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Abstract: We report a mechanism to obtain optical pulling or pushing 
forces exerted on the active dispersive chiral media. Electromagnetic wave 
equations for the pure chiral media using constitutive relations containing 
dispersive Drude models are numerically solved by means of Auxiliary 
Differential Equation Finite Difference Time Domain (ADE-FDTD) 
method. This method allows us to access the time averaged Lorentz force 
densities exerted on the magnetoelectric coupling chiral slabs via the 
derivation of bound electric and magnetic charge densities, as well as bound 
electric and magnetic current densities. Due to the continuously coupled 
cross-polarized electromagnetic waves, we find that the pressure gradient 
force is engendered on the active chiral slabs under a plane wave incidence. 
By changing the material parameters of the slabs, the total radiation 
pressure exerted on a single slab can be directed either along the 
propagation direction or in the opposite direction. This finding provides a 
promising avenue for detecting the chirality of materials by optical forces. 
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1. Introduction 

Optical pulling forces have attracted considerable attention due to its potential applications in 
physical, biological, chemical and mechanical sciences [1–20]. The negative optical forces 
can be achieved by the configuration of optical fields, such as diffraction-free Bessel beams 
[6–8], optical solenoid beams [12], bichromatic fields [13] etc. Moreover, optical pulling 
forces exerted on gain medium structures [14,19], graded-index media [15], nonmagnetic 
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anisotropic beads [16], and chiral structures [1–4] have been studied recently. In [14], Mizrahi 
et al. present negative radiation pressure on media with the negative imaginary part of 
permittivity. Lindell et al. [1] demonstrate the trapping of micro-particles in a single gold 
plasmonic Archimedes spiral and Ding et al. [3] analytically show 25 metallic spheres 
arranged in a spiral to realize an optical pulling force. Nevertheless, the complicated 
mechanism of optical Lorentz forces acting on chiral media requires further research. 

Chiral media [1–5, 21–42] have the properties of giant optical rotation and circular 
dichroism. In terms of structure, there are three general types of chiral media. They are 
namely: pure chiral medium equivalent to dispersive material, artificial chiral medium 
composed of helices etc., and natural chiral medium, such as DNA molecules. Although most 
natural and artificial chiral materials are passive, Boron Nitride NanoTubes [37,38], whose 
tube chirality distribution is determined by electron diffraction, are predicted to be used as 
gain media for phonons generation [39]. Besides the chiral multifunctionalized large 
molecules [40] and chiral metamaterials [41,42] with large optical rotation are potential active 
chiral materials. Lindell analyzes how pure chiral media affect electromagnetic fields and 
wave propagation [1]. Tretyakov and Sihvola et al. discuss waves and energy in chiral nihility 
with zero permittivity and permeability [26]. The effective permittivity, permeability, and 
chirality of chiral media [1,24] must be frequency-dispersive to satisfy the interaction 
between electromagnetic fields and a resonant chiral particle. 

However, available optical force for pure chiral media has not been reported yet. The 
Maxwell stress tensor approach and direct application of the Lorentz force are common 
methods to compute the optical force by using the electromagnetic field distributions of 
particles. Radiation pressure and the distribution of electromagnetic force in effective electric 
dispersive or magnetic dispersive achiral media are discussed [28,35]. 

Furthermore, the Finite-difference time-domain (FDTD) method, as a popular numerical 
electromagnetic computational analysis technique [29–33], can study any kind of chiral 
media. The BI-FDTD method [30,31] based on wave decomposition technique [5] is valid 
only as the wavefields in chiral media remain uncoupled. Some FDTD methods are based on 
a direct implementation of the magnetoelectric coupling chiral constitutive relations into 
Maxwell’s equations. Z-transform [24], Auxiliary Differential Equation (ADE) [31], 
Recursive Convolution, and Shift Operator techniques are generally used to simulate 
dispersive media. Considering the complex constitutive relations for chiral media, the ADE-
FDTD method is given to simulate the dispersive chiral media. 

In this paper, the distribution of Lorentz force densities in active dispersive chiral slabs is 
studied by using the ADE-FDTD method. First, wave equations for chiral media are given by 
introducing the frequency-dependent permittivity, permeability, and chiral parameter. Then, 
the Lorentz force for dispersive and magnetoelectric coupling chiral media is developed and 
incorporated by the FDTD method. Validations of algorithms and programs are performed by 
comparing with theoretical results of the radiation pressure in [28], for a given set of 
parameter values. The positive or negative radiation pressure acting on active chiral slabs is 
investigated. 

2. Theory 

2.1 Constitute relation for chiral media 

The constitutive relations that describe magnetoelectric coupling for generally bi-isotropic 
media in the frequency domain can be expressed in the following form [1], 

 [ ] 0 0( ) ( ) ( ) j ( ) ,ω ε ω χ ω κ ω μ ε= + −D E H  (1) 

 [ ] 0 0( ) ( ) ( ) j ( ) ,ω μ ω χ ω κ ω μ ε= + +B H E  (2) 

where the time harmonic convention ejωt is assumed. ε(ω), μ(ω), χ(ω), and κ(ω) represent 
frequency-dispersive permittivity, permeability, Tellegen, and chirality parameter, 
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respectively. The macroscopic and effective material parameters of chiral media [36–42] are 
controlled by the physical geometric structure, material, angle of incidence, and so on. A 
purely chiral medium is discussed in this paper, in which case χ = 0. 

In view of the complications and spatial dispersion of Lorentz and Condon models [23], 
the lossy Drude models are used to characterize the permittivity, permeability, and chirality 
parameter for chiral media as [34] 

 

2 2 2

0 0

0 0( ) ( ) j ( )
( jΓ ) ( jΓ ) ( jΓ )

, , ,pe pm p

e m

κ

κ

ε ω μ ω ω
ε ω ε ε μ ω μ μ κ ω

ω ω ω ω ω ω∞ ∞= − = − =
− − −  (3) 

where ωpe, ωpm, ωpκ, Γe, Γm, and Γκ are the electric, magnetic, and magnetoelectric coupling 
plasma frequency and relaxation rate, respectively. 

Conditions for the material parameters of a passive chiral medium are [1] 

 
{ } { } { } { } { }2

0 0

Im Im
Im 0, Im 0, Im .

μ ε
μ ε κ

μ ε
< < <

 (4) 

Otherwise, the chiral medium would be an active medium [24]. 
By substituting Eq. (3) into Eq. (4), one can obtain 

 

22 2 2 2 2 2

4 2 2 4 2 2 4 2 2 4 2 2 4 2 2

Γ Γ Γ Γ
0, 0,

Γ Γ Γ Γ Γ
.pe e pm m p pe e pm m

e m e m

κ

κ

ωω ωω ω ω ωω ωω

ω ω ω ω ω ω ω ω ω ω

− −
< < < ⋅

+ + + + +

 
  
 

 (5) 

As all the material parameters are positive, the former two conditions for passive chiral media 
in Eq. (5) are automatically satisfied. A function used to determine whether the medium is 
active can be defined by 

 

22 2 2 2

4 2 2 4 2 2 4 2 2
.pe e pm m p

e m

S
κ

κ

ωω ωω ω ω

ω ω ω ω ω ω

Γ Γ
= ⋅ −

+ Γ + Γ + Γ

 
  
   (6) 

If the value of S is larger than zero, the chiral medium is active; if the value of S is smaller 
than zero, the chiral medium is passive. 

 

Fig. 1. Function S versus electric plasma frequency, magnetoelectric coupling plasma 
frequency, and working frequency normalized by electric relaxation rate. 

By setting some of the material parameters for chiral media to be Γe = Γm = Γκ, and ωpe = 
ωpm, the function S depending on the material parameters and working frequency is illustrated 
in Fig. 1. Generally speaking, the function S decreases as the magnetoelectric coupling 
plasma frequency ωpκ increases, as well as the electric plasma frequency ωpe and working 
frequency ω decrease. 
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2.2 Wave equations of the ADE-FDTD method for chiral media 

Assuming χ = 0, the corresponding induced electric current J and coupled magnetic current 
Kc in chiral media are expressed as 

 
2 2

0 0 0

2 2
, .

j j(j ) Γ (j ) (j ) Γ (j )

pe pc

e c

e

κ

κ

ε ω ω μ ε

ω ωω ω ω ω
= = = =

+ +

E HKJ P M  (7) 

In Eq. (7), the electric polarization Pe and the coupled magnetic polarization Mc are related to 
the electric current J and magnetic current Kc. 

Similarly, the corresponding relation between the magnetic polarization Mn and the 
magnetic current K in addition to the relation between the coupled electric polarization Pc and 
the electric current Jc in the frequency domain are 

 
2 2

0 0 0

2 2
, .

j j(j ) Γ (j ) (j ) Γ (j )

pm pc

n c

m

κ

κ

μ ω ω μ ε

ω ωω ω ω ω

−
= = = =

+ +

H EJK M P  (8) 

By using the transform relation between frequency domain and time domain jω→∂/∂t, the 
electromagnetic field and current equations used to model the waves in a chiral medium 
become 

 

0 0

2 2

0 0

2 2

0 0 0 0

/ , / ,

/ , / ,

/ , / .

s c c

e pe m pm

c c p c c p

t t

t t

t tκ κ κ κ

ε ε μ μ

ε ω μ ω

ε μ ω ε μ ω

∞ ∞∇ × = ∂ ∂ + + + ∇ × = − ∂ ∂ − −

∂ ∂ + Γ = ∂ ∂ + Γ =

∂ ∂ + Γ = ∂ ∂ + Γ = −

HJ J E K K

H E J J K E H K J

K K H J J E

 (9) 

The update equations for co- and cross-polarized components of fields and currents can be 
obtained by discretizing Eq. (9) in the form of a Yee cell. For one dimensional problems, only 
x- and y-components of electromagnetic fields are kept in the recurrence equations of the 
FDTD method if ə/əx = 0 and ə/əy = 0. The fields Ex and Hy are the components of incident 
co-polarized light, whereas Ey and Hx are the components of induced cross-polarized light. 

2.3 Lorentz force density exerted by electromagnetic fields on chiral media 

According to the Lorentz force law, the generalized and equivalent formula of Lorentz force 
density resulting from radiation pressure is [43] 

 free 0 free 0( , ) ( / ) ( ) ( ) ( / ) ,t t tμ ρ ε= + ∂ ∂ × + − ∇ ⋅ − ∇ ⋅ − ∂ ∂ ×F r J P H P E M H M E  (10) 

where ρfree and Jfree are free charge and free current sources. 
The electric displacement D and magnetic induction B for dispersive chiral media in Eqs. 

(1) and (2) can be rewritten as 

 0 0 0 0( ), ( ).e c n cε ε ε μ μ μ∞ ∞= + = + + = + = + +D E P E P M B H M H M P  (11) 

Then, the bound electric charge density ρe_bound, bound electric current density Je_bound, bound 
magnetic charge density ρm_bound, and current density Jm_bound based on the Maxwell equations 
for chiral media can be presented as 

 
e_bound 0 0

e

m_

_bound

m_boun

bound

d

, ,

/ [ ( ) / ( 1)( )] /

/ [ ( ) / (1 ) ] /

,

.
e c

n c

t t

t t

ρ ε μ

ε ε

μ μ

ρ

∞ ∞

∞ ∞

= ∇ ⋅ = −∇ ⋅ = ∇ ⋅ = −∇ ⋅

= ∂ ∂ = ∂ + ∂ + − ∇ ×

= ∂ ∂ = ∂ + ∂ + − ∇ ×

J P P M H

E P H M

J M M P E
 (12) 

Given the electromagnetic fields, charges, and currents as functions of time and spatial 
coordinates, the time averaged Lorentz force density for chiral media without free charge and 
current sources is 
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 e_bound e_bound 0 m_bound m_bound 00
(1 / ) ( ) .

T

T dtρ μ ρ ε< >= + × + − × E J H H J EF  (13) 

The time integral in Eq. (13) can be taken over one period of the stable time harmonic 
electromagnetic fields. Due to circular dichroism of chiral media, the forces for co- and cross- 
polarization are different from those for the orthogonal polarization states of fields. 

3. Numerical results 

To validate the algorithms and programs, the time averaged Lorentz force density of a 110 
nm-thickness dielectric slab with εr = 4 in free space is simulated. The working wavelength 
and E-field amplitude of the normally incident sine plane wave along –z-axis are λ0 = 640 nm 
and E0 = 1.0 V/m respectively. Taking reference to the numerical result of –2.481 pN/m2 and 
the exact value of –2.479 pN/m2 in [28], the computed total radiation pressure in this paper is 
Fz(z)dz = –2.4188 pN/m2. The relative error is less than 0.025 with respect to the exact value 
in [28]. The error is caused by the different treatments of material parameter, field and force 
discontinuities at material interfaces; a similar case can be found in a semi-infinite dielectric 
example discussed in [28]. The average E across the boundary, ½(E1⊥ + E2 ⊥), is used in 
calculating the interfacial force in [28]; however, the average (effective) medium parameters 
[33], rather than the average E, across the boundary are used in calculating the interfacial 
electromagnetic fields and forces in this paper. Such transitions of smooth medium 
parameters at the interfaces have been proved effective in simulating physical reality, as well 
as eliminating sharp singularities and discontinuities of the Maxwell and Lorentz force 
equations [28,33]. 

3.1 Radiation pressure exerted on a single chiral slab 

Artificial chiral media are generally composed of periodically arranged elemental unit cells; 
in addition, natural chiral architectures usually consist of large chiral molecules. The optical 
forces acting on such units or their aggregates are not well known. In order to explore the 
mutual Lorentz force between the chiral units, the radiation pressure acting on two chiral 
slabs are displayed in this section. 

 

Fig. 2. FDTD predicted co-polarized, cross-polarized, and net force densities Fz of a chiral slab 
suspended in free space. (a) λ0 = 640 nm, (b) λ0 = 480 nm. 

Figure 2 compares co-polarized, cross-polarized, and net Lorentz force densities (per unit 
cross-sectional area) of a 240 nm-thickness chiral slab (marked by the green dashed lines) 
illuminated by plane waves of wavelength λ0 = 640 nm and λ0 = 480 nm at normal incidence, 
respectively. The slab is assumed to be parallel to the xy-plane and the waves propagate in the 
z-direction. If not specially specified in this paper, the amplitude of incident electric field is 
chosen to E0 = 1.0 V/m, the FDTD cell size δ = λ0/128, and time step Δt = δ/2c. All medium 
parameters across the interface are the mean value of media parameters for two adjacent 
media. 
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The material parameters for the chiral slab are ε∞ = μ∞ = 1, ωpe = ωpm = 2π × 600 THz, ωpκ 
= 2π × 264.58 THz, Γe = Γm = 300 THz, Γκ = 200 THz. The values of relative permittivity εr, 
permeability μr, and chiral parameter κr at λ0 = 640 nm are –0.62–j0.17, –0.62–j0.17, and –
0.02–j0.32, respectively. The values of εr, μr, and κr at λ0 = 480 nm are 0.08–j0.07, 0.08–j0.07, 
and –0.009–j0.18. Because of ε0μ0Im

2{κ}>Im{μ}Im{ε}, the chiral media discussed in this 
paper are gain media, which are different from gain medium structures having negative 
imaginary part of permittivity or permeability [14,19]. Whereas the absolute values of cross-
polarized and net force densities keep increasing in Fig. 2, the positive co-polarized force 
density Fz decreases and becomes negative as the plane wave propagates into the active chiral 
slab. The total co-polarized, cross-polarized, and net radiation pressure along the + z-axis by 
integrating the various local force densities across the chiral slab are Fco(z)dz = 1.37 pN/m2, 
Fcr(z)dz = –1.32 pN/m2, Fnet(z)dz = 0.05 pN/m2, and Fco(z)dz = 0.85 pN/m2, Fcr(z)dz = –
0.97 pN/m2, Fnet(z)dz = –0.12 pN/m2 in Figs. 2(a) and 2(b), respectively. For a one-
dimensional case, there are no induced bound electric and magnetic charges at normal 
incidence. The radiation pressure is attributed to the bound electric and magnetic currents in 
the chiral slab. Due to the optical rotation of the chiral medium, co-polarized electromagnetic 
waves are continuously coupled into cross-polarized waves as plane waves propagate into the 
active chiral slab. Thus, the pressure gradient force is engendered with the steady increase of 
cross-polarized electromagnetic waves to pull the slab towards the incident wave source. The 
positive or negative radiation pressure is exerted on the same chiral slab illuminated by time-
harmonic plane waves, which have different working frequencies. If the thickness of the 
active chiral slab increases, the positive radiation pressure in Fig. 2(a) will turn into negative 
as the working wavelength is λ0 = 640 nm. 

3.2 Positive or negative radiation pressure acting on chiral slabs 

 

Fig. 3. Computed co-polarized, cross-polarized, and net force densities versus z inside chiral 
slabs. (a) pulling force densities, (b) pushing force densities. 

Figure 3 presents the time averaged co-polarized, cross-polarized, and net force densities 
in two 110 nm-thickness and 20 nm-apart active chiral slabs under a plane wave (λ0 = 640 
nm) incidence. The material parameters for the two chiral slabs in Fig. 3(a) are ε∞ = μ∞ = 1, 
ωpe = 2π × 220 THz, ωpm = 2π × 210 THz, ωpκ = 2π × 160 THz, Γe = Γm = 300 THz, Γκ = 200 
THz, εr = 0.78–j0.02, μr = 0.8–j0.02, κr = –0.008–j0.12. The total co-polarized, cross-
polarized, and net force densities along the z-axis for the first chiral slab are 0.16 pN/m2, –
0.07 pN/m2, and 0.09 pN/m2 and for the second chiral slab are 0.02 pN/m2, –0.19 pN/m2, –
0.17 pN/m2. The positive radiation pressure is imposed on the first chiral slab, whereas the 
negative radiation pressure is exerted on the second chiral slab. The mutual Lorentz force 
between the chiral slabs is a pulling force. The force densities in free space are zero. In Fig. 
3(a), the force densities at the back face of the first chiral slab and the front face of the second 
chiral slab are somewhat continuous. Positive, negative even zero radiation pressure can be 
obtained by adjusting the thickness and material parameters of the chiral slabs. 
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In Fig. 3(b), the material parameters for the first chiral slab are ε∞ = μ∞ = 1, ωpe = 2π × 150 
THz, ωpm = 2π × 190 THz, ωpκ = 2π × 180 THz, Γe = Γm = 300 THz, Γκ = 100 THz, εr = 0.9–
j0.01, μr = 0.84–j0.02, κr = –0.005–j0.15 and the second chiral slab are ε∞ = 1.69, μ∞ = 1, ωpe 
= 2π × 150 THz, ωpm = 2π × 190 THz, ωpκ = 2π × 180 THz, Γe = Γm = 300 THz, Γκ = 100 
THz, εr = 1.59–j0.01, μr = 0.84–j0.02, κr = –0.005–j0.15. The total co-polarized, cross-
polarized, and net radiation pressure along the z-axis for the first chiral slab are –0.11 pN/m2, 
–0.12 pN/m2, –0.23 pN/m2 and for the second chiral slab are 0.58 pN/m2, –0.28 pN/m2, and 
0.3 pN/m2. The mutual Lorentz force between the chiral slabs is a pushing force. Because the 
cross-polarized reflection waves are very small, the continuity of cross-polarized force 
densities of the two chiral slabs is barely affected by the alteration of the relative permittivity. 
However, the alteration greatly changes the continuity of the co-polarized force density at the 
front face of the second chiral slab. It is the relatively large impedance mismatch between free 
space and the second chiral slab that causes the increase of co-polarized reflection waves. The 
positive radiation pressure on the second chiral slab becomes negative as the co-polarized 
reflection waves are much smaller, if we reduce the thickness of the second chiral slab from 
110nm to 15 nm. 

4. Conclusion 

The mechanical interaction between plane waves and active dispersive chiral slabs is 
investigated by integrating the ADE-FDTD method into the Lorentz force in this paper. Given 
the frequency-dependent and magnetoelectric coupling constitute relation for chiral media, 
the theory of the Lorentz force is developed. In addition to bound electric and magnetic 
charges densities, bound electric and magnetic currents densities are extended to compute the 
time averaged Lorentz force densities. It should be noted that the effective bound electric 
current arises from the induced electric polarization Pe and the coupled magnetic polarization 
Mc, simultaneously, the effective bound magnetic current gives rise to the magnetic 
polarization Mn and the coupled electric polarization Pc in chiral media. Force density 
projections along the propagation direction for two different polarization states of 
electromagnetic waves are presented. We find that the pressure gradient force is generated as 
the cross-polarized waves are continuously coupled out by the chiral slabs. The positive or 
negative radiation pressure between two chiral slabs affected by material parameters and 
working frequency is discussed. The reported findings are believed to provide guidelines for 
chiral media’s potential applications in optical micromanipulation. 
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