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A Method for Detecting Windows from Mobile LiDAR Data 

One Sentence: 

This paper presents a novel method for window detection from mobile LiDAR data. 
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Abstract:  

Mobile LiDAR (Light Detection And Ranging) data collection is a rapidly emerging technology 

in which multiple georeferenced sensors (e.g., laser scanners, cameras) are mounted on a moving 

vehicle to collect real world data. The photorealistic modeling of large-scale real world scenes 

such as urban environments has become increasingly interesting to the vision, graphics and 

photogrammetry communities. In this paper, we present an automatic approach to window and 

façade detection from mobile LiDAR data. The proposed method combines bottom-up with top-

down strategies to extract façade planes from noisy LiDAR point clouds. The window detection 

is achieved through a two-step approach: potential window point detection and window 

localization. The facade pattern is automatically inferred to enhance the robustness of the window 

detection. Experimental results on six datasets result in 71.2% and 88.9% in the first two datasets, 

100% for the rest four datasets in terms of completeness rate, and 100% correctness rate for all 

the tested datasets, which demonstrate the effectiveness of the proposed solution for planar 

façades with rectilinear windows. The application potential includes generation of building facade 

models with street-level details and texture synthesis for producing realistic occlusion-free façade 

texture. 
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Introduction 

Creation of 3D models from images has been an intensive research topic in the computer vision, 

computer graphics, and photogrammetry communities. In recent years, the demand for 3D 

photorealistic building models has dramatically increased. These needs arise particularly from 3D 

GPS navigation systems and on-line services such as Google Earth and Nokia maps. Currently, 

the creation of 3D photorealistic building models still lacks automation and is a labor-intensive 

process (Van Gool et al., 2007). Automatic solutions could significantly increase productivity, 

reduce costs, and be of enormous interest to location based service providers such as Nokia and 

Google. 3D building models can be generated by various techniques such as airborne imaging 

using active sensors (e.g., LiDAR) and/or passive sensors (e.g., panchromatic camera), ground-

based or vehicle-borne sensing techniques (e.g., mobile mapping system). Fully automatic 

generation of 3D building models from aerial images or LiDAR is now viable (e.g., Zebedin et al., 

2006; Poullis and You, 2009; Zhou and Neumann, 2008, 2009). However, these resultant crude 

building models produced from airborne solutions lack sufficient detail, and are not suitable for 

applications where street-level representation of cities is required. Ground-based or vehicle-borne 

laser scanning methods, on the other hand, can produce highly accurate geo-referenced 3D points 

with sufficient detail due to their close-range data collection. In addition, the capability of 

capturing millions of 3D points directly in a short time provides laser scanning methods a great 

potential for fast generation of detailed 3D models. Image-based approaches have also made 

significant progress in being able to automatically generate impressive 3D models (Pollefeys et 

al., 2008; Seitz et al., 2006), but they are still inferior to laser-based models. Interactive image-

based approaches (Debevec et al. 1996) are able to create photorealistic 3D models for a small set 

of images but cannot be scaled up well for large-scale urban environment modeling.  
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      Windows are important features of facades and play an important role in generating 

photorealistic building models. Windows often form repeated structures in buildings. In other 

words, facades exhibit rich redundancy. One efficient way to represent a building is to describe a 

facade with a few parametric symbols such as window templates in a semantic way. Building 

facades are often occluded by trees or other objects such as cars or pedestrians in an urban 

environment. To generate occlusion-free facade textures, one way is to use the detected 

representative windows to replace occluded windows. In both situations, window detection is an 

important step to recover facade structures, to produce occlusion-free facade textures, and finally 

to generate photorealistic building. 

     Most of the previous range data processing research focused on small objects under controlled 

laboratory environments (e.g., Curless and Levoy, 1996; Reed and Allen, 1999). Outdoor scenes 

containing trees, cars, and pedestrians etc. are however more difficult and challenging. This paper 

addresses the problem of window detection from the LiDAR data collected from a moving 

vehicle, and makes the following contributions: First, we propose a robust window detection 

method. The method consists of a potential window detector and a window localization 

algorithm. Second, we propose a combination of bottom-up with top-down approach to tackle the 

problem of façade plane detection from LiDAR data. The bottom-up approach is to cluster point 

clouds into potential façade regions using Principle Component Analysis (PCA). The top-down 

approach consists in applying the Random Sample Consensus (RANSAC) plane fitting to the 

potential façade region to ultimately extract the façade. This method effectively avoids the 

problem of inaccurate normal estimation causing the misclassification of point clouds and 

increases computational efficiency due to the combination of the bottom-up with top-down 

approach.  
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Related Work 

To generate detailed geometry of façades, common methods rely on the similarity and repetitive 

patterns of windows to discover façade structures with the assumption that windows are key 

elements of façade interpretation (Mueller et al., 2007; Mayer and Reznik, 2005; Ali et al., 2007; 

Lee and Nevatia, 2004; Hohmann et al., 2009). Some methods use an explicit window model and 

horizontal and vertical profiling of images (e.g., Lee and Nevatia, 2004) to discover the repetitive 

pattern. Some use an implicit window model and learning approach to recognize windows (Mayer 

and Reznik, 2005; Ali et al., 2007). Grammar-based methods were first proposed in the field of 

architecture (Stiny and Gips, 1972), and have been successfully used in the automatic modeling of 

architecture (Wonka et al., 2003). By image similarity detection, shape grammar generation from 

façade images can be automated (Mueller et al., 2007). Typical intensity-based similarity 

measures include cross-correlation (Lee and Nevatia, 2004) and mutual information (Viola and 

Wells, 1997; Mueller et al., 2007; Russakoff et al., 2004). The common assumption in these 

methods is that windows correspond to a rectangular structure which is fair for most modern box-

like buildings except some landmarks. However, in an image of a building, there often exist too 

many edges, luminance, color and texture variations, occlusions from trees, traffic lights etc., 

which makes image-based window detection a challenging task.  

    On the LiDAR side, there is much work on range data segmentation (e.g., Hoover et al., 1996; 

Jiang et al., 1996) from the vision and robotics communities. Normal computation at each LiDAR 

point is the first step in most range segmentation algorithms (Stamos and Allen, 2002; Besl and 

Jain, 1988; Bellon and Silva, 2002) which is also a crucial step for precise region extraction. 

However, surface normals are often estimated inaccurately for points near boundaries. A good 

example (Chen and Stamos, 2007) shows cases where inaccurate normal estimation occurs. 

Without normal computation, planar surfaces can also be estimated directly by using RANSAC 
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plane fitting (Wahl et al., 2007). Because of the complexity of the scene in the real world, this 

method suffers from slow detection correctness rate and convergence of the RANSAC algorithm. 

To address these problems, in this paper we combine a bottom-up analysis using PCA with a top-

down RASANC plane fitting to extract planar façade from noisy LiDAR data.  

 There are also many methods to detect buildings from aerial LiDAR (e.g., Filin, 2002, Ma, 

2005; Sohn et al., 2008; Akel et al., 2009; Meng et al., 2009a). However, less work has been 

done on detecting windows from LiDAR data. This is probably because of the nature of LiDAR 

data: noisy and sparse. Micro-structures like windows are hard to differentiate. In addition, 

windows without curtains often return signals from the interior of the buildings and the returned 

signal does not always contain enough valid data representing these surfaces (Pu and Vosselman, 

2007). For those windows with curtains, laser points are available but often not on the same plane 

as façade (Pu and Vosselman, 2007). Frueh et al. (2005) created meshes for the entire façade but 

did not address the window detection problem. To the best of our knowledge, papers by Pu and 

Vosselman (2007), Ali et al. (2008), and Becker and Haala (2009), are the only three research 

works on window detection from LiDAR so far. Pu and Vosselman (2007) proposed a hole-based 

window extraction method. Basically this method searches long edges along the Triangular 

Irregular Network (TIN) of the façade to identify holes, groups points belonging to the same hole, 

filters out non-window holes heuristically, and finally fits to rectangles. This bottom-up triangular 

meshing based method suffers from noisy LiDAR data. Ali et al. (2008) converted LiDAR data 

into distance images, and then employed image processing techniques like morphological 

operations and contour analysis to segment windows. This 3D-to-2D conversion causes 

information loss. Directly processing 3D LiDAR point clouds is desired. Becker and Haala 

(2009) extracted windows by cell decomposition (Haala et al., 2006) from mobile LiDAR data 

collected from the StreetMapper (www. streetmapper.net). A so-called facade grammar is 

http://cg.cs.uni-bonn.de/?id=61&L=1
http://www-video.eecs.berkeley.edu/~frueh
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inferred from the reconstruction at areas of sufficient LiDAR point densities to support the 

automatic generation of facade structure in regions where no or only limited LiDAR 

measurements are available. Our approach to detect windows is based on histogram analysis of 

window edge points. Different from the existing methods (Lee and Nevatia, 2004, Becker and 

Haala, 2009), we first extracted building façade planes using a sequential combination of PCA 

with RANSAC. Then we developed a rule-based operator to detect window edge points and 

eliminate points from window crossbars. A window localization algorithm is developed and 

architecture rules such as window size and spacing are automatically inferred to enhance the 

window detection. After we briefly introduce the data collection device, the details of the 

proposed method follow.   

Data Acquisition 

Data is collected by NOKIA Location & Commerce using a data collection vehicle as shown in 

Figure 1. This mobile mapping system is composed of a 360 degree LiDAR sensor (Velodyne 

HDL-64E), panoramic camera (Ladybug 3), high definition cameras (Prosilica), GPS, Inertial 

Measurement Unit (IMU) and Distance Measurement Instrument (DMI). The Velodyne LiDAR 

sensor consists of 64 lasers mounted on upper and lower blocks of 32 lasers each and the entire 

unit spins. This design allows for 64 separate lasers to each fire thousands of times per second, 

generating over one million points per second.   

 

Figure 1 Data collection vehicle “NAVTEQ True” 
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The Method 

Our approach consists of multiple stages of processing as illustrated in Figure 2. We first separate 

ground points from the LiDAR data, and then compute surface normals for the remaining points 

using PCA. Potential façades can then be identified. A RANSAC plane fitting algorithm is 

applied to these regions to extract façades. After a façade is found, we extract window point 

candidates from the façade, and then use a plane-sweep principle to generate horizontal and 

vertical window profile histograms. Windows are detected through the analysis of these 

histograms. The façade pattern such as window size and spacing is automatically inferred to form 

a constraint for the vertical and horizontal window signatures, and thereby enhance the robustness 

of the window detection. Each of these steps is explained in greater detail in the following 

subsections.  

Ground Point Separation 

The volume of LiDAR data is huge. A sub-sampling process is applied through establishing a 

volumetric representation of LiDAR data. This is to establish a 3D grid in the LiDAR data, and 

selects only one point from each voxel to discard the remaining points within this voxel. The size 

of the voxel determines the rate of the sub-sampling, which is specified by the desired resolution 

or the maximum allowed error tolerance between the samples. We choose 0.2 meter as the size 

for each dimension of the voxel as the relative accuracy of the Velodyne laser scanner is reported 

Figure 2: A flowchart of the main steps in our approach 
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LiDAR point elevation (m) 

 

Number of LiDAR point 
elevations 

up to 20 cm in this paper. This volumetric representation also facilitates efficient search within 

the data. The LiDAR points from the ground can be separated to benefit further processing. In 

this paper, we assume that the elevations of ground points are normally the minimum. We 

compute a histogram using elevation values of all the points in a Local Tangent Plane (LTP) 

coordinate system, and select the elevation value corresponding to the first peak of the histogram 

as the ground height. The points with elevation around this value (i.e.  0.2 meter) are regarded 

as ground points and then eliminated from further processing. Figure 3 shows a typical elevation 

histogram of a street scene in a flat urban environment using the LiDAR data collected from the 

“NAVTEQ TURE” mobile mapping system. The points before the first peak are mostly outliers, 

which is much less than the number of ground points. We always find the elevation, which 

corresponds to the first peak of the histogram with maximum number in the frequency, as the 

ground elevation. In situations that do not meet the assumption of a flat terrain, there are many 

ground filtering algorithms (e.g., Meng et al., 2009b) for solving this problem. Here we do not 

further discuss the filtering algorithms as this is not the main focus of this paper. The yellow 

points in Plate 1a and 1b, indicate the ground. 

 

 

 

 

Figure 3 A typical example of elevation histogram of LiDAR points collected along urban streets   

 

LiDAR Point Clustering 

Surface Normal Computation We assume that buildings have rectilinear structure and facades have 

two major directions, vertical and horizontal, which is true for most buildings except some special 
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landmarks. PCA has found many applications in the areas of remote sensing and computer vision, 

where it is often employed to transform the data into a new coordinate system for hyper-spectral 

image classification or face recognition. In this paper, we use PCA for plane fitting. We compute 

a normal of a point p using PCA. Let {pi}i=1:N be a set of neighboring points of p. We form a three 

by three positive semi-definite matrix (Hoppe et al., 1992) 
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                                                             (1)
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1 is the centroid of all the points. If 321    denote the corresponding 

eigenvalues of W, the eigenvector
1v corresponding to the smallest eigenvalue 

1 has the same 

direction as the normal of the plane to be fitted. The smaller
1 is relative to

2 and 3 , the flatter 

the distribution of  ip
 
is. The neighborhood is defined as a 3×3×3 voxel region centered at p in 

the point clouds. If the number of points within the neighborhood is smaller than three, we do not 

compute the normal for this point.  

Definition of Normal Orientation The normal is often used to determine a surface's orientation 

toward a light source. The normal orientations computed from PCA are supporting lines whose 

directions are not defined. For instance, the normal from façade points can be either pointing 

outward or inward the façade. To achieve consistent normal orientations, we incorporate line-of-

sight information from the laser scanner to define normal orientations. For each point p, we 

compute a vector q from this point to the laser origin. We choose the normal orientation which 

always results in a positive value from a dot product of the normal of p and q.  Plate 1d shows an 

example of incorrect normal orientations indicated by circles. The dots indicate the starting point 

of the normal. Plate 1e shows correct consistent normal orientations after correction. Because of 

the noisy LiDAR data and the problem of inaccurate normal estimation around the boundaries, 
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we cannot totally rely on the accuracy of the computed normals. Instead, we roughly classify the 

points into three categories according to the normal direction ranges: potential façade, potential 

façade side face, and unknowns as shown in Plate 1a. The red points are potential façade, and the 

pink points are potential side face. The unknown points are white points, in this case mostly from 

trees and building/window edges. 

 

 

(a)                                                                  (b) 

 

(c) 

 

(d)                                                              (e)                                                     

Plate 1. The LiDAR data process: (a) LiDAR point clustering using PCA, (b) Segmented LiDAR 

points, (c) Detected façade and potential window points, (d) Wrong normal orientations 

indicated by green circles, (e) Correct normal orientations 
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Façade Detection 

The LiDAR data in geodetic coordinates are converted to the Universal Transverse Mercator 

(UTM) coordinates, and then to a local vehicle heading coordinate system O_XYZ as shown in 

Plate 1a. X axis is the vehicle heading direction, Y axis is perpendicular to the heading direction, 

and Z axis is vertically up from the ground. Under this coordinate frame, the point normal is 

manageable. Basically the potential façade regions are those surfaces where the point normal is 

roughly perpendicular to the X-Z plane. Potential façade side faces are those regions where the 

point normal is approximately perpendicular to the Y-Z plane. The RANSAC plane fitting is 

applied to the potential façade regions to extract the major plane which is the façade. The side 

face can be also extracted in road intersections where the side face is visible to the laser scanner. 

There are existing plane detection methods from sparse point clouds generated from structure 

from motion algorithms (e.g., Sinha et al., 2009), and there are also some variants of RANSAC 

(Raguram et al., 2008), but we use traditional RANSAC in this paper. RANSAC (Fischler and 

Bolles, 1981) is a general approach to fit a model to a set of data which contains a large portion of 

outliers. It starts by randomly drawing a minimal set from the point data to estimate the 

underlying model parameters. A minimal set is the smallest number of points required to uniquely 

define a given type of geometric primitive, e.g., three sample points define a unique plane. All 

other data are then tested against the fitted model to determine how many of the points are well 

approximated by the model. If a point fits well to the estimated model, it is considered as a 

hypothetical inlier (Here we use a threshold 0.2 meters. The distances of any points to the plane 

smaller than this threshold will be thought of as inliers). After a given number of iterations, the 

model which has the largest number of inliers is considered as the best fitted model. This model is 

then re-estimated from all the hypothetical inliers, because it has only been estimated from the 

initial set of hypothetical inliers. One key advantage of RANSAC over similar voting schemes 

http://en.wikipedia.org/wiki/Outliers
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like the Hough Transform is that the candidate points for estimating a model can be arbitrarily 

chosen. Its major deficiency is the considerable computational demand if no further optimizations 

are applied. We use PCA to compute a normal for each point and then refine the candidate point 

sets for the RANSAC plane fitting, which increases its computational efficiency. After the façade 

is extracted, all the façade points are separated from the entire point clouds. The RANSAC plane 

fitting is then applied to the remaining points to extract the façade side face. Plate 1b shows the 

segmented LiDAR points in which blue points represent façade, and green ones represent façade 

side faces. Note that the red points in the areas of windows from the façade are separated from the 

blue façade points. 

 

Potential Window Points Detection 

Some windows leave holes in the façade, but others do not. There are also points available from 

the crossbars of the low level windows, but no points available from the crossbars of the upper 

level windows. We first separate the ground floor from the façade because the pattern of the 

ground floor is often different from the window pattern, e.g. doors and special windows. In this 

paper, we simply exclude the first 10-30% of data starting from the bottom to the top of the 

façade depending on the types of the building data. In the future, this process will be automated 

through façade pattern analysis.   

    To detect potential window points, we distinguish four different types of window borders: 

horizontal structures at the top and bottom of the window, and two vertical structures on the left 

and right sides of the window. The window crossbars are not used to detect potential window 

points, but in general could provide valuable information about existence of windows. The 

detected façade is actually a 3D cube whose thickness is determined by the distance threshold (i.e. 

0.2) from RANSAC. We first create a volumetric representation of the façade so that the point 
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neighborhood relation can be manipulated. An operator is designed according to the window 

pattern of the façade to find potential window points excluding those points from window 

crossbars. Basically, for each point, we examine its neighbors along horizontal and vertical 

directions respectively. The upper horizontal window edge points are identified if upper neighbor 

points are found while lower neighbor points are not. A similar rationale is applied to find lower, 

left, and right window edge points. The window crossbar points are identified if both upper and 

lower neighbor points are not found, or both left and right neighbor points are not found. For each 

voxel (i, j, k) in the 3D façade cube, we denote, f (i, j, k) = 1, if there is a LiDAR point in this 

voxel, otherwise, f (i, j, k) = 0. Then the operator to find window edge points excluding window 

crossbars can be described by Equation (1). The constant variable inter is related to the interval  

{
 
 
 
 
 
 

 
 
 
 
 
 

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤 𝑒𝑑𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠,        𝑖𝑓 { ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

} = 0  &&  { ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

} = 𝑑

𝑘′= 𝑘−𝑑

𝑘′= 𝑘

𝑘′= 𝑘+𝑖𝑛𝑡𝑒𝑟

𝑘′= 𝑘

                                                               𝑂𝑅  𝑖𝑓 { ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

} = 0  &&  { ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

} = 𝑑

𝑘′= 𝑘+𝑑

𝑘′= 𝑘

𝑘′= 𝑘−𝑖𝑛𝑡𝑒𝑟

𝑘′= 𝑘

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤 𝑒𝑑𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠,                   𝑖𝑓 { ∑  ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

} = 0  &&  { ∑  ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

} = 𝑑

𝑖′= 𝑖−𝑑

𝑖′= 𝑖

𝑖′= 𝑖+𝑖𝑛𝑡𝑒𝑟

𝑖′= 𝑖

                                                                          𝑂𝑅  𝑖𝑓 { ∑  ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

} = 0  &&  { ∑  ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

} = 𝑑

𝑖′= 𝑖+𝑑

𝑖′= 𝑖

𝑖′= 𝑖−𝑖𝑛𝑡𝑒𝑟

𝑖′= 𝑖

   𝑛𝑜𝑛 − 𝑤𝑖𝑛𝑑𝑜𝑤 𝑒𝑑𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠,                                                                                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (1) 

 

between windows, and d is related to the width of window crossbars. These two values are 

experimentally selected according to the pattern of the façade. In this paper, the horizontal 

interval is 8 (1.6 meter), and the vertical interval 5 (1.0 meter). The d is 3 (0.6 meter). The sigma f 

term equal to zero means no points are found in the local neighborhood. The sigma f term equal 

to d means points are found at very voxel in the local neighborhood. This is a strong condition 

which effectively identifies potential window points while excluding points from window 

crossbars. The red points in Plate 1c show the detected potential window points while window 
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crossbars are eliminated from the potential window points. 

  

Window Localization 

Determination of Window Locations To localize the windows, we project horizontal (parallel to the 

ground) and vertical (perpendicular to the ground) potential window points in horizontal and 

vertical directions to give a total of two projection profiles: a horizontal projection profile of the 

horizontal window edge points and a vertical projection profile of the vertical window edge 

points. To do so, we use the plane-sweep principle to sweep the façade along horizontal and 

vertical directions individually to count the total number of points in each of these sweeping 

planes. The profile histograms are generated and the small peaks are suppressed. To accurately 

localize windows, we develop an algorithm to find the histogram peaks, and the indices of rows 

or columns corresponding to the peaks are the window locations. Through these indices, we can 

compute the 3D coordinates of windows in the vehicle heading coordinate system O_XYZ. Figure 

4 below gives an outline of this method. 
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Figure 4 Determination of window locations 

 

Pattern Constraints Simple architecture rules such as window size and spacing are automatically 

inferred from the locations of well detected windows. In this paper, windows from upper levels 

are always well extracted because data from upper levels of buildings are often cleaner than those 

from lower levels. This can be partially explained by either less occlusions or longer distance to 

the laser scanners in the data from upper levels of buildings. These architecture rules are 

automatically computed, and form a constraint to help identify the window boundary more 

robustly. For instance, the inferred façade patterns provide rough locations for potential windows, 

and any histogram peaks outside the rough locations will be considered as outliers and eliminated 

from further processing.  

Experiments and Discussion   

We tested the algorithm on six LiDAR datasets containing planar building facades with rectilinear 

windows. This experiment is limited to office tower like structures and does not reflect the 
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general case. Figure 5a shows LiDAR points in which windows are either holes or planar surfaces. 

The detected windows and facades from Figure 4a are shown in Figure 5c. Although the LiDAR 

data are very noisy, these windows are well extracted from LiDAR data excluding some from 

ground floors (i.e. in row (1)-(2) of Figure 5). We also show corresponding intensity images in 

Figure 5b, in which facades are occluded by trees, traffic lights or other objects. The glass 

windows often strongly reflect sunlight which is problematic for data consistency (i.e. in row (2) 

and (4) of Figure 5b). Detecting windows from these types of optical images will be very 

challenging. This is yet another motivation to detect windows from LiDAR data. Figure 6 shows 

a blow up of scene 5 from Figure 5. In Figure 6, the white lines outline the detected windows.  

Our method fails on glass buildings where not enough façade points are available (Figure 7a, 

7b), and non-planar buildings (Figure 7a, 7b). First of all, the façade detection by RANSAC plane 

fitting is based on a planar façade assumption. Non-planar façades such as the one in Figure 7a 

and 7b violate this assumption. Second, not enough points on the façade make the RANSAC 

plane fitting fail. Our method also fails on buildings containing non-rectilinear windows (Figure 

7c, 7d, 7e, 7f). Figure 8a and 8d show the potential window point detection on non-rectilinear 

windows in Figure 7c and 7e respectively, which turns out that our window edge detector works 

reasonable well. Figure 8b and 8c show histogram results for the window in Figure 7c. The 

vertical signatures correctly locate the vertical window boundaries. It's only the horizontal 

signatures that are problematic. We think a template matching scheme (Brunelli, 2009) that's 

seeded with the strong signature data will work well here, and leave this particular refinement for 

future research. 
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Figure 5 Experimental results (a) shows original colorized LiDAR points; (b) shows 

corresponding ladybug images; (c) shows detected windows and facades   
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Figure 6 A close up of scene 5 in Figure 4 

 

 

(a)                                                                            (b) 

        

                        (c)                                                                            (d) 
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(e)                                                                    (f) 

Figure 7 Failure cases (a) the non-planar glass building; (b) the corresponding image of (a); (c) 

the building containing non-rectilinear windows; (d) the corresponding image of (c); (e) the 

building containing non-rectilinear windows; (d) the corresponding image of (e).  

 

                                                                          (a) 
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(b)                                                                               (c) 

 

 
 

(d) 

 

Figure 8 Experiment on arc windows in Figure 7c and 7e (a) Potential window point detection for 

the window in Figure 7c; (b) Horizontal window edge projection for the window in Figure 7c; (c) 

Vertical window edge point projection for the window in Figure 7c; (d) Potential window point 

detection for the window in Figure 7e. 
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Performance Evaluation 

 

The implementation is in C++ code. The test results are obtained on an Intel Core 2 CPU laptop 

with 2GB of RAM. Table 1 shows the performance evaluation. All the LiDAR data and intensity 

images are in binary format, and window extraction was done completely automatically. In the 

data size column, the numerator in the fraction means the size of the data that was processed to 

extract windows. The denominator means the size of the data that was manipulated in order to be 

loaded. We only loaded relevant LiDAR points filtered by laser scanning angle and distance. For 

instance, in scene 2 (row (2) of Figure 5) we indexed 11 million LiDAR points to load 3.2 million 

points and filter out irrelevant LiDAR points for the processing. The loading process takes 12 

seconds, and the algorithm run time is 13 seconds (both are in debug mode).  

    To evaluate the performance of the proposed window extraction method, we used two 

measures to assess the results described in the previous sections. The number of extracted 

windows was used to compute the completeness and correctness measures (Heipke et al., 1997). 

The completeness denotes the percentage of the reference windows that are extracted by our 

algorithm, and is defined by  

 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
. 

 

The correctness represents the percentage of correctly extracted windows with respect to all 

extracted ones, and is calculated by 

 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
. 
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In Table 1, the total number of reference windows is counted from LiDAR and images. The number of 

extracted windows is counted from the results. Completeness and correctness are given in the last two 

columns. For instance, in the first raw of Table 1, the completeness and correctness measures are 71.2% 

and 100%, which means that 71.2 percent of windows are successfully extracted and 100 percent of 

extracted windows are correct.  

 

Table 1. Performance evaluation 

 

 

 

   One difficulty comparing with existing window detection methods is lack of a common test 

data set. It also has been very difficult to obtain the data set used in other people's methods. The 

method by Ali et al. (2008) uses a mobile LiDAR data set which is the closest to ours. We 

attempted to use the similar measure as Ali et al. (2008) to evaluate our results. According to the 

definition of Type I and type II errors, a false positive means if a window was detected where 

there is no window present; a true positive means if a window was detected where there is a 

window; a false negative means an existing window was not detected; a true negative means a 

non-existing window was not detected, namely, correctly rejecting a non-window. There are total 

261 windows in our datasets while a total number of 196 windows in that paper. The values in 

Table 2 are all percentages computed over the total number of each respectively.  

Scene Data Size 

(million) 

Loading data  

Time (sec.) 

Algorithm  

run time (sec.) 

Reference 

Windows 

Extracted 

Windows 

Completeness 

 (percentage) 

Correctness 

(percentage) 

1 1.8/7.0 7 11 59 42 71.2 % 100% 

2 3.2/11 12 13 54 48 88.9 % 100% 

3 1.7/6.5           7           10 20 20 100% 100% 

4 0.9/3.0           3           13 28 28 100% 100% 

5 3.0/10.0          12           14 55 55 100% 100% 

6 1.9/6.0 6 12 45 45 100% 100% 
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Table 2. Evaluation with the definition of Type I and type II errors 

 

 Our method 

(Percentage) 

True Positive 91.2% 

False Negative 8.8% 

True Negative 100% 

False Positive 0% 

Limitations 

 

There are limitations in the current implementation of the approach. The first one is the 

assumption of rectilinear structure. It is hard to have a general model for any type of buildings. 

The rectilinear structure assumption or Manhattan-word assumption (Coughlan and Yuille, 1999) 

is quite common for many buildings as well as windows. We found this assumption is sufficient 

for the type of buildings tested in the paper. Our algorithms cannot perform correctly on the 

buildings containing non-rectilinear windows such as the building in Figure 6c, 6e. 

The second is the data incompleteness. Due to the positioning constraint for any ground-level 

data acquisition system, it is difficult to always obtain complete and sufficient sampling of all the 

building surfaces. For instance, the rooftops and back of the buildings cannot be scanned by a 

vehicle-borne laser scanning system. To obtain a complete model, other data sources such as 

aerial liDAR/image data or building footprints from GIS are needed. Also the LiDAR scanner 

used in this paper can only provide usable returns up to 120 meters. Very high buildings may not 

have sufficient LiDAR points on the upper level of the facade. Another issue is the incomplete 

data caused by glass buildings such as the building in Figure 6a, 6b. 

 

Conclusions and Future Work 

We have proposed an automatic approach to window detection from mobile LiDAR data. The 

input is a chunk of LiDAR data, and the output is a detected façade and windows. This 

information can be used to generate a simpler description of the scene or potential texture 
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synthesis. The main contributions of this paper are: a combination of bottom-up and top-down 

schemes to deal with noisy LiDAR data, and a robust window detection algorithm. There are a 

few limitations to the current implementation of the approach, but they can be improved. One 

possible direction is to separate connected buildings into individual buildings. In urban scene, a 

quite common situation is that many buildings with different heights or patterns are connected 

together. Efficient methods are needed to separate these connected buildings into individual 

buildings for a better symmetry pattern analysis. Another direction is to integrate images with 

LiDAR for better window detection as images normally have much higher resolution and more 

visual information than LiDAR. Figure 9 shows the overlay between LiDAR data and panoramic 

images collected from NAVTEQ True. Figure 9a shows the detected windows overlaid with the 

image and Figure 9b shows the detected windows overlaid with the corresponding edge image. 

As we mentioned before, window detection alone from images may be a challenging task. But we 

expect the combination of LiDAR and images will achieve much improvement over those using 

either LiDAR or images separately. The edge detection from high resolution images can provide 

more accurate boundary information which can increase the window detection accuracy. To make 

use of images, LiDAR and images must be accurately registered. In our data, the accuracy of the 

registration is not satisfied for this requirement. A mutual information based LiDAR-to-image 

registration algorithm is developed to improve the registration accuracy. We expect that, with the 

use of panoramic images collected simultaneously with the LiDAR data, a more robust and 

practical solution will be achieved. 
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(a)                                                                     (b) 

Figure 9 LiDAR and image overlay: (a) Detected windows of scene 1 from Figure 5 overlaid with 

the panoramic image; (b) overlaid with the corresponding edge image. 
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