temporal compositing, image transfor-
mation), followed by the application of a specific classification
algorithm to derive a land-cover map, and finally by map
accuracy assessment. The main steps of the methodology used
in this work are described below and summarized in Figure 2.

Linear Spectral Mixing Model
At a spatial resolution of 1 km, it is common for image
pixels to correspond to a ground area occupied by more than
one pure component or land-cover element (endmember),

thus resulting in a mixed pixel (Adams et al., 1986; Quarmby
et al., 1992). This is a consequence of the heterogeneity of
ground cover and of the sensor spatial resolution, which is
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often lower than that of the elements of interest (Chang and
Heinz, 2000). The radiation received by an optical remote
sensing system includes the signal of different pure elements,
affected by atmospheric effects, which combine to produce a
response with characteristics of the different components and
their fractions (Shimabukuro and Smith, 1991).

Several studies have addressed the question of sub-pixel
target detection in the Amazon region, using high- and low-
resolution satellite imagery (Cross et al., 1991; Holben and
Shimabukuro, 1993; Adams et al., 1995; Cochrane and
Souza Jr, 1998; Souza Jr. et al., 2003; Lu et al., 2003). In the
present study, we used a Linear Spectral Mixing Model
(LSMM) to derive the fraction of pure elements present in
each pixel. Although spectral mixing is not strictly linear,
due to multiple scattering between elements, these models
have generally yielded acceptable results (Oleson et al.,
1995). Fractions of endmembers are easier to interpret than
spectral reflectances (Aguiar et al., 1999), and, therefore,
provide a more intuitively association between image
measurements and observations in the field (Adams et al.,
1995). The correct application of this model is based on two
assumptions (Adams et al., 1986): (a) the multispectral
imaging instrument should have a linear response with
respect to reflectances, and (b) the number of endmembers
should be less than the input dimensionality (i.e., smaller or
equal than the number of spectral bands). The unconstrained
option of this model was used, i.e., the sum of the fractions
is not required to equal one, but allowing each pixel to
assume any fraction value, either negative or super-positive
(i.e., over one). Therefore, the reflectance of a pixel in each
spectral band is expressed as a linear combination of the
characteristic reflectances of its component endmembers,
weighted by their respective areal fractions within the pixel
(Ichoku and Karnieli, 1996). Equation 1 is the mathematic
expression of the LSMM used in this study:

(1)

where ri is the surface reflectance of an image pixel in band
i, xj the fraction of pure component (endmember) j, aij is the
jth image endmember response for each band i, also in
surface reflectance units, and �i the error term for band i
(Shimabukuro and Smith, 1991). A measure of the error
produced by the application of the LSMM in each pixel is
given by the mean error (ME) (Equation 2):

(2)

where m is the number of spectral bands used in the
unmixing process. Another helpful measure of model fitting
is the presence/absence of excessive negative and/or super-
positive fraction values. The presence of such fraction
values indicates an incorrect selection of endmembers.
Consequently, it is an indication that the model was incor-
rectly fitted, and new endmembers need to be selected.

Using information from different studies in the same
region (Holben and Shimabukuro, 1993; Rodríguez-Yi et al.,
2000; Carreiras et al., 2002), and our own interpretation of
the VGT satellite imagery, three endmembers were defined:
vegetation, soil, and shade. Fractions of vegetation and soil
are easily understandable, representing the proportion of
vegetation and soil found within each pixel. The shade
fraction is meant to represent shadowing due to vegetation
structure, but is spectrally very similar to topographic
shadows and water bodies. Consequently, it was postulated
that all mixed pixels could be modelled with these three
endmembers. Selection of pure endmembers in each VGT
monthly composite image was accomplished through the

ME � a ƒ � i ƒ /m

ri � a aij
# xj � �i

Pixel Purity Index (PPI™) algorithm (Research Systems, Inc.,
2000). The PPI™ is computed by repeatedly projecting n-
dimensional scatterplots onto a random unit vector, accord-
ing to a given number of iterations (Boardman et al., 1995):
500 in our case. The extreme pixels in each projection are
recorded and the total number of times each pixel is marked
as extreme is kept (Research Systems, Inc., 2000). This
extremity score can be shown to be related to pixel purity,
using a convex geometry argument (Boardman, 1993). Then,
a PPI™ image for each month was produced, with each pixel
having a value corresponding to the number of times it was
considered extreme (the maximum allowed was 500, i.e., the
number of iterations). Afterwards, those extreme pixels were
plotted in a red-NIR scatterplot, and the most pure endmem-
bers were selected. The greenest pixel of vegetation (low red
reflectance, high NIR reflectance), the brightest pixel of soil
(high red reflectance, high NIR reflectance) and the darkest
pixel of shade (reflectance close to zero in all spectral
bands) were to be chosen among those several extreme
pixels, per month. An example of endmember selection for
the month of June is shown in Figure 3. At a spatial resolu-
tion of 1 km, it is almost impossible to find a pure pixel of
shade, therefore for the application of LSMM it is acceptable
to use water as a proxy for shade endmember (Shimabukuro
and Smith, 1995). It was also assumed that a temporal
variation in the fraction of vegetation, soil or shade could be
associated with a change in the phenology of a vegetated
land-cover type.

The application of LSMM to each monthly composite
image was evaluated using three criteria: (a) presence of
image fractions with significant numbers of negative or
super-positive values, (b) analysis of ME histograms, and (c)
correlation of vegetation fractions with a vegetation index
(SAVI) calculated from the original spectral bands. Although
variations in selected endmembers affect estimates of
fractions, classification results were shown to be relatively
insensitive to small variations in the endmembers (Adams
et al., 1995).

Classification Trees
Classification trees have previously been applied to land-
cover classification from satellite data (DeFries et al., 1998;
Hansen et al., 2000; Friedl et al., 2002; Brown de Colstoun
et al., 2003). They are a classification procedure that recur-
sively partitions a dataset into smaller homogeneous subsets
using a set of condition rules (if . . . , then . . .) defined to
split each parental node (Breiman et al., 1984). Each tree is
composed of a root node, containing all the training data,

Figure 3. Scatterplot of extreme pixels selected by the
PPI™ technique for the monthly composite image of
June 2000, and indication of the selected vegetation,
soil, and shade endmembers.
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which is split into several intermediate nodes, and a set of
terminal nodes. In univariate classification trees, such as
those used in this study, each node is formed by a binary
split of the parental node. Some advantages over traditional
parametric classification methods include the non-paramet-
ric nature of the classifier, quantification of variable impor-
tance, disclosure of non-linear and hierarchical relationships
between predictor variables, and allowance for missing
values (Breiman et al., 1984; Hansen et al., 1996; Friedl and
Brodley, 1997). In this study, we used the CART algorithm
(Breiman et al., 1984). According to Breiman et al. (1984),
three fundamental steps are required to construct a classifi-
cation tree: (a) the selection of a node splitting rule, (b) the
decision whether to set a node as terminal or to continue
splitting (stopping rule), and (c) the assignment of each
terminal node to a given class of the response variable.

The splitting rule criterion has the goal of reducing the
data variability in intermediate node split into two descen-
dant nodes that are purer (Safavian and Landgrebe, 1991).
Breiman et al. (1984) refer that one method of achieving this
purpose is the definition of an impurity function i(t) at every
intermediate node t, i.e., a measure of the heterogeneity of a
given node. Consider that there is a candidate split rule S
that divides an intermediate node t into left descendant node
tL and right descendant node tR, such that a proportion pL of
the cases in t goes into tL and a proportion pR goes into tR.
Then, a measure of the goodness of the split S can be the
decrease in intermediate node impurity, i.e., Equation 3:

(3)

Therefore, Breiman et al. (1984) refer that the selection of a
optimal split S should minimize �i(S,t) over all possible
splits S, i.e., the split that produces the maximum decrease
in the node impurity. Breiman et al. (1984) refer several
impurity functions, namely the Gini index and the Twoing
criterion. The Gini index is more used in 2-class classifica-
tion problems, and the Twoing criterion where the number
of classes is higher (Breiman et al., 1984). Accordingly, in
this study we have used the Twoing criterion to estimate
splits at each internal node of the tree.

A classification tree resulting from this procedure can
be grown until all terminal nodes are pure. This leads to
very large trees that may overfit the data, and is mainly due
to the presence of noise in the training data (DeFries and
Chan, 2000). Therefore, in order to choose a right sized tree,
one must define a pruning rule, i.e., an approach for
removing terminal and intermediate nodes. The CART
pruning rule is based on a cost-complexity measure
(Breiman et al., 1984). This measure incorporates the
resubstitution estimate of the true overall misclassification
rate, the number of terminal nodes, and a complexity
parameter (Breiman et al., 1984). By using the resubstitution
estimate the largest tree would be selected. Therefore, it
must be estimated by means of a test set that is independent
of the training set. This requires that the number of available
observations be large enough to draw a test sample, other-
wise the estimate can be obtained through v-fold cross
validation (Bruno et al., 2004). The objective is to select a
less complex subtree (smaller number of terminal nodes),
while minimizing the increase in misclassification error
(Bell, 1996). In this study we used a 10-fold cross validation
approach to assess the accuracy of the resulting classifica-
tion trees. For this purpose, the original training dataset was
randomly split into ten equal mutually exclusive subsets.
For each subset (1/10), a tree is grown from the remaining
subsets (9/10) and a subtree sequence obtained; the held out
set (1/10) is then used to evaluate the sequence; this process
is repeated ten times (Bell, 1996). In remote sensing imagery

�i(S,t) � i(t) � i(tL)pL � i(tR)pR

there is always some kind of spatial autocorrelation, i.e.,
neighboring observations are more spectrally similar than
distant pixels (Congalton, 1988). Thus, enforcement of
spatial separation of the mutually exclusive subsets is
required, as failure to impose this condition can result in
spuriously inflated classification accuracies (e.g., Friedl
et al., 2000). This was achieved by randomly selecting
training sites (and not training pixels) for each one of the 10
mutually exclusive subsets. This approach will assure that
pixels belonging to the same training site are selected either
for growing the tree or for their evaluation, thus avoiding
within-site spatial autocorrelation from affecting the results
(McIver and Friedl, 2001; Muchoney and Strahler, 2002).
Overall accuracy, omission and commission errors for each
selected classification tree are provided (Congalton, 1991).

The easiest criterion for class assignment to each
terminal node is basically a majority rule, i.e., the class that
has most observations is assigned to that terminal node
(Safavian and Landgrebe, 1991). However, this procedure
can be influenced by error costs associated with misclassifi-
cation errors in each class, and by previous knowledge of
prevalence of each class of the response variable (Breiman
et al., 1984). Different combinations of these parameters will
influence class assignment and misclassification error. In
our study, we used available information from the PRODEA-
GRO vegetation map and estimates of deforestation from INPE
and FEMA-MT to assign each land-cover class a prior proba-
bility. It has been shown that incorporating this information
in a classification tree approach can improve classification
results (e.g., McIver and Friedl, 2002). CART produces a
measure of the importance of each predictor variable in the
selected classification tree, giving important information
about which months and/or fractions are more important for
land-cover discrimination.

Identification of Mislabeled Training Data
Usually, training data contains mislabeled observations,
either from incorrect data-entry, insufficient ancillary
information, or subjectivity in the selection of representative
observations. Recently, methods have been proposed to
identify mislabeled training observations, as a way to
improve classification results (John, 1995; Brodley and
Friedl, 1999). Brodley and Friedl (1999) suggest using
learning algorithms (e.g., classification trees, neural net-
works) to identify mislabeled data, serving as a filter for the
final classification algorithm. They verified that consensus
filtering (i.e., considering an observation as mislabeled only
if all the algorithms failed to correctly classify it) is prefer-
able when training data are not abundant. In this study we
used a classification tree approach to mark each training
observation as correctly or incorrectly labeled. For this
purpose, the training data were randomly separated into 10
mutually exclusive sets. In each 9/10 we extracted 10
bootstrap samples and use it to build 10 classification trees.
Only those observations in the remaining 1/10 incorrectly
classified by all 10 trees are marked as mislabeled. This
approach is conservative at throwing away good data, which
might just be difficult to classify (Brodley and Friedl, 1999).
After 10 iterations all the training data has been marked.
Afterwards, only the observations in the filtered training
dataset are used in the final classification algorithm.

Bagging and Probability of Class Membership
Some classification methods (e.g., classification trees and
neural nets) are unstable, in the sense that they are affected
by small perturbations in the training set, possibly originating
large changes in the constructed classifiers (Breiman, 1996).
Therefore, these unstable methods can have their accuracy
improved by perturbing and combining, that is, generating
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multiple versions of the classifier (i.e., ensembles, or
committees) by perturbing the training set, then combining
these multiple versions into a single predictor (Breiman,
1998). Methods that use ensembles of classifiers have demon-
strated to be very successful in improving the accuracy of
classification trees (Maclin and Opitz, 1997; Bauer and
Kohavi, 1998). These methods can be divided in two types:
those that adaptively change the distribution of the training
set based on the performance of previous classifiers (e.g.,
boosting) and those that do not (e.g., bagging) (Bauer and
Kohavi, 1998). The simplicity and success of bagging in
improving classification accuracy compared with standard
classification trees (e.g., DeFries and Chang, 2000) lead us to
choose bagging as the approach to generate an ensemble
classification tree.

In bagging, each sub-classifier ci (i � 1 . . . n) (in our
case a classification tree) is run on n different bi bootstrap
samples of the original m training set observations. Each bi
is generated by uniformly sampling m observations from the
training set with replacement. The final classifier c is built
from ci whose output is the class predicted most often by its
sub-classifiers, with ties broken arbitrarily (Bauer and
Kohavi, 1998). Although the main purpose of bagging is to
build strong classifiers by means of variance reduction
(Breiman, 1996), some variants of bagging have proven also
to be adequate for the estimation of class membership
probability (Breiman, 1996; Bauer and Kohavi, 1998; Perlich
et al., 2003; Provost and Domingos, 2003). Probability
bagging is one such variants, so that instead of returning a
classification, each sub-classifier returns a probability
distribution for the classes in each terminal node (Provost
and Domingos, 2003). Subsequently, the probability bagging
algorithm averages the probability for each class over all
sub-classifiers, and predicts the class with the highest
probability. However, Provost and Domingos (2003) remark
that these probability estimates of class membership serve
only the purpose of ranking observations. We used 25
bootstrap replicates to build a probability bagging classifica-
tion tree, evaluated with a 10-fold cross validation approach.
Breiman (1996) suggests that a higher number of replicates
tend not to produce a significant error decrease.

Accuracy Assessment
Commonly, a land-cover classification procedure ends with
accuracy assessment of the resulting map. Traditional meth-
ods of accuracy assessment of thematic maps include compar-
ison of maps with independent ground data, each ground
point being assigned to a certain class and compared with the
one on the map, resulting in a match or mismatch (Congalton,
2001; Foody, 2002). The difficulty in obtaining up-to-date

independent information of spatial distribution of land-cover
classes in the state of Mato Grosso led us to choose an alter-
native approach. The traditional confusion matrix (Congal-
ton, 1991), constructed using the results from the 10-fold
cross-validation, is used as a first approximation for overall
and class-specific accuracies. The use of probability bagging
classification tree provides information on probability-based
rankings of class membership (Provost and Domingos, 2003).
Therefore, the application of the probability bagging classifier
to the whole state of Mato Grosso results in a map of proba-
bility-based rankings of class membership. These probability
estimates of class membership are compared with class-
specific accuracies, and used to extend and complete tradi-
tional accuracy assessment. McIver and Friedl (2001) and
Friedl et al. (2002) used a similar approach, based on a recent
development explaining boosting as a form of additive logistic
regression (Friedman et al., 2000), to build maps of classifica-
tion confidence using a boosting algorithm and tree induction
in several remote sensing datasets.

A more qualitative comparison with existing land-cover
maps is performed, by assessing class overall extent in Mato
Grosso. For that purpose, we compare the overall class
extent resulting from this study with the University of
Maryland (UMD) 1 km global land-cover map built with 1992
to 1993 AVHRR data (Hansen et al., 2000). The same assess-
ment is made with the Boston University (BU) 1 km global
land-cover map obtained with 2001 MODIS data (Friedl et al.,
2002), and with the GLC2000 project (SA-GLC2000) 1 km
South America land-cover map constructed with 2000 VGT
data (Eva et al., 2004). The BEF, SEF, and SDF classes were
aggregated (BSS class), as some of the land-cover maps
analyzed does not provide this level of discrimination.
Table 3 provides the legend correspondence between this
study and the three quoted land-cover maps.

Results and Discussion
LSMM Analysis
The performance of the application of the LSMM to VGT
monthly composite images was evaluated using the ME,
correlation of vegetation fractions with a vegetation index
(SAVI), and evaluation of percentage of all pixels with
endmember fractions between zero and one (Table 4). Mean
ME is always below two percent and corresponding standard
deviation does not exceed one percent, indicative of good
performance of the LSMM used. Correlation of monthly
vegetation fractions with monthly SAVI is high, indicating
that vegetation fractions represent the abundance of vegeta-
tion per pixel. In February, October, November, and December

TABLE 3. LEGEND CORRESPONDENCE AMONG THIS STUDY, THE UMD (HANSEN ET AL., 2000), BU (FRIEDL ET AL., 2002), and SA-GLC2000 
(EVA ET AL., 2004) LAND-COVER MAPS

BU Legend 
This Study Legend UMD Legend (UMD class scheme) SA-GLC2000 Legend (level 2)

BEF�SEF�SDF Everg. broad. forests, Everg. broad. forests, Everg. broad. forests,
Decid. broad. forests Decid. Broad. forests Decid. forests,

Semi-decid. forests
BEW Woodlands Woody savannas Savanna
BEST Wooded grasslands Savannas Shrub savannas
BES Closed shrublands, Closed shrublands, Shrublands,

Open shrublands Open shrublands Flooded shrubland
OG Grasslands Grasslands Grasslands
HC Croplands Croplands Agriculture-intensive,

Mosaic degraded vegetation,
Mosaic degraded forests

NAW Water bodies Water bodies Natural and artificial water bodies
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the proportion of shade fraction images with pixels outside
the zero to one interval is high. In October and November
that proportion is made up of small negative shade fraction
values, most of them less than 1 percent. In February and
December negative shade fraction values were well above 1
percent. As the corresponding vegetation and soil fractions
do not have significant values above one or below zero, we
decided to keep these months in the dataset. The same
applies for soil fractions in July and August. The easily
interpretable splitting rules of classification trees combined
with variable importance score give more insight about the
importance of these variables for land cover prediction.
Although there is always some error in LSMM analysis,
physically-meaningful fraction images provide information
that is more easily interpretable. As an example of the
application of the LSMM model, the vegetation, soil, and
shade fraction images for June 2000 are shown (Figure 4). In
general, a shade fraction image represents canopy structure.
The HC class usually have low proportion of shade fraction,
as areas of bare soil, pasture, agriculture, and initial stages
of regeneration have a short, homogeneous cover, caus-
ing little or no shadowing. Higher values of soil fraction
(brighter white) can indicate also agriculture after harvest-
ing, and intermediate values (light grey) are areas of cerrado
savanna. BEF, SEF, and SDF classes are highlighted mainly by

high values of vegetation fraction and low amount of soil
fraction. As postulated, areas of NAW are associated with the
highest values of shade fraction, due to spectral similarity.

Data Filtering and Classification
Overall, the approach for identifying mislabelled training
data resulted in the removal of 3.3 percent of the original
training data (Table 2). The classes with the greater number
of mislabelled observations were BEW (19.4 percent), OG
(19.2 percent), and SDF (15.0 percent). The remaining classes
had few observations removed, always below five percent of
the original data. The nature of the filter used, consensus
filtering with 10 bootstrap samples, suggests that only
mislabelled observations were removed. Observations that
are just difficult to classify should be kept by this proce-
dure, as suggested by Brodley and Friedl (1999). Only
incorrectly classified observations by all the 10 sub-classi-
fiers were marked as mislabelled.

Application of classification trees to the training dataset
was done to assess the effect of identifying mislabelled
training data (filtering) and probability bagging in classifica-
tion accuracy. Consequently, four combinations were created:
unfiltered training dataset with simple classification tree,
unfiltered training dataset with probability bagging classifica-
tion tree, filtered training dataset with simple classification

TABLE 4. MEASURES USED TO ASSESS THE APPLICATION OF LSMM TO VGT MONTHLY COMPOSITE IMAGES. MEAN AND STANDARD DEVIATION

(IN PARENTHESES) ME ARE IN SURFACE REFLECTANCE UNITS

Correlation Between
Proportion of Fraction Images

Vegetation Fraction
with Values Between 0 and 1

Month Mean ME with SAVI Vegetation Soil Shade

January 0.016 (0.007) 0.875 0.999 0.999 0.943
February 0.016 (0.005) 0.829 0.993 0.999 0.091
March 0.009 (0.003) 0.864 0.999 0.999 0.964
April 0.006 (0.002) 0.904 0.994 0.996 0.979
May 0.006 (0.003) 0.947 0.989 0.995 0.999
June 0.009 (0.003) 0.974 0.999 0.852 0.999
July 0.009 (0.005) 0.981 0.962 0.710 0.999
August 0.014 (0.007) 0.970 0.960 0.708 0.998
September 0.012 (0.007) 0.984 0.992 0.924 0.966
October 0.016 (0.009) 0.979 0.994 0.999 0.860
November 0.016 (0.003) 0.970 0.973 0.895 0.691
December 0.011 (0.007) 0.937 0.997 0.999 0.369

Figure 4. Fractions images of (a) vegetation, (b) soil, and (c) shade endmembers for July 2000, for the
state of Mato Grosso, Brazil.
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tree, and filtered training dataset with probability bagging
classification tree. All of them were assessed using a 10-fold
cross validation approach (Table 5).

The effect of filtering over simple classification trees
resulted in a decrease in commission and omission errors,
and in a relative gain of 4.94 percent in overall accuracy;
the exceptions are the BES and NAW classes, which display
small increases in commission and omission errors, respec-
tively. The effect of filtering over probability bagging
classification trees resulted in the decrease of commission
and omission errors, and in a relative gain of 3.53 percent in
overall accuracy. The effect of probability bagging in
unfiltered training data is also the decrease of commission
and omission errors, and a relative gain of 4.94 percent in
overall accuracy; the exceptions are BES and BEST, with
increased commission and omission errors, respectively. A
reduction in commission and omission errors is also the
effect of using probability bagging over filtered training data,
with a relative gain of 3.53 percent in overall accuracy; the
exceptions are BES and NAW with a little increase in commis-
sion error, and BEST and BEW with a small increase in
omission error. These results shows that the combined
application of filtering and probability bagging resulted in a
general decrease in commission and omission errors, and in
a relative increase of 8.64 percent in overall accuracy, from
0.81 to 0.88; the exceptions are BES and BEST, which has
small increases in commission and omission errors, respec-
tively. Nevertheless, the classifier built with filtered training
set and probability bagging still produces several high class-
specific errors (above 30 percent), especially commission

errors in BEST and BEW classes, and omission errors in OG,
SDF, and BEW classes. The high commission and omission
error of BEW is the result of misclassified observations from
the BEST class, a spectrally similar class of cerrado savanna
(Table 6). The same pattern is observed for the other class
with high commission error, BEST, which also result from
confusion with spectral-nearby cerrado savanna classes. The
high omission error of the SDF class results from observa-
tions misclassified as BEF and SEF, which are very similar to
SDF, differing only in the proportion of deciduous tree cover.
Also, the high omission error of the OG class results from
observations misclassified as spectrally similar BEST, BES, and
BEW cerrado savanna classes. These results indicates that
SPOT VGT data has limitations in discriminating SDF from BEF
and SEF classes, and in discriminating among the four
cerrado savanna classes. This is a consequence of mapping a
vegetation continuum assuming a crisp logic, in opposition
to a fuzzy logic (Foody, 1999). This is partly overcome with
probability bagging classification trees, by providing infor-
mation about the probability of class membership.

The most important variables for predicting land-cover
classes in the final filtered probability bagging classifier were
obtained by averaging the contribution of each one in the 25
individual classification trees (Figure 5). The most important
variables are the soil fractions from dry season months (May
to September), and vegetation fractions of July and August.
Conversely, shade fractions are less important and more
scattered throughout the year. Dry season imagery appears to
be are more important for discrimination of land-cover
classes in the state of Mato Grosso than wet season data.

TABLE 5. COMPARISON OF CLASS-SPECIFIC ERRORS AND OVERALL ACCURACIES RESULTING FROM A 10-FOLD CROSS VALIDATION APPROACH OF UNFILTERED

TRAINING SET WITH SIMPLE CLASSIFICATION TREE (UCT), UNFILTERED TRAINING SET WITH PROBABILITY BAGGING CLASSIFICATION TREE (UPB), FILTERED TRAINING

SET WITH SIMPLE CLASSIFICATION TREE (FCT), AND FILTERED TRAINING SET WITH PROBABILITY BAGGING CLASSIFICATION TREE (FPB)

Classes

Commission Error (%) Omission Error (%) Overall Accuracy

UCT UPB FCT FPB UCT UPB FCT FPB UCT UPB FCT FPB

BEF 22.5 15.1 16.0 13.7 15.9 12.0 13.1 9.1
SEF 17.9 12.4 12.3 9.4 13.1 9.8 9.8 8.7
SDF 47.2 37.5 42.0 28.6 84.2 54.2 60.8 51.0
BEW 51.5 48.2 49.6 42.4 69.4 63.1 55.8 58.9
BEST 45.2 36.2 38.3 31.9 18.6 25.2 18.6 21.4 0.81 0.85 0.85 0.88
BES 18.1 27.3 19.8 23.2 42.5 28.0 36.7 25.8
OG 55.0 39.7 36.8 29.3 70.0 60.8 50.5 45.4
HC 3.1 3.0 1.9 2.1 6.6 4.1 4.8 3.1
NAW 2.8 0.9 0.0 0.0 5.5 0.9 8.2 0.9

TABLE 6. CONFUSION MATRIX FOR THE 10-FOLD CROSS VALIDATION APPROACH USED TO ASSESS THE PROBABILITY BAGGING CLASSIFICATION

TREE CONSTRUCTED WITH FILTERED DATA. OVERALL ACCURACY IS 0.88

Predicted Class (# pixels)

Observed Omission 
Class (# pixels) BEF SEF SDF BEW BEST BES OG HC NAW Total Error (%)

BEF 569 47 10 0 0 0 0 0 0 626 9.1
SEF 61 757 9 0 1 0 1 0 0 829 8.7
SDF 25 20 50 1 3 0 2 1 0 102 51.0
BEW 0 6 0 53 63 1 3 3 0 129 58.9
BEST 0 0 0 29 422 54 11 21 0 537 21.4
BES 0 0 0 1 82 285 2 14 0 384 25.8
OG 1 4 1 5 17 14 53 2 0 97 45.4
HC 3 2 0 3 32 16 3 1874 0 1933 3.1
NAW 0 0 0 0 0 1 0 0 109 110 0.9
Total 659 836 70 92 620 371 75 1915 109 4747
Commission error (%) 13.7 9.4 28.6 42.4 31.9 23.2 29.3 2.1 0.0
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The land-cover map for Mato Grosso generated with the
probability bagging classifier in shown in Plate 1. The BEF
class is concentrated mainly in the northwest part of the
state, and the SEF class in the northeast region, primarily
along the Xingu river. The SDF class occurs in a small area,
mainly located in the northern part of the state. Cerrado
savanna classes, concentrated in the southern and eastern
regions of Mato Grosso, are strongly dominated by BEST,
followed by BES, BEW, and OG. Some of the areas with BES
are located in seasonally flooded regions, namely those

around the Araguaia river (eastern Mato Grosso) and the
Pantanal (southern Mato Grosso). Areas under agriculture or
pasture use (HC) represent the major land-cover type in Mato
Grosso, with 271,768 km2. Assuming that agriculture and
pasture use in 2000 corresponds to areas that were defor-
ested in the past, then our estimate is much higher than the
143,930 km2 provided by INPE (2002), and close to the
270,283 km2 estimated by FEMA-MT by the end of 1999
(SEPLAN, 2002). The difference is the consequence that our
study and FEMA-MT considered deforestation in areas of
cerrado savanna, which was not the case of INPE. This
numbers indicate that deforestation in regions of cerrado
savanna has been as intense as in areas of ombrophyllous
and seasonal forest.

Accuracy Assessment and Comparison with Existing Maps
The application of the probability bagging classification tree
yielded the possibility of constructing maps of probability-
based rankings of class membership, i.e., spatial representa-
tion of classification membership associated with each pixel
(Figure 6). Over 75 percent of the study area has a class
membership greater than 0.6, and approximately 60 percent
of the area has class membership greater than 0.8. Higher-
class membership values are associated with HC, NAW, BEF,
and SEF classes, which is emphasized by comparing class
membership with class-specific commission errors (Figure 7).

These results agree with the findings of McIver and
Friedl (2001), that traditional class-specific errors are
strongly inversely correlated with mean probability of class
membership. These results also show that discrimination
between cerrado savanna classes (BEW, BEST, BES, and OG) is
difficult. The poor spectral separability between these
classes and the spatial resolution of the VGT sensor possibly

Figure 5. Diagram of CART variable importance score of
the probability bagging classification tree built from the
filtered training dataset. The scores are averages of the
individual 25 sub-classifiers.

Plate 1. Land-cover map of the state of Mato Grosso, Brazil, for the year 2000, derived from the
probability bagging classification tree built from the filtered training dataset. The table indicates the
total area (km2) and percentage occupied by each land-cover class.
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Figure 6. Classification membership map for the state
of Mato Grosso derived from the probability bagging
classification tree built with the filtered training
dataset. Each bar represents the color scheme used
and the size is proportional to the presence of each
class of classification membership (it is also repre-
sented the respective percentage).

Figure 7. Comparison between mean class membership
probability and class-specific commission errors.

Figure 8. Comparison of estimates of class extent in
the state of Mato Grosso, derived from this study, and
from the UMD (Hansen et al., 2000), BU (Friedl et al.,
2002), and SA-GLC2000 (Eva et al., 2002) land-cover
maps. The BSS class results from the aggregation of the
BEF, SEF, and SDF classes.

explains this outcome. Similar comments apply to the SDF
class, which also has low mean probability of class member-
ship. Overall mean map probability of class membership is
0.80, which is lower than the classifier overall accuracy
(0.88). Considering that classifier accuracy generally overes-
timates map accuracy (Smits et al., 1999; Foody, 2002), the
underestimation indicated by the overall mean map proba-
bility of class membership suggests that this measure
possibly is a more rigorous estimator of map accuracy.

Comparison with existing land-cover maps is another
useful way of evaluating the land-cover map created in this
study. Figure 8 compares the extent of the land-cover classes
derived from this study and from the UMD, BU, and SA-
GLC2000 land-cover maps. The UMD land-cover map reflects
the fact that the data used are from early 1990s. Thus, the
extent of the HC class is much lower than that estimated in
this study, and, consequently, the aggregated BSS and
cerrado savanna classes extents are much higher in the UMD
dataset, the exception being the BES class; some discrepan-
cies in the cerrado savanna classes could result from
differences in legend comparison, because these transition
land-cover types are more likely to be classified differently
in the various land cover classes. In the BU land-cover map,
the percentage occupied by the aggregated BSS class is much
higher than that estimated in this study, but conversely the
HC class percentage is much lower; percentage of cerrado
savanna classes are similar, the exception being the BES
class. The SA-GLC2000 land-cover map was partially derived
from the same data we used and following a similar legend
approach; the percentage of HC class is very similar, and the
main difference occurs in the aggregated BSS class and in
some cerrado savanna classes (BEST and BES); the type of
classification algorithm used (unsupervised isodata) can
explain that difference. The global overall accuracy of the
UMD land-cover map was 0.69 (Hansen et al., 2000). The BU
dataset provides also maps of classification confidence,
similar to the one used in this study, and overall mean class
confidence for the state of Mato Grosso was 0.77 (Friedl
et al., 2002), very close to our estimate (0.80). Currently
there is no extensive information about accuracy for the SA-
GLC2000 map.

Data from the SPOT-4 VGT Global Burnt Area 2000
(GBA2000) Project led by the Joint Research Center (JRC) of
the European Union indicates that during the year 2000 the
area burnt in Mato Grosso was 7,626 km2, mainly concen-
trated in the UMD dataset regions of cerrado savanna (Tansey
et al., 2004). Combination of the GBA2000 dataset with our
land cover map indicates that burnt areas were mapped
mainly (over 90 percent) as cerrado savanna classes. These
fires are predominantly set by farmers to promote pasture
renewal and to clear fields for cultivation (Coutinho, 1990).
This low value of area burned can be explained by the fact
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that the year 2000 was a La Niña year, characterized by
unusually cool temperatures in the equatorial Pacific Ocean
(Tansey et al., 2004). The relatively small extent of area
burned in Mato Grosso suggests little influence in classifica-
tion results derived from our study.

Conclusions
This study concluded that vegetation and soil fraction images
from dry season months were more important for land-cover
classification in the state of Mato Grosso than variables from
the wet season. Conversely, it appeared that shade fraction
images had less influence in discriminating land-cover classes.
Identification of mislabelled training data in a classification
tree approach effectively increased overall and class-specific
accuracy for simple and probability bagging classification trees.
The concomitant use of filtering and probability bagging
produced the highest overall and class-specific accuracy.
Nevertheless, semi-deciduous forest and cerrado savanna
classes still presented high classification errors, but derived
from misclassification with spectrally similar classes. Addition-
ally, the use of probability-based rankings of class membership
derived from probability bagging classification trees played an
important role, as maps of classification membership provided
additional information for assessing map accuracy. The
importance of producing both a land-cover map and a classifi-
cation confidence (membership) map has also been empha-
sized by McIver and Friedl (2001), Friedl et al. (2002), and Liu
et al. (2004). The quantification of classification confidence on
a pixel-by-pixel basis can, probably, support a more complete
assessment of land-cover maps for studies of regional to global
land-cover monitoring. The discrepancies between this study
and the available land-cover maps suggest that additional
improvements are required for land-cover mapping from
remote sensing data, namely the creation of structured proce-
dures for legend definition, organizing/updating a broad
network of reference land-cover types, and the obligatoriness of
classification confidence/membership maps.

This study demonstrated the usefulness of the 1 km low-
resolution SPOT VEGETATION imagery in classifying land
cover in the state of Mato Grosso, Brazil, for the year 2000.
Future work will concentrate on the development of a land-
cover map for the entire Brazilian Amazon, with special focus
on agriculture/pasture and secondary succession forest classes.
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