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This paper presents an adaptive neural output feedback control scheme for uncertain robot manipulators with input saturation
using the radial basis function neural network (RBFNN) and disturbance observer. First, the RBFNN is used to approximate the
system uncertainty, and the unknown approximation error of the RBFNN and the time-varying unknown external disturbance
of robot manipulators are integrated as a compounded disturbance. Then, the state observer and the disturbance observer are
proposed to estimate the unmeasured system state and the unknown compounded disturbance based on RBFNN. At the same
time, the adaptation technique is employed to tackle the control input saturation problem. Utilizing the estimate outputs of the
RBFNN, the state observer, and the disturbance observer, the adaptive neural output feedback control scheme is developed for
robot manipulators using the backstepping technique.The convergence of all closed-loop signals is rigorously proved via Lyapunov
analysis and the asymptotically convergent tracking error is obtained under the integrated effect of the system uncertainty, the
unmeasured system state, the unknown external disturbance, and the input saturation. Finally, numerical simulation results are
presented to illustrate the effectiveness of the proposed adaptive neural output feedback control scheme for uncertain robot
manipulators.

1. Introduction

In the past decades, there have been enormous research
efforts in the development of efficient control schemes for
robot manipulators [1–3]. In general, robot manipulators
have nonlinear characteristics and are subject to parameter
perturbations and unknown disturbance [4, 5]. Thus, the
model is dynamically complex when the robotmanipulator is
operated in some uncertain surroundings such as underwater
or in space. To achieve satisfactory control performance,
a number of robust control schemes have been developed
for uncertain robot manipulators, among them are universal
approximator based control [6], disturbance observer based
control [7], and sliding mode control [8]. To successfully
complete the required tasks, it is necessary to precisely control
the uncertain and nonlinear robot manipulators [9]. In [10],
the trajectory and force tracking control was studied for con-
strained mobile manipulators with parameter uncertainty.
In [11], a robust tracking control scheme was proposed for
rigid robotic manipulators with uncertain dynamics. In [12],

an adaptive neural network tracking control was proposed
for manipulators with uncertain kinematics, dynamics, and
actuator model. However, robot manipulators in operations
are frequently subjected to the integrated effect of the system
uncertainty, the time-varying unknown external disturbance,
and the input saturation constraint.Thus, the robust tracking
control schemes should be further developed for the robot
manipulator to manage uncertainties, disturbances, nonlin-
earities, input constraints, and their coupling effects.

When dealingwith systemuncertainties, neural networks
(NNs), being a universal approximator with learning ability,
can be employed to compensate for the uncertain nonlinear
dynamics in the robot manipulator [13–15]. In [16], an
adaptive control was studied for robot manipulators with
NN based compensation of frictional uncertainties. Tracking
control was developed based on NN strategy for the robot
manipulator [17]. In [18], the robust adaptive control was
studied for robotmanipulators using generalized fuzzy neural
networks. Robust neural-fuzzy-network control was devel-
oped for the robot manipulator including actuator dynamics
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in [19]. Generally speaking, the joint position measurements
can be obtained by means of encoders, which can give
very accurate measurements of joint displacements. On the
contrary, joint velocity measurements are more problematic
due to the noise contamination nature; one solution is to
use a state observer. With the state observer incorporated,
the output feedback tracking controllers can be developed
to make the whole closed-loop control with only position
measurements [20]. To handle the unmeasured states of
nonlinear systems, adaptive output feedback controlmethods
were proposed for various nonlinear systems in [21–26]. In
[27], the adaptive control law was studied for robot manip-
ulators without velocity feedback. Neural network output
feedback control was proposed for robot manipulators in
[28]. In [29], the output feedback control was developed for
robot manipulators based on deterministic learning method.
An adaptive output feedback controller was studied for
robot arms in [30]. However, the time-varying unknown
disturbance and the approximation error of neural networks
are usually unknown which need to be efficiently tackled in
the output feedback control design.

Because robotic manipulators are subject to different
types of disturbances in the changeable work environment,
the control performance will be degraded. Thus, it is nec-
essary to develop the robust control scheme to handle the
unknown disturbance [31]. To fully utilize the dynamic infor-
mation of the unknown external disturbance, the disturbance
observer can be employed to design the robust output control
scheme for the robot manipulator [32–34]. Recently, many
disturbance observers have been designed to compensate
for the disturbance effect. In [35], the disturbance observer
based control (DOBC)was proposed for complex continuous
models. The disturbance attenuation and rejection problems
were investigated for a class of multi-input and multioutput
(MIMO) nonlinear systems in [36]. Sliding mode control
was presented for systems with mismatched uncertainties
based on disturbance observer in [37]. Due to the sig-
nificance of attenuating the effect of the unknown distur-
bance, the disturbance observer has been extensively used in
robot manipulator systems [38]. The nonlinear disturbance
observer was developed for robot manipulators in [39]. In
[40], decentralized adaptive robust control was proposed
for robot manipulators using disturbance observers. Nonlin-
ear disturbance observer design was presented for robotic
manipulators in [41]. In [42], Lyapunov-based nonlinear
disturbance observer was developed for serial 𝑛-link robot
manipulators. Robust constrained control was proposed for
MIMO nonlinear systems based on disturbance observer
in [43]. Although the disturbance observer technique has
some practical applications in robotic manipulator control
area, the disturbance observer based output feedback control
strategy needs to be further investigated to enhance the
antidisturbance ability by combining with the NN.

When parameter change, disturbances, or state errors
become large, the required input torques will quickly reach
saturation due to the needed massive control effort to main-
tain tracking control performance for robotic manipulators
[44–52]. Under this case, the unchanged control output
will destroy the stability of the closed-loop control systems.

Thus, in trajectory control of robot manipulators, the input
saturation should be explicitly considered to eliminate the
saturation effect [53]. The control of robot manipulators
with bounded input was studied in [54]. In [55], the robust
control was developed for robot manipulators with torque
saturation using fuzzy logic. Fuzzy saturated output feedback
tracking control was proposed for robot manipulators using
a singular perturbation theory based approach in [56]. In
[57], a saturated output feedback tracking control was studied
for robot manipulators via fuzzy self-tuning. Disturbance
observer based path tracking control was developed for
robot manipulator considering torque saturation in [58].
Robust adaptive motion/force tracking control was proposed
for uncertain constrained robot manipulators in [59]. In
[60], a hybrid fuzzy adaptive output feedback control design
was proposed for uncertain MIMO nonlinear systems with
time-varying delays and input saturation. In this paper, the
adaptive neural output feedback control scheme will be
developed by using the RBFNN and disturbance observer for
uncertain robot manipulators with input saturation based on
backstepping technique. Backstepping control as an efficient
controlmethod of nonlinear systems can provide a systematic
framework for the tracking control of robot manipulators. Its
design flexibility has led to the robust adaptive backstepping
control being extensively studied in the nonlinear control
system design including the robust control design of robot
manipulators [61, 62].

This work ismotivated by the disturbance observer-based
adaptive neural output feedback control to follow desired
time-varying trajectories of robot manipulators. The state
observer is designed to estimate the unmeasured state, and
the disturbance observer and the RBFNN are employed
to suppress the effect of the system uncertainty and the
unknown external disturbance.The organization of the paper
is as follows. Section 2 presents the problem descriptions
of the adaptive neural output feedback control for the
robot manipulator. Section 3 describes the adaptive neural
output feedback control design using the sate observer, the
disturbance observer, and the RBFNNbased on backstepping
method. Simulation studies are provided in Section 4 to
demonstrate the effectiveness of the proposed disturbance
observer based adaptive neural output feedback control
approach, followed by some concluding remarks in Section 5.

2. Problem Formulation

The dynamics of an uncertain 𝑛-joint robot manipulator can
be described as [63]

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝑔 (𝑞) = 𝑢 (𝑡) , (1)

where 𝑞(𝑡) is the 𝑅𝑛×1 state vector of joint angular positions;𝑢(𝑡) is the 𝑅𝑛×1 control input vector of applied joint torques;𝑀(𝑞) is the 𝑅𝑛×𝑛 symmetric positive-definite inertia matrix
which is unknown; 𝐶(𝑞, ̇𝑞) is the unknown 𝑅𝑛×𝑛 matrix of
Coriolis and centrifugal torques; and 𝑔(𝑞) is the unknown𝑅𝑛×1 vector of gravitational torques.
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Defining 𝑥 = (𝑞𝑇, ̇𝑞𝑇)𝑇 and considering (7), the uncertain
robot manipulator dynamics (1) can be written as

𝑥̇1 = 𝑥2𝑥̇2 = 𝐹 (𝑥) + 𝐺0 (𝑥1) 𝑢 (𝑡) , (2)

where 𝑥1 = 𝑞, 𝑥2 = ̇𝑞, 𝐹(𝑥) = 𝑀(𝑞)−1(−𝐶(𝑞, ̇𝑞) ̇𝑞 − 𝑔(𝑞)), and𝐺0(𝑥1) = 𝑀(𝑞)−1. Since 𝐶(𝑞, ̇𝑞) and 𝑔(𝑞) are unknown, 𝐹(𝑥)
is also unknown which denotes the system uncertainty.

In general, the robot manipulator may suffer from the
unknown external disturbance 𝑑(𝑡) ∈ 𝑅𝑛×1. Here, the
uncertain robot manipulator dynamics (2) can be expressed
as 𝑥̇1 = 𝑥2𝑥̇2 = 𝐹 (𝑥) + 𝐺0 (𝑥1) 𝑢 (𝑡) + 𝑑 (𝑡) . (3)

In most practical operations, there usually exist the control
input saturation 𝑢 = sat(V), where V is a desired control
command. Thus, the uncertain robot manipulator dynamics
(3) with input saturation can be written as

𝑥̇1 = 𝑥2𝑥̇2 = 𝐹 (𝑥) + 𝐺0 (𝑥1) sat (V) + 𝑑 (𝑡) . (4)

The function sat(⋅) represents the input saturation of robot
manipulator systems and is defined as

sat (V𝑖) = sign (𝑢𝑖)min {𝑢max 𝑖, 󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨} , 𝑖 = 1, 2, . . . , 𝑚, (5)

where𝑢max 𝑖 represents the saturation level of the 𝑖th input and
is assumed to be known.

On the other hand, we assume the symmetric positive-
definite inertia matrix 𝑀(𝑞) with uncertainty Δ𝑀(𝑞). Thus,
we have

𝐺0 (𝑥1) = 𝐺 (𝑥1) + Δ𝐺 (𝑥1) , (6)

where 𝐺(𝑥1) is the known nominal control gain matrix andΔ𝐺(𝑥1) is the uncertainty of the control gain matrix.
Substituting (6) into (4) yields

𝑥̇1 = 𝑥2𝑥̇2 = 𝐹 (𝑥) + 𝐺 (𝑥1) sat (V) + Δ𝐺 (𝑥1) sat (V) + 𝑑 (𝑡) . (7)

To handle the uncertainty 𝐹(𝑥) of the robot manipulator, the
following lemma is used.

Lemma 1 (see [64]). As a class of linearly parameterized NN,
RBFNNs are adopted to approximate the continuous function𝑓(𝑍) : 𝑅𝑞 → 𝑅 and can be expressed as follows:

𝑓 (𝑍) = Θ̂𝑇𝜙 (𝑍) + 𝜀, (8)

where 𝑍 = [𝑧1, 𝑧2, . . . , 𝑧𝑞]𝑇 ∈ 𝑅𝑞 is the input vector of the NN,Θ̂ ∈ 𝑅𝑝 is a weight vector of the NN,𝜙(𝑍) = [𝜙1(𝑍), 𝜙2(𝑍), . . . ,𝜙𝑝(𝑍)]𝑇 ∈ 𝑅𝑝 is the basis function, and 𝜀 is the approximation

error of the NN. The optimal weight value Θ∗ of RBFNN is
given by

Θ∗ = argmin
Θ̂∈Ω𝑓

[sup
𝑧∈𝑆𝑍

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑍 | Θ̂) − 𝑓 (𝑍)󵄨󵄨󵄨󵄨󵄨] , (9)

where Ω𝑓 = {Θ̂ : ‖Θ̂‖ ≤ 𝑀} is a valid field of the estimate
parameter Θ̂, 𝑀 is a design parameter, and 𝑆𝑍 ⊂ 𝑅𝑛 is an
allowable set of the state vector. Using the optimal weight value
yields

𝑓 (𝑍) = Θ∗𝑇𝜙 (𝑍) + 𝜀∗
󵄨󵄨󵄨󵄨𝜀∗󵄨󵄨󵄨󵄨 ≤ 𝜀, (10)

where 𝜀∗ is the optimal approximation error and 𝜀 > 0 is the
upper bound of the approximation error.

The RBFNN is employed to approximate the system
uncertainty 𝐹(𝑥) in (4) which can be expressed as 𝐹(𝑥) =Θ∗𝑇𝜙(𝑍) + 𝜀 according to (8). Considering (4), we have

𝑥̇1 = 𝑥2
𝑥̇2 = 𝐺 (𝑥1) sat (V) + Θ∗𝑇𝜙 (𝑍) + 𝜀∗ + Δ𝐺 (𝑥1) sat (V)

+ 𝑑 (𝑡) ,
(11)

where 𝑍 = [𝑥1, 𝑥2]𝑇.
Due to 𝑍 including 𝑥2, it cannot directly be used in the

RBFNN approximation. To solve this problem, by adding a
term and subtracting a term, (11) can be rewritten as

𝑥̇1 = 𝑥2
𝑥̇2 = 𝐺 (𝑥1) sat (V) + Θ∗𝑇𝜙 (𝑍) + Θ∗𝑇𝜙 (𝑍)

− Θ∗𝑇𝜙 (𝑍) + 𝜀∗ + Δ𝐺 (𝑥1) sat (V) + 𝑑 (𝑡) ,
(12)

where𝑍 = [𝑥1, 𝑥2]𝑇 and 𝑥1 and 𝑥2 are the estimates of 𝑥1 and𝑥2, respectively.
Defining𝐷(𝑡) = Θ∗𝑇𝜙(𝑍)−Θ∗𝑇𝜙(𝑍)+𝜀∗+Δ𝐺(𝑥1) sat(V)+𝑑(𝑡) and the system output choosing 𝑥1, we obtain𝑥̇1 = 𝑥2𝑥̇2 = 𝐺 (𝑥1) sat (V) + Θ∗𝑇𝜙 (𝑍) + 𝐷 (𝑥, 𝑡)

𝑦 = 𝑥1,
(13)

where 𝐷(𝑡) ∈ 𝑅𝑛×1 is called the system compounded
disturbance which is unknown and 𝑦 ∈ 𝑅𝑛×1 is the system
output.

For the continuous desired joint trajectory 𝑥1𝑑 = 𝑦𝑑, the
control objective is that the adaptive neural output feedback
control input V is designed to make the tracking error of each
joint asymptotically convergent in the presence of system
uncertainties, time-varying unknown external disturbances,
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and the input saturation. To further proceedwith the adaptive
neural output feedback control design, the following assump-
tions and lemma are needed.

Assumption 2 (see [65]). The nominal inertia matrix 𝑀0(𝑞)
of the robotmanipulator is uniformly bounded; that is, 𝑎𝑚𝐼 ≤𝑀0(𝑞) ≤ 𝑎𝑀𝐼 with 𝑎𝑚 > 0 and 𝑎𝑀 > 0, ∀𝑞 ∈ 𝑅𝑛.
Assumption 3. There exist unknownpositive constants 𝜃0 and𝜃1 such that the system compounded disturbance 𝐷 and its
time derivative 𝐷̇ are bounded; that is, ‖𝐷‖ ≤ 𝜃0 and ‖𝐷̇‖ ≤𝜃1.
Assumption 4. To the desired joint trajectory 𝑦𝑑, there exists
an unknown positive constant 𝜖𝑖 such that ‖𝑦(𝑖)

𝑑
‖ ≤ 𝜖𝑖, 𝑖 =1, 2.

Assumption 5. For an uncertain 𝑛-joint robotmanipulator (1)
subject to the input saturation (5) and the desired reference
signal 𝑦𝑑, there exists a feasible actual control input V which
can achieve the given tracking control objective. For the
difference Δ𝑢 = sat(V) − V, without loss of generality, we
assume that there exists an unknown constant 𝜉 ∈ 𝑅𝑛×1 to
render ‖Δ𝑢‖ ≤ 𝜉.
Lemma 6 (see [66, 67]). For bounded initial conditions, if
there exists a 𝐶1 continuous and positive-definite Lyapunov
function 𝑉(𝑥) satisfying 𝛾1(‖𝑥‖) ≤ 𝑉(𝑥) ≤ 𝛾2(‖𝑥‖), such that𝑉̇(𝑥) ≤ −𝜅𝑉(𝑥)+𝑐, where 𝛾1, 𝛾2 : 𝑅𝑛 → 𝑅 are class𝐾 functions
and 𝜅 and 𝑐 are positive constants, then the solution 𝑥(𝑡) is
uniformly bounded.

Remark 7. For a practical robotmanipulator, the input satura-
tion should meet the physical requirement of system control.
In other words, there should exist an output feedback control
based on the state observer and disturbance observer that can
track the given desired output of the robot manipulator in
the presence of the unknown external disturbance and the
input saturation for all given initial conditions. Namely, the
controllability of the studied robot manipulator (1) should
be satisfied under the control input saturation. To guarantee
the controllability of the studied robot manipulator (1), the
difference Δ𝑢 = sat(V) − V between sat(V) and V should be
bounded from a practical view. Otherwise, the controllability
of the studied robot manipulator (1) cannot be satisfied.
To design the adaptive output feedback control scheme, we
assume that there exists an unknown constant 𝜉 to render‖Δ𝑢‖ ≤ 𝜌(𝑥)𝜉. Thus, Assumption 5 is reasonable.

Remark 8. To develop the disturbance observer that esti-
mates the unknown system compounded disturbance, the
bounded assumptions for the system compounded distur-
bance𝐷 and its time derivative 𝐷̇ are required. For the robot
manipulator, the approximation error of the RBFNN and the
external disturbance are always bounded. In addition, Θ∗,𝜙(𝑍), and 𝜙(𝑍) are also bounded. Thus, 𝐷 is bounded. At
the same time, from [28], we know that the approximation
error 𝜔̃ = Θ∗𝑇𝜙(𝑍) − Θ∗𝑇𝜙(𝑍) is bounded. Thus, the
derivatives of 𝜔̃, 𝜀, and 𝑑 are also bounded. From above

analysis, Assumption 3 is reasonable due to the unknown
constants 𝜃0 and 𝜃1.
3. Adaptive Output Feedback Control Using
Disturbance Observer

In a practical robot manipulator, the angular velocity signal is
not easily obtained and is often assumed unavailable. For the
unmeasured system state 𝑥 and the unknown compounded
disturbance 𝐷(𝑥, 𝑡) shown in (13), they cannot be directly
used to design the robust adaptive control scheme for the
robot manipulator based on backstepping technique. To fully
utilize the dynamic information of the compounded 𝐷(𝑥, 𝑡),
the disturbance observer will be proposed to estimate it.
Using outputs of the RBFNN, the state observer, and the
disturbance observer, the adaptive output feedback control
will be designed in this section.

3.1. Design of State Observer and Disturbance Observer. To
estimate the unmeasured system state, the state observer is
designed as follows:𝑥1 = 𝑧1𝑥2 = 𝑧2 + 𝐿2 (𝑥1 − 𝑥1) , (14)

where the intermediate variables 𝑧1 and 𝑧2 are given by𝑧̇1 = 𝑧2 + 𝐿1 (𝑥1 − 𝑥1)𝑧̇2 = Θ̂𝑇𝜙 (𝑍) + 𝐷 + 𝐺 (𝑥1) sat (V) + 𝐿2 (𝑥1 − 𝑥1) , (15)

where 𝐿1 = 𝐿𝑇1 > 0 and 𝐿2 = 𝐿𝑇2 > 0 are the design parameter
matrices of state observer to be determined, Θ̂ is the estimate
of neural network valueΘ∗, and𝐷 is the disturbance estimate
of unknown compounded disturbance𝐷.

Differentiating (14) and considering (15) yielḋ̂𝑥1 = 𝑥2 + (𝐿1 − 𝐿2) (𝑥1 − 𝑥1)̇̂𝑥2 = Θ̂𝑇𝜙 (𝑍) + 𝐺 (𝑥1) sat (V) + 𝐷 + 𝐿2 (𝑥1 − 𝑥1)
+ 𝐿2 (𝑥̇1 − ̇̂𝑥1) .

(16)

Invoking (13) and (16), we have𝐿2 (𝑥̇1 − ̇̂𝑥1) = 𝐿2 (𝑥2 − 𝑧2 − 𝐿1 (𝑥1 − 𝑥1))= 𝐿2 (𝑥2 − 𝑥2 − (𝐿1 − 𝐿2) (𝑥1 − 𝑥1)) . (17)

Define 𝑥1 = 𝑥1 −𝑥1 and 𝑥2 = 𝑥2 −𝑥2. Then, considering (13),
(16), and (17), we obtaiṅ̃𝑥1 = 𝑥2 − (𝐿1 − 𝐿2) 𝑥1̇̃𝑥2 = Θ̂𝑇𝜙 (𝑍) − Θ∗𝑇𝜙 (𝑍) + 𝐷 − 𝐷 − 𝐿2𝑥1 − 𝐿2𝑥2+ 𝐿2 (𝐿1 − 𝐿2) 𝑥1= −Θ̃𝑇𝜙 (𝑍) + 𝐷 − 𝐿2𝑥2+ (𝐿2 (𝐿1 − 𝐿2) − 𝐿2) 𝑥1,

(18)

where Θ̃ = Θ∗ − Θ̂ and𝐷 = 𝐷 − 𝐷.
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The state estimate error system (18) can be written as

̇̃𝑥 = 𝐴𝑥 + 𝐵 (−Θ̃𝑇𝜙 (𝑍) + 𝐷)
𝑦 = 𝑥1, (19)

where 𝑥 = [𝑥1, 𝑥2]𝑇, 𝐴 = [ −(𝐿1−𝐿2) 𝐼𝑛×𝑛𝐿2(𝐿1−𝐿2)−𝐿2 −𝐿2
], and the coeffi-

cients 𝐿 𝑖, 𝑖 = 1, 2 are design matrix parameters and 𝐵 =[0𝑛×𝑛, 𝐼𝑛×𝑛]𝑇.
To estimate the unknown compounded disturbance𝐷(𝑥, 𝑡) in (13), the disturbance observer is proposed as

̇̂𝐷 = −𝐷 + 𝐿3 (𝑥1 − 𝑥1) , (20)

where 𝐿3 = 𝐿𝑇3 > 0 is a design matrix parameter.
Considering𝐷 = 𝐷 − 𝐷, 𝑥1 = 𝑥1 − 𝑥1, and (20) yields

̇̃𝐷 = −𝐷 + 𝐿3 (𝑥1 − 𝑥1) − 𝐷̇ − 𝐷
= −𝐷 − 𝐿3𝑥1 − 𝐷̇ − 𝐷. (21)

Invoking the state estimate error system (19) and the distur-
bance estimate error system (21), we have

̇̃𝑋 = 𝐴𝑋 + 𝐵𝜂𝑦 = 𝑥1, (22)

where 𝑋 = [𝑥1, 𝑥2, 𝐷]𝑇, 𝐴 = [ −(𝐿1−𝐿2) 𝐼𝑛×𝑛 0𝑛×𝑛𝐿2(𝐿1−𝐿2)−𝐿2 −𝐿2 𝐼𝑛×𝑛
−𝐿3 0𝑛×𝑛 −𝐼𝑛×𝑛

], and
the coefficients 𝐿 𝑖, 𝑖 = 1, 2, 3, should be chosen to render

that the matrix 𝐴 is stable, 𝐵 = [ 0𝑛×𝑛 0𝑛×𝑛 0𝑛×𝑛0𝑛×𝑛 𝐼𝑛×𝑛 0𝑛×𝑛
0𝑛×𝑛 0𝑛×𝑛 𝐼𝑛×𝑛

]𝑇, and 𝜂 =[0, −Θ̃𝑇𝜙(𝑍), −𝐷̇ − 𝐷]𝑇.
For the designed matrix 𝐴, given a matrix 𝑃 = 𝑃𝑇 > 0,

there exists a positive-definite matrix 𝑄 = 𝑄𝑇 > 0 such that
the following matrix inequality always hold:

𝐴𝑇𝑃 + 𝑃𝐴 ≤ −𝑄. (23)

Consider the Lyapunov candidate as

𝑉0 = 𝑋𝑇𝑃𝑋. (24)

The time derivative of 𝑉0 is
𝑉̇0 = ̇̃𝑋𝑇𝑃𝑋 + 𝑋𝑇𝑃 ̇̃𝑋

= 𝑋𝑇 (𝐴𝑇𝑃 + 𝑃𝐴)𝑋 + 2𝑋𝑇𝑃𝐵𝜂
≤ −𝑋𝑇𝑄𝑋 + 2𝑋𝑇𝑃𝐵𝜂.

(25)

Define 𝑃1 and 𝐵1 as the corresponding matrix blocks of 𝑃
and 𝐵 for the state estimate error 𝑥 and 𝑃2 and 𝐵2 as the

corresponding matrix blocks of 𝑃 and 𝐵 for the disturbance
estimate error𝐷. Considering the following facts

− 2𝑥𝑇𝑃1𝐵1Θ̃𝑇𝜙 (𝑍) ≤ 𝐿4 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 + 1𝜆1 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2
− 2𝐷𝑇𝑃2𝐵2 (−𝐷̇ − 𝐷) ≤ 2 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑃2𝐵2󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩󵄩𝐷̇󵄩󵄩󵄩󵄩󵄩 + ‖𝐷‖)

≤ 2 󵄩󵄩󵄩󵄩󵄩𝑃2𝐵2󵄩󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 + ‖𝐷‖2 + 󵄩󵄩󵄩󵄩󵄩𝐷̇󵄩󵄩󵄩󵄩󵄩2
≤ 𝐿0 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 + ‖𝐷‖2 + 󵄩󵄩󵄩󵄩󵄩𝐷̇󵄩󵄩󵄩󵄩󵄩2 ≤ 𝐿0 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 + 𝜃20 + 𝜃21

(26)

we have

𝑉̇0 ≤ −𝑋𝑇 (𝑄 − 𝛿0𝐼3𝑛×3𝑛)𝑋 + 1𝜆1 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2 + 𝜃20 + 𝜃21 , (27)

where 𝐿0 = 2‖𝑃𝐵‖2, 𝐿4 = 𝜆1‖𝑃𝐵‖2𝜇2, 𝛿0 = 𝐿0 +𝐿4, ‖𝜙(𝑍)‖ ≤𝜇, and 𝜆1 > 0 is a design constant.

3.2. Design of Output Feedback Using Backstepping Method.
Up to now, the state observer and the disturbance observer
have been proposed for the uncertain robot manipulator
using the RBFNN. Next, the adaptive neural output feedback
control based on the developed disturbance observer will
be proposed for uncertain robot manipulators with input
saturation using the backstepping method and adaptation
technique. The detailed design procedure is described as
follows.

Step 1. To develop the adaptive neural output feedback
control scheme, we define𝑒1 = 𝑥1 − 𝑦𝑑 (28)

𝑒2 = 𝑥2 − 𝛼1 − ̇𝑦𝑑, (29)

where 𝛼1 is a virtual control law which will be designed.

Considering (16) and differentiating 𝑒1 with respect to
time yielḋ𝑒1 = ̇̂𝑥1 − ̇𝑦𝑑 = 𝑥2 + (𝐿1 − 𝐿2) (𝑥1 − 𝑥1) − ̇𝑦𝑑. (30)

Considering (29), we obtaiṅ𝑒1 = 𝑒2 + 𝛼1 + (𝐿1 − 𝐿2) (𝑥1 − 𝑥1) . (31)

The virtual control law 𝛼1 is designed as𝛼1 = −𝐾1𝑒1 − (𝐿1 − 𝐿2) (𝑥1 − 𝑥1) , (32)

where𝐾1 = 𝐾𝑇1 > 0 is a design parameter.
Substituting (32) into (31), we havė𝑒1 = −𝐾1𝑒1 + 𝑒2. (33)

Consider the Lyapunov function candidate as

𝑉1 = 12𝑒𝑇1 𝑒1. (34)

Invoking (33), the time derivative of 𝑉1 is given by

𝑉̇1 = −𝑒𝑇1𝐾1𝑒1 + 𝑒𝑇1 𝑒2. (35)
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Step 2. Considering (16) and (29) and differentiating 𝑒2 with
respect to time yield

̇𝑒2 = ̇̂𝑥2 − 𝛼̇1 − ̈𝑦𝑑= Θ̂𝑇𝜙 (𝑍) + 𝐺 (𝑥1) sat (V) + 𝐷 + 𝐿2 (𝑥1 − 𝑥1)
+ 𝐿2 (𝑥̇1 − ̇̂𝑥1) − 𝛼̇1 − ̈𝑦𝑑,

(36)

where 𝛼̇1 = −𝐾1 ̇𝑒1 − (𝐿1 − 𝐿2)(𝑥2 − 𝑥2 − (𝐿1 − 𝐿2)(𝑥1 − 𝑥1)).
Defining 𝜍 = −𝐾1 ̇𝑒1+(𝐿1−𝐿2)(𝐿1−𝐿2)(𝑥1−𝑥1), we have𝛼̇1 = 𝜍 + (𝐿1 − 𝐿2) 𝑥2. (37)

Invoking (17) and (37), (36) can be written as

̇𝑒2 = Θ̂𝑇𝜙 (𝑍) + 𝐺 (𝑥1) sat (V) + 𝐷 + 𝐿2 (𝑥1 − 𝑥1)+ 𝐿2 (𝑥2 − 𝑥2) − 𝐿2 (𝐿1 − 𝐿2) (𝑥1 − 𝑥1) − 𝜍
− (𝐿1 − 𝐿2) 𝑥2 − ̈𝑦𝑑.

(38)

Considering Δ𝑢 = sat(V) − V and 𝑥2 = 𝑥2 − 𝑥2, (38) can be
expressed as

̇𝑒2 = Θ̂𝑇𝜙 (𝑍) + 𝐺 (𝑥1) V + 𝐺 (𝑥1) Δ𝑢 + 𝐷
+ 𝐿2 (𝑥1 − 𝑥1) − 𝐿2𝑥2 − 𝐿2 (𝐿1 − 𝐿2) (𝑥1 − 𝑥1)− 𝜍 − (𝐿1 − 𝐿2) 𝑥2 − ̈𝑦𝑑.

(39)

Utilizing the outputs of the disturbance observer and the
RBFNN, the adaptive neural output feedback control law V
is designed as

V = −𝐺 (𝑥)−1
⋅ (𝐾2𝑒2 + Θ̂𝑇𝜙 (𝑍) + 𝐷 − 𝜍 − ̈𝑦𝑑 + 𝑒1 + V0)

V0 = 𝐿2 (𝑥1 − 𝑥1) − 𝐿2 (𝐿1 − 𝐿2) (𝑥1 − 𝑥1)
+ sign (𝑒2) 𝑔 (𝑥1) 𝜌 (𝑥) 𝜉,

(40)

where 𝐾2 = 𝐾𝑇2 > 0, sign(𝑒2) = diag{sign(𝑒2𝑖)}, with sign(⋅)
denoting the sign function, 𝑔(𝑥1) = [‖𝑔1(𝑥1)‖, ‖𝑔2(𝑥1)‖,. . . , ‖𝑔𝑛(𝑥1)‖]𝑇, with 𝑔𝑖(𝑥1) denoting the 𝑖th row of input
matrix 𝐺(𝑥1), and 𝜉 is an estimate of unknown constant 𝜉.

Substituting (40) into (39), we obtain

̇𝑒2 = −𝐾2𝑒2 − 𝑒1 − sign (𝑒2) 𝑔 (𝑥1) 𝜌 (𝑥) 𝜉 + 𝐺 (𝑥1) Δ𝑢
− 𝐿2𝑥2 − (𝐿1 − 𝐿2) 𝑥2

= −𝐾2𝑒2 − 𝑒1 − sign (𝑒2) 𝑔 (𝑥1) 𝜌 (𝑥) 𝜉 + 𝐺 (𝑥1) Δ𝑢− 𝐿1𝑥2.
(41)

In accordance with (41), we have

𝑒𝑇2 ̇𝑒2 = −𝑒𝑇2𝐾2𝑒2 − 𝑒𝑇2 𝑒1 − 𝑒𝑇2 sign (𝑒2) 𝑔 (𝑥1) 𝜌 (𝑥) 𝜉
+ 𝑒𝑇2𝐺 (𝑥1) Δ𝑢 − 𝑒𝑇2 𝐿1𝑥2. (42)

Considering ‖Δ𝑢‖ ≤ 𝜌(𝑥)𝜉, we obtain
𝑒𝑇2 sign (𝑒2) 𝑔 (𝑥1) 𝜌 (𝑥) 𝜉 = 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 𝜌 (𝑥) 𝜉
𝑒𝑇2𝐺 (𝑥1) Δ𝑢

= 𝑒𝑇2 [𝑔1 (𝑥1) Δ𝑢, 𝑔2 (𝑥1) Δ𝑢, . . . , 𝑔𝑛 (𝑥1) Δ𝑢]𝑇
≤ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 𝜌 (𝑥) 𝜉.
(43)

Substituting (43) into (42) yields

𝑒𝑇2 ̇𝑒2 ≤ −𝑒𝑇2𝐾2𝑒2 − 𝑒𝑇2 𝑒1 − 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 𝜌 (𝑥) 𝜉
+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 𝜌 (𝑥) 𝜉 − 𝑒𝑇2 𝐿1𝑥2
= −𝑒𝑇2𝐾2𝑒2 − 𝑒𝑇2 𝑒1 − 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 𝜌 (𝑥) 𝜉
− 𝑒𝑇2 𝐿1𝑥2 + 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 (𝜌 (𝑥) − 𝜌 (𝑥)) 𝜉,

(44)

where 𝜉 = 𝜉 − 𝜉.
Considering Assumption 2, we can obtain ‖𝑔𝑖(𝑥1)‖ ≤ 𝛽0

with 𝛽0 > 0. Invoking Assumption 5, we have

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 (𝜌 (𝑥) − 𝜌 (𝑥)) 𝜉
≤ 𝑙𝛽0 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩 ‖𝑥‖ 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨
≤ 12 (𝑙𝛽0 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩)2 󵄩󵄩󵄩󵄩𝑒2󵄩󵄩󵄩󵄩2 + 12 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 .

(45)

Consider the Lyapunov function candidate

𝑉2 = 12𝑒𝑇2 𝑒2 + 12𝛾𝜉𝑇𝜉 + 12 tr (Θ̃𝑇Λ−1Θ̃) , (46)

where 𝛾 > 0 and Λ = Λ𝑇 > 0 are design parameters.
Invoking (44), the time derivative of 𝑉2 is
𝑉̇2 = 𝑒𝑇2 ̇𝑒2 + 1𝛾𝜉𝑇 ̇̃𝜉 + tr (Θ̃𝑇Λ−1 ̇̃Θ)

≤ −𝑒𝑇2𝐾2𝑒2 − 𝑒𝑇2 𝑒1 − 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 𝜌 (𝑥) 𝜉
+ 12 (𝑙𝛽0 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩)2 󵄩󵄩󵄩󵄩𝑒2󵄩󵄩󵄩󵄩2 + 12 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 − 𝑒𝑇2 𝐿1𝑥2
+ 1𝛾𝜉𝑇 ̇̃𝜉 − tr (Θ̃𝑇Λ−1 ̇̂Θ) .

(47)
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The parameter adaptation laws of 𝜉 and Θ̂ are designed aṡ̂𝜉 = 𝛾 (󵄨󵄨󵄨󵄨𝑒2𝑖󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥1)󵄩󵄩󵄩󵄩 𝜌𝑇 (𝑥) − 𝜎1𝜉)̇̂Θ = Λ (𝜙 (𝑍) 𝑒2 + 𝜎2Θ̂) , (48)

where 𝜎1 > 0 and 𝜎2 > 0 are the design parameters.
Substituting (48) into (47) and considering 𝜉 = 𝜉 − 𝜉 andΘ̃ = Θ∗ − Θ̂, we obtain𝑉̇2 ≤ −𝑒𝑇2𝐾2𝑒2 − 𝑒𝑇2 𝑒1 − 𝑒𝑇2 𝐿1𝑥2 − 𝜎1𝜉𝜉 − 𝑒𝑇2 Θ̃𝑇𝜙 (𝑍)

− 𝜎2tr (Θ̃𝑇Θ̂) + 12 (𝑙𝛽0 󵄩󵄩󵄩󵄩𝜉󵄩󵄩󵄩󵄩)2 󵄩󵄩󵄩󵄩𝑒2󵄩󵄩󵄩󵄩2 + 12 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 . (49)

Considering the following facts2𝜉𝜉 ≥ 𝜉2 − 𝜉2
−2𝑒𝑇2 𝐿1𝑥2 ≤ 󵄩󵄩󵄩󵄩𝐿1󵄩󵄩󵄩󵄩2 󵄩󵄩󵄩󵄩𝑒2󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2

−2𝑒𝑇2 Θ̃𝑇𝜙 (𝑍) ≤ 𝜆2𝜇2 󵄩󵄩󵄩󵄩𝑒2󵄩󵄩󵄩󵄩2 + 1𝜆2 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2
2tr (Θ̃𝑇Θ̂) = 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩Θ̂󵄩󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩Θ∗󵄩󵄩󵄩󵄩 ≥ 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩Θ∗󵄩󵄩󵄩󵄩

(50)

we have𝑉̇2 ≤ −𝑒𝑇2 (𝐾2 − 𝛿1𝐼3𝑛×3𝑛) 𝑒2 − 𝜎12 𝜉2
− (𝜎22 − 12𝜆2) 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2 − 𝑒𝑇2 𝑒1 + 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 + 𝜎12 𝜉2
+ 12 󵄩󵄩󵄩󵄩Θ∗󵄩󵄩󵄩󵄩2 ,

(51)

where 𝜆2 > 0 is a design parameter and 𝛿1 = (1/2)‖𝐿1‖2 +(1/2)𝜆2𝜇2 + (1/2)(𝑙𝛽0‖𝜉‖)2.
To analyze the convergence of the whole closed-loop

system, the Lyapunov function candidate is considered as

𝑉 = 2∑
𝑖=0

𝑉𝑖. (52)

Considering (27), (35), and (51) yields

𝑉̇ ≤ −𝑋𝑇 (𝑄 − 𝛿0𝐼3𝑛×3𝑛)𝑋 + 1𝜆1 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2 + 𝜃20 + 𝜃21
− 𝑒𝑇1𝐾1𝑒1 − 𝑒𝑇2 (𝐾2 − 𝛿1𝐼3𝑛×3𝑛) 𝑒2 − 𝜎12 𝜉2
− (𝜎22 − 12𝜆2) 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑋󵄩󵄩󵄩󵄩󵄩2 + 𝜎12 𝜉2 + 12 󵄩󵄩󵄩󵄩Θ∗󵄩󵄩󵄩󵄩2

= −𝑋𝑇 (𝑄 − (𝛿0 + 1) 𝐼3𝑛×3𝑛)𝑋 − 𝑒𝑇1𝐾1𝑒1
− 𝑒𝑇2 (𝐾2 − 𝛿1𝐼3𝑛×3𝑛) 𝑒2 − 𝜎12 𝜉2
− (𝜎22 − 1𝜆1 − 12𝜆2) 󵄩󵄩󵄩󵄩󵄩Θ̃󵄩󵄩󵄩󵄩󵄩2 + 𝜎12 𝜉2 + 12 󵄩󵄩󵄩󵄩Θ∗󵄩󵄩󵄩󵄩2
+ 𝜃20 + 𝜃21 ≤ −𝜅𝑉 + 𝐶,

(53)

where𝜅
= min( 𝜆min (𝑄 − (𝛿0 + 1) 𝐼3𝑛×3𝑛) , 2𝜆min (𝐾1) ,

2𝜆min (𝐾2 − 𝛿1𝐼3𝑛×3𝑛) , 𝜎1, 2 (𝜎2/2 − 1/𝜆1 − 1/2𝜆2)𝜆max (Λ) )
> 0
𝐶 = 𝜎12 𝜉2 + 12 󵄩󵄩󵄩󵄩Θ∗󵄩󵄩󵄩󵄩2 + 𝜃20 + 𝜃21 > 0.

(54)

Integration of (53) yields

0 ≤ 𝑉 ≤ 𝐶𝜅 + (𝑉 (0) − 𝐶𝜅 ) 𝑒−𝜅𝑡. (55)

The disturbance observer based adaptive neural output
feedback control design procedure of the uncertain robot
manipulator can be summarized in the following theorem,
which includes the result of disturbance observer based adap-
tive neural output feedback control with unknown system
uncertainty, time-varying external disturbance, and input
saturation.

Theorem 9. Consider the robot manipulator system (1) with
unknown time-varying external disturbance.The state observer
(14) with (15) is designed for the robot manipulator. The
unknown compounded disturbance is estimated using the dis-
turbance observer (20). Using the outputs of the state observer,
the disturbance observer, and the RBFNN, the adaptive neural
output feedback control for the robot manipulator is designed
as (40), with the parameter updated laws (48). Then, all
closed-loop system signals are semiglobally uniformly bounded
under the proposed disturbance observer based adaptive neural
output feedback control scheme.

Proof. According to (55), we can obtain that 𝑉 is exponen-
tially convergent, and lim𝑡→∞𝑉 = 𝐶/𝜅. Thus, all signals of
the closed-loop system are uniformly ultimately bounded.
Due to bounded 𝑒1 and 𝑥1, we can know that the tracking
error 𝑦 − 𝑦𝑑 is bounded under the proposed adaptive output
feedback control scheme from (28) and (55). This concludes
the proof.

4. Simulation Results

To illustrate the effectiveness of the developed adaptive neural
output feedback control scheme based on the disturbance
observer, numerical simulation results are presented for the
robot manipulator. The dynamic equations of a two-link
robotic manipulator can be written as [63]

[𝑎11 (𝑞2) 𝑎12 (𝑞2)𝑎12 (𝑞2) 𝑎22 (𝑞2)] [ ̈𝑞1̈𝑞2 ]
= [𝛽12 ̇𝑞21 + 2𝛽12 (𝑞2) ̇𝑞1 ̇𝑞2−𝛽12 (𝑞2) ̇𝑞22 ] + [𝛾01 (𝑞1, 𝑞2) 𝑔𝛾02 (𝑞1, 𝑞2) 𝑔]

+ [𝑢1𝑢2] + [𝑑1𝑑2] ,
(56)
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Table 1: Parameters of the two-link robotic manipulator.

Parameter Value𝑟1 1m𝑟2 0.8m𝐽1 5 kg⋅m𝐽2 5 kg⋅m𝑚1 0.5 kg𝑚2 1.5 kg

where 𝑎11(𝑞2) = (𝑚1 + 𝑚2)𝑟21 + 𝑚2𝑟22 + 2𝑚2𝑟1𝑟2 cos(𝑞2) +𝐽1, 𝑎12(𝑞2) = 𝑚2𝑟22 + 𝑚2𝑟1𝑟2 cos(𝑞2), 𝑎22 = 𝑚2𝑟22 + 𝐽2,𝛽12 = 𝑚2𝑟1𝑟2sin(𝑞2), 𝛾01(𝑞1, 𝑞2) = −((𝑚1 + 𝑚2)𝑟1 cos(𝑞2) +𝑚2𝑟2 cos(𝑞1+𝑞2)), 𝛾02(𝑞1, 𝑞2) = −𝑚2𝑟2 cos(𝑞1+𝑞2), and𝑑𝑖 (𝑖 =1, 2) represent the unknown time-varying disturbances of
the robot manipulator system. We assume that 𝑀0(𝑞) =[ 𝑎11(𝑞2) 𝑎12(𝑞2)𝑎12(𝑞2) 𝑎22(𝑞2)

] is the known nominal symmetric positive-
definite inertia matrix and Δ𝑀(𝑞) = 0.15𝑀0(𝑞) is the
uncertainty of the symmetric positive-definite inertia matrix.
All parameters of the two-link robotic manipulator are given
in Table 1 [63].

In the simulation study, the state observer is designed as
(14) and (15).The compoundeddisturbance is estimated using
the disturbance observer which is proposed as (20). Using the
output of the state observer, the disturbance observer, and
the RBFNN, the adaptive neural output feedback control of
the robot manipulator is designed as (40) and the parameter
updated laws are chosen as (48).

Since the sign function term sign(𝑒2𝑖) in the adaptive
neural output feedback control design will introduce a high-
frequency oscillation into the system that can excite the
unmodeled dynamics, to avoid chattering, function sign(𝑒2𝑖)
is replaced with sat(𝑒2𝑖/𝜏𝑖) in the simulation, where 𝜏𝑖 is the
boundary layer width and sat(𝑒2𝑖/𝜏𝑖) is given by [68]

sat(𝑒2𝑖𝜏 ) = {{{{{{{{{
𝑒2𝑖𝜏 , 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑒2𝑖𝜏 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1
sign(𝑒2𝑖𝜏𝑖 ) , 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑒2𝑖𝜏𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > 1. (57)

The initial condition of the updated parameters is chosen as𝑊̂ = diag{0.1} and 𝜃 = [0, 0]𝑇. All design parameters of the
disturbance observer based adaptive neural output feedback
control are chosen as 𝐿1 = diag{200}, 𝐿2 = diag{300}, 𝐿3 =
diag{100} 𝛾 = 0.2, 𝜎1 = 0.2, Λ = diag{2}, 𝜎1 = 0.5, 𝜏𝑖 = 0.2,𝐾1 = diag{120}, and 𝐿2 = diag{135}.

To illustrate the effectiveness of the proposed disturbance
observer based adaptive neural output feedback control
scheme, the tracking control simulation results are presented
for the time-varying desired tracking signals.

The desired trajectories are taken as 𝑥11𝑑 = 0.6 cos(0.6𝑡)+1.5 cos(1.5𝑡) and 𝑥12𝑑 = 0.4 cos(0.4𝑡) + 0.6 cos(1.2𝑡) and the
unknown disturbances are assumed as 𝐷1 = 2 sin(𝑡) and𝐷2 = 1.2 cos(1.5𝑡). The initial states are chosen as 𝑥1 =[0.5, −1]𝑇 and 𝑥2 = [0.1, 0.1]𝑇.
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Figure 1: Tracking result of 𝑥11 in response to 𝑥11𝑑.
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Figure 2: Tracking result of 𝑥12 in response to 𝑥12𝑑.

The tracking control results of the two-link robotic
manipulator are shown in Figures 1, 2, and 3 under the
proposed adaptive neural output feedback control scheme.
From Figures 1–3, for the time-varying desired trajectories,
we note that 𝑥11 and 𝑥12 can track the corresponding desired
signals 𝑥11𝑑 and 𝑥12𝑑 with a small tracking error under the
integrated system uncertainty, consisting of the unmeasured
system state, the unknown external disturbance, and the
input saturation. At the same time, the state estimate results
of two joints are given in Figures 4–7. In accordance with the
simulation results of state observer, we can see that the state
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Figure 3: Tracking errors to the two desired trajectories 𝑥11𝑑 and𝑥12𝑑.
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Figure 4: Responses of 𝑥11 and its estimate.

estimate performance is satisfactory and the estimate errors
are asymptotically convergent. According to the simulation
results presented in Figures 8 and 9, we can also observe that
the control input of the developed disturbance observer based
adaptive neural output feedback control is bounded and
the saturation appears in the initial control stage. However,
the saturation phenomenon is ultimately eliminated via the
adaptation method under our proposed adaptive output
feedback control scheme.

Based on the simulation results of above simulation case,
we can conclude that the developed disturbance observer
based adaptive neural output feedback control is effective
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Figure 5: Responses of 𝑥12 and its estimate.
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Figure 6: Responses of 𝑥21 and its estimate.

for the two-link robotic manipulator with the time-varying
external disturbance, the system uncertainty, and input
saturation for the desired bounded time-varying tracking
trajectories.

5. Conclusion

Disturbance observer based adaptive neural output feedback
tracking control has been proposed for the robot manip-
ulator, which is subject to system uncertainty, unknown
time-varying external disturbance, and input saturation. The
state observer is developed to estimate unmeasured system
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Figure 7: Responses of 𝑥22 and its estimate.
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Figure 8: Response of the control input 𝑢1.

states. To improve the ability of disturbance attenuation
and the tracking robustness, the disturbance observer has
been developed to estimate the combination of the neural
network approximation error and the unknown time-varying
external disturbance. Based on the outputs of the developed
state observer, disturbance observer, and the radial basis
function neural network, the adaptive neural output feedback
control scheme has been proposed for the robot manipulator.
The asymptotical convergence of all closed-loop signals has
been proved using rigorous Lyapunov analysis. Simulation
results confirm the effectiveness of the proposed disturbance
observer based adaptive neural output feedback control
scheme.
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Figure 9: Response of the control input 𝑢2.
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