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Leaf area index is a fundamental plant physiological 
variable, but is one of the most challenging to measure 
or estimate (Bréda, 2003). For most applications involv-

ing broadleaf plants (i.e., crops), LAI is defi ned as the one-sided 
leaf tissue area per unit ground area (Watson, 1947). Leaf area 
index interacts with practically every aspect of the mass and 
energy balance of vegetated surfaces. Th erefore, LAI has direct 
bearing on the radiation balance, net primary production, 
evapotranspiration (ET), and carbon and other gas exchange 
(Norman and Campbell, 1989). It follows that the quality of 
LAI measurements or estimates will impact any model involv-
ing the mass or energy balance of vegetated surfaces.

Ground-based or in situ methods to quantify LAI have been 
broadly described as direct, semi-direct, or indirect (Chen et al., 
1997; Bréda, 2003; Jonckheere et al., 2004; Weiss et al., 2004). 
Direct and semi-direct methods include destructive plant har-
vesting and nondestructive methods, such as litter collection and 
allometric methods. Destructive plant harvesting is the most 
direct and usually accurate method, but it is limited to smaller 
plants (i.e., crops, pasture, shrubs) and limited areas (i.e., a few 
point samples in a fi eld due to its destructive nature and substan-
tial labor requirements). Litter collection, while nondestructive, 
is limited to deciduous species and requires careful siting and 
maintenance of litter traps. Allometric methods are also nonde-
structive, have been successfully used for many vegetation types, 
and can be applied to larger areas. However, allometric methods 
are based on empirical relationships with some other (more 
easily measured) morphometric variable(s), such as leaf size, 
leaf shape, dry matter, or diameter at breast height, and hence 
may be site- and season-specifi c (Bréda, 2003). In contrast with 
direct and semi-direct methods, indirect methods usually entail 
non-contact approaches, such as irradiance extinction or optical 
analysis (e.g., hemispherical photography), and infer LAI based 
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ABSTRACT
Leaf area index (LAI) is critical for predicting plant metabo-
lism, biomass production, evapotranspiration, and greenhouse 
gas sequestration, but direct LAI measurements are diffi  cult and 
labor intensive. Several methods are available to measure LAI 
indirectly or calculate LAI using allometric methods (i.e., exploit-
ing relationships between LAI and more easily measured plant 
variables), but these depend on other measurements not widely 
available, and have limited transferability to diff erent seasons. A 
new allometric method using a log normal function was devel-
oped to calculate LAI. Input variables were normalized cumu-
lative growing degree days (CGDD), canopy height (CH), and 
plant population (PP), which were usually more widely available 
in crop production datasets. Destructive LAI measurements were 
obtained over multiple growing seasons for corn (Zea mays L.), 
cotton (Gossypium hirsutum L.), sorghum (Sorghum bicolor L.), 
and soybean [Glycine max (L.) Merr.] at USDA-ARS, Bushland, 
TX. Log normal functions were calibrated to LAI measurements 
from a single season of each crop, and tested using independent 
LAI measurements from all remaining crop seasons. For all crops, 
discrepancies between calculated and measured LAI resulted in 
coeffi  cients of determination from 0.23 to 0.85, model indices 
of agreement from 0.52 to 0.84, root mean square errors from 
0.76 to 1.4, mean absolute errors from 0.57 to 1.2, and mean bias 
errors from -0.46 to 0.60. Th e new allometric method can miti-
gate missing or sparse LAI data, which will enhance the value of 
large ecological datasets.
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Core Ideas
•	 A new allometric method was developed to estimate LAI for 

row crops.
•	 Good agreement resulted for four crops over multiple seasons.
•	 Best agreement resulted using GDD, plant population, and 

canopy height.
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on gap fraction and radiative transfer models. Several instru-
ments designed to estimate LAI based on indirect methods have 
been commercially available for decades (see, for example, Table 
1 in Wilhelm et al., 2000; Table 2 in Bréda, 2003; and Table 2 in 
Jonckheere et al., 2004). Indirect methods tend to underestimate 
LAI, mainly due to vegetation non-randomness (e.g., clumping) 
and simplifying assumptions of radiation scattering. However, 
algorithms designed for indirect methods continue to improve 
(e.g., Kobayashi et al., 2013; Hu et al., 2014), and have been 
adopted in instrument firmware (Li-Cor, 2016).

Remote sensing approaches to quantify LAI, while outside 
the scope of the present study, also warrant brief mention. These 
typically include digital photography, reflectance, or active laser 
measurements from aboard a stationary (e.g., boom) or moving 
(e.g., unmanned aerial vehicle, aircraft, or satellite) platform 
above the canopy (Zheng and Moskal, 2009). Remote sensing 
can map large areas rapidly and nondestructively, but require 
calibration with independent ground-based LAI measure-
ments, which have different (usually smaller) spatial scales. Also, 
ground-based LAI measurements are site- and season-specific, 
and have often lacked the spatial resolution or repeat frequency 
required to support overarching terrestrial studies (Chen et al., 
2002). Nonetheless, studies using unmanned aerial vehicles, high 
spatial resolution satellites, active lasers, and novel algorithms 
have demonstrated that remote sensing can provide meaningful 
LAI estimates (provided these can be tied to minimal ground-
truth estimates). Some examples include row crops (Marshall and 
Thenkabail, 2015; Kross et al., 2015), vineyards (Mathews and 
Jensen, 2013; Kalisperakis et al., 2015), spruce forests (Solberg et 
al., 2009), and rugged terrain dominated by mixed pine forests 
(Morsdorf et al., 2006).

With recent efforts to synthesize and make available large 
datasets, the need for new systematic approaches to address data 
gaps and uncertainties will become increasingly important for 
the agricultural and natural sciences (Xie et al., 2015). This is 
particularly true for LAI. Datasets at within field-scales (i.e., ≤10 
m) typically include several plant physiological variables that are 
relatively easy to measure, such as some aspect of plant size, bio-
mass, yield, or fraction of cover, but relatively few datasets include 
direct, semi-direct, or indirect methods where LAI is quantified (a 
notable exception is Scurlock et al., 2001). For example, in agricul-
tural crop production, high spatial resolution yield data measured 
by monitors aboard harvesting machinery is now widely available 
(Ross et al., 2008, and references therein). For research and inten-
sively managed commercial production, yield data is likely to be 
accompanied by sparse but periodic measurements of plant height 
and fraction of vegetation cover, along with other static agronomic 
data, such as planting date, seed population, and plant row spacing 
(Kersebaum et al., 2015). Given the relative availability of these dif-
ferent types of data, LAI estimates for agricultural crops based on 
allometric approaches would appear to have substantial, but unre-
alized potential to further develop large agro-ecosystem datasets.

Allometric approaches have been widely used to estimate LAI 
for forests (e.g., Law et al., 2001; Vyas et al., 2010; Khosravi et al., 
2012), and a number of studies have also used the approach for 
crops. Aase (1978) showed significant correlations between leaf 
area and aboveground dry matter of winter wheat. McKee (1964) 
and Wiersma and Bailey (1975) used leaf length and width to 
estimate leaf area of corn and soybean, respectively. Stewart and 

Dwyer (1999) developed polynomials describing leaf width for 
different corn hybrids, and integrated the polynomials to calculate 
leaf area. Blanco and Folegatti (2003) estimated LAI for cucum-
ber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) 
by fitting a quadratic equation to leaf length and width and their 
relative height on a plant. Kathirvelan and Kalaiselvan (2007) 
used a power function to relate leaf area to leaf length and width 
of groundnut (Arachis hypogaea L.). Rouphael et al. (2007) also 
used leaf length and width as independent variables in first- and 
second-order linear equations to calculate leaf area of sunflower 
(Helianthus annuus L.). Nehbandani et al. (2013) established 
relationships for soybean, including LAI and leaf dry mass using 
a single relationship for different cultivars and plant populations, 
along with LAI and days after planting, and LAI and main stem 
node number. Soltani et al. (2006) also related plant leaf area (LA) 
to stem node number for chickpea (Cicer arietinum L.). Other 
studies considered number of leaves (e.g., plastochron index) for 
soybean (Sinclair, 1984), chickpea (Soltani et al., 2006); legume 
(Pengelly et al., 1999), and sorghum (Hammer et al., 1993; 
Carberry et al., 1993), where the number of leaves was often related 
to thermal time. Most studies found that leaf length and width 
were strong predictors of leaf area or LAI using straight-forward 
allometric equations. However, agricultural production datasets 
more typically include measurements of plant height, width, popu-
lation, or row spacing rather than leaf length or width. Therefore, a 
need exists to investigate allometric approaches using these former 
variables to estimate LAI.

The objective of this study was to develop and test a general 
allometric model to estimate LAI using cumulative growing 
degree days with different combinations of canopy height and 
plant population for four row crops, including corn, cotton, 
sorghum, and soybean over multiple growing seasons.

Materials and Methods
Field Measurements

All field measurements were obtained at the USDA 
Agricultural Research Service Conservation and Production 
Research Laboratory, Bushland, TX (35°11¢ N, 102°6¢ W, 1170 
m above MSL). Soils are classified as Pullman clay loam (fine, 
mixed, super active, thermic Torrertic Paleustolls) (USDA-
NRCS, 2016) with slow permeability, a dense B2 horizon 
from 0.15- to 0.40-m depth, and a calcic horizon beginning at 
approximately the 1.3-m depth. The climate is semiarid, with 
approximately 450 mm mean annual precipitation, 2600 mm 
Class A pan evaporation, and strong regional advection pre-
dominately from the South and South–Southwest during the 
summer crop growing season.

Destructive plant samples were obtained from four 4.7-ha 
fields arranged in a square pattern, designated Northeast, 
Southeast, Northwest, and Southwest. The centers of each field 
contain large monolithic weighing lysimeters, which have been 
in operation since 1987 (Evett et al., 2016a). Each lysimeter 
includes measurements of micrometeorological, soil water, and 
soil energy variables. Plant samples where obtained at three or 
more locations in each field at key crop development stages. 
The locations were selected to avoid the lysimeter areas and 
other instrumented sites (such as neutron probe access tubes), 
but away from field edges where crop growth and development 
may differ from the majority of the field. Plant samples were 
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obtained from 1.0- to 1.5-m2 areas, placed in coolers, and trans-
ported indoors for processing. Following mass, size, and other 
relevant physiological measurements, leaves were stripped and 
total leaf area (green and senesced) was measured by a leaf area 
meter (model LI-3100, LI-COR, Lincoln, NE). Calibration of 
the meter was checked with a 0.005-m2 reference disk.

Leaf area and other plant measurements were obtained for 
corn (Table 1), cotton (Table 2), sorghum (Table 3), and soy-
bean (Table 4). A subset of data (single season) was selected for 
each crop for model calibration (described in a later section), 
and the remaining data (excluding the data used for model cali-
bration) were used to test each model. Seasons were selected for 
model calibration that had the largest range of measured LAI 
and included relatively frequent plant samples (Tables 1–4).

Agronomic practices were similar to those used in com-
mercial crop production in the region. Crop seasons included 
multiple cultivars, plant populations, and irrigation treatments. 
Nearly all crops were planted on east–west (E-W) raised beds 
spaced at 0.76 m, and furrow dikes were installed across inter-
rows following crop establishment to control run on and run 
off of irrigation and precipitation water (Schneider and Howell, 
2000). The majority of crop seasons were irrigated by a hose-
fed lateral move sprinkler system equipped with mid-elevation 
spray applicators (MESA) spaced at 1.52 m and at a 1.5-m 
height above alternate interrows. Beginning in 2013, however, 
the Northeast and Southeast fields were irrigated by subsurface 
drip irrigation (SDI), with laterals installed approximately 0.22 
to 0.25 m deep in alternate interrows (Evett et al., 2016b). Most 
crops were irrigated to fully meet crop water demands (100% 
of crop evapotranspiration), but some seasons included deficit 
irrigation (<100% irrigation rate) and dryland production (0% 
irrigation rate) (Tables 1–4). The multiple production practices 
and seasons allowed models to be tested under a wide range of 
inter-annual climatic and growing conditions that are typical 
of the region (Baumhardt et al., 2014, 2015, 2016).

Model Development
Given the dependency of plant growth and development on 

CGDD (McMaster and Wilhelm, 1997), a rational first step 
is to include CGDD as the primary driver of LAI. In addition, 
normalizing CGDD for each crop season may be more robust to 
differences in cultivar maturity rates and inter-annual climatic 
conditions compared to CGDD alone. Using normalized CGDD 
as the exploratory variable, a preliminary analysis explored sev-
eral response variables, including LAI, LAI per canopy height 
(LAICH), leaf area per plant (LAPP), and leaf area per plant per 
canopy height (LAPPCH). These four variables each exhibited 
bell shaped responses (with a single peak) vs. normalized CGDD 
(data shown later). Assuming that functions exist to describe 
these responses, a set of allometric models were written as:

( )LAI,cropLAI ,f P= q 	�  [1]

LAICH,cropLAI CH ( , )f P= ´ q 	�  [2]

( )LAPP,cropLAI PP ,f P= ´ q 	�  [3]

( )LAPPCH,cropLAI PP CH ,f P= ´ ´ q 	�  [4]

maxCGDD/CGDDq = 	� [5]

where f(Px,crop, q) is some bell shaped function, Px is a set of 
parameters specific to the allometric model version (x) and 
crop, q is the exploratory variable (i.e., normalized CGDD), 
CGDDmax is maximum CGDD (i.e., CGDD at harvest or some 
other terminal point in the season), CH is canopy height (m), 
and PP is plant population (plants m-2).

Table 1. Corn year, cultivar, field, plant and harvest day of year (DOY), maximum cumulative growing degree days (CGDD), irrigation 
method, irrigation rate (% of full crop evapotranspiration), row orientation, seed population, and references.

Year Field† Cultivar Plant

Harvest 
(or max 
CGDD)

Max 
CGDD

Irrig. 
method‡

Irrig. 
rate

Row 
orientation

Seed 
pop. Reference

––––––––– DOY ––––––––– °C % no. m-2

1989§ NE and SE PIO 3321 116 297 1817 MESA 100 E-W 6 Howell et al. 
(1996, 1997)

1990 NE and SE PIO 3124 129 289 1841 MESA 100 E-W 6 Howell et al. 
(1996, 1997)

1994 NW and SW PIO 3737 103 249 1647 na 0 E-W 4 Howell et al. 
(1996)

1994 NE PIO 3737 105 259 1722 MESA 100 E-W 8.5 Howell et al. 
(1996)

1994 SE PIO 3245 105 270 1850 MESA 100 E-W 7.8 Howell et al. 
(1996)

2013 NE and SE PIO 1151HR 142–143 296 1793 SDI 100 E-W 8.2 Evett et al. 
(2016b)

2013 NW PIO 1151HR 136–137 294 1855 MESA 75 E-W 8.2 Evett et al. 
(2016b)

2013 SW PIO 1151HR 136–137 294 1855 MESA 100 E-W 8.2 Evett et al. 
(2016b)

† NE, northeast; SE, southeast; SW, southwest; NW, northwest.
‡ MESA, irrigation by mid-elevation spray applicators; SDI, irrigation by subsurface drip irrigation.
§ Calibration data not used to test model.
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Table 2. Cotton year, cultivar, field, plant and harvest day of year (DOY), maximum cumulative growing degree days (CGDD), irrigation 
method, irrigation rate (% of full crop evapotranspiration), row orientation, seed population, and references.

Year Field† Cultivar Plant

Harvest 
(or max 
CGDD)

Max 
CGDD

Irrig. 
method‡

Irrig. 
rate

Row 
orientation Seed pop. Reference

––––––– DOY ––––––– % no. m–2

2000 NE PM 2145RR 137 307 1365 MESA 50 E-W 21 Howell et al. 
(2004)

2000 SE PM 2145RR 137 307 1365 MESA 100 E-W 21 Howell et al. 
(2004)

2000 NW PM 2145RR 136 293 1330 na 0 E-W 17 Howell et al. 
(2004)

2000 SW PM 2145RR 136 293 1330 na 0 E-W 12 Howell et al. 
(2004)

2001 NE PM 2145RR 136 303 1377 MESA 50 E-W 20 Howell et al. 
(2004)

2001 SE PM 2145RR 136 303 1377 MESA 100 E-W 20 Howell et al. 
(2004)

2001 NW PM 2145RR 137 295 1335 na 0 E-W 17 Howell et al. 
(2004)

2001 SW PM 2145RR 137 295 1335 na 0 E-W 17 Howell et al. 
(2004)

2002 NE and SE PM 2145RR 138 317 1065 MESA 100 E-W 20
2008§ NE DP 117 141 299 1150 MESA 100 N-S 15.8 Colaizzi et al. 

(2012);
Evett et al. (2012)

2008§ SE DP 117 141 299 1150 MESA 100 E-W 15.8 Colaizzi et al. 
(2012);
Evett et al. (2012)

2008 NW and SW DP 117 157 299 991 na 0 E-W 15.8
2010 NE and SE DP 104 146 298 1303 MESA 100 E-W 20
2012 NW and SW DP 1212 B2RF 140 300 1285 MESA 100 E-W 19
† NE, northeast; SE, southeast; SW, southwest; NW, northwest.
‡ MESA, irrigation by mid-elevation spray applicators; SDI, irrigation by subsurface drip irrigation.
§ Calibration data not used to test model.

Table 3. Sorghum year, cultivar, field, plant and harvest day of year (DOY), maximum cumulative growing degree days (CGDD), irrigation 
method, irrigation rate (% of full crop evapotranspiration), row orientation, seed population, and references.

Year Field Cultivar Plant

Harvest 
(or max. 
CGDD)

Max. 
CGDD

Irrig. 
method

Irrig. 
rate

Row 
orientation

Seed 
pop. References

–––––––– DOY –––––––– C % m-2

1988 NW and SW DK-41Y 172 307 1504 MESA 50 E-W 15.9 Howell et al. 
(1997)

1997 NW and SW PIO 8699 155–156 272 1556 na 0 E-W 13
1998 NW PIO 8699 175 277 1488 na 0 E-W 11.9
1998 SW PIO 8699 175 277 1488 na 0 E-W 8.6
1999 NW PIO 8699 179–180 287 1353 na 0 E-W 17
1999 SW PIO 8699 179–180 287 1353 na 0 E-W 10
2007 NW and SW DK-39Y 157 276 1537 na 0 E-W 9.6
2014 NE and SE CH NC+5c35 171 293 1470 SDI 100 E-W 21 Evett et al. 

(2016b)
2014 NW CH NC+5c35 171 293 1470 MESA 100 E-W 21 Evett et al. 

(2016b)
2014 SW CH NC+5c35 171 293 1470 MESA 75 E-W 21 Evett et al. 

(2016b)
2015 NE and SE CH NC+5c35 174 284 1600 SDI 100 E-W 21
2015† NW CH NC+5c35 173 284 1650 MESA 100 E-W 21
2015† SW CH NC+5c35 173 284 1650 MESA 75 E-W 21
† Calibration data not used to test model.
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A function f(Px,crop, q) is then sought that meets the following 
criteria: it is bell-shaped with a single peak; it maintains positive 
values for 0.0 ≤ q ≤ 1.0; it trends to zero as q trends to zero; it has 
four or less shape parameters; and the shape parameter values are 
physically meaningful. Archontoulis and Miguez (2015) pres-
ent a systematic approach for selecting nonlinear models having 
specific, desired attributes. They provided numerous example 
models, with additional models in their supplement (Archontoulis 
and Miguez, 2013). Following their approach, we considered 
three models meeting all these criteria, including two forms of a b 
function (their Eq. [2.12] and [2.13]; Yin et al., 2003), and a three-
parameter log normal function (their Eq. [5.6]). For all allometric 
model versions (Eq. [1] to [4]) and crops, the log normal function 
resulted in much less discrepancy with data compared with the b 
functions. In fact, the log normal function resulted in nearly the 
same discrepancies as a five-parameter Fourier series function used 
in an earlier analysis (Slack et al., 1996; data not shown). Therefore, 
the three-parameter log normal function was selected:

2
0

( ,crop) 0

ln( / )
( , ) exp 0.5( )xf P Y

é ùq qê úq = -ê úgê úë û
 	�  [6]

where Y0 is the peak value of the function, q0 is the value of q 
at Y0, and g is a shape parameter (0 < g < 1) where larger values 
result in a wider peak.

As previously stated, the three parameters (Y0, q0, and g) 
will be specific for each allometric model (Eq. [1] to [4]) and 
each crop. The three parameters were determined using the 
MATLAB ‘fminsearch’ function that minimized the ordi-
nary least squares cost function (MATLAB Release 2016b, 
MathWorks, 2016). The ‘fminsearch’ function included set-
ting the options ‘MaxFunEvals’ to 50000 and ‘MaxIter’ to 
10000. Initial values for all three parameters were 0.5. Using 
the optimized parameters, the coefficient of determination (r2) 
and standard error of the estimate (SEE) were calculated in 
MATLAB for calculated f(Px,crop, q) (i.e., from Eq. [1] to [4]) 
vs. measured f(Px,crop, q) (i.e., from calibration data in 
Tables 1–4). The r2 was calculated as the scalar matrix square 

of the correlation coefficient (i.e., row 1 and column 2), which 
was calculated by the MATLAB ‘corrcoef ’ function. The SEE 
was calculated as:

( )2

,crop ,calc ,crop ,meas1
( ) ( )

SEE
3

n

x i x ii
f P f P

n
=

-
=

-
å 	�  [7]

where calc and meas are calculated and measured values, 
respectively, n is the sample size of calibration data, and 3 is 
degrees of freedom.

CGDD Calculation
In the present study, CGDD was calculated as:

/1CGDD GDDD
b pd== å 	�  [8]

where GDDb/p is growing degree days for a single day (°C) at 
crop-specific base (b) and peak (p) development temperatures, 
d is the number of days since planting, and D is the number of 
days at CGDDmax, and

/GDDb p a bT T= - 	�  [9]

where Ta is the mean daily air temperature, and Tb is the base 
temperature. Further, Ta is subject to the constraints:

( )= + £ ³max min max min/ 2 for  and a p bT T T T T T T
	

� [10a]

min max min ( ) / 2   for and a P p bT T T T T T T= + ³ ³
	

� [10b]

( )max max min/ 2 for  and  a b p bT T T T T T T= + £ £
	

� [10c]

max minfor  and a b b bT T T T T T= £ £ � [10d]

( ) max min/ 2 for   and  a p b p bT T T T T T T= + > < � [10e]

Table 4. Soybean year, cultivar, field, plant and harvest day of year (DOY), maximum cumulative growing degree days (CGDD), irrigation 
method, irrigation rate (% of full crop evapotranspiration), row orientation, seed population, and references.

Year Field Cultivar Plant

Harvest 
(ormax. 
CGDD)

Max. 
CGDD

Irrig. 
method

Irrig. 
rate

Row 
orientation

Seed 
pop. References

––––––– DOY ––––––– C % m–2

1995 NW and SW PIO 9461 137 277 1702 MESA 100 E-W 53
2003 NE PIO 94B73RR 139 275 1817 MESA 33 E-W 42
2003 NE PIO 94B73RR 139 275 1817 MESA 66 E-W 42
2003 NE PIO 94B73RR 139 275 1817 MESA 100 E-W 42 Howell et al. 

(2006)
2003 SE PIO 94B73RR 139 273 1806 MESA 100 E-W 46 Howell et al. 

(2006)
2004† NE PIO 94B73RR 133 274 1759 MESA 33 E-W 23
2004† NE PIO 94B73RR 133 274 1760 MESA 66 E-W 23
2004† NE PIO 94B73RR 133 274 1761 MESA 100 E-W 46 Howell et al. 

(2006)
2004† SE PIO 94B73RR 133 274 1762 MESA 100 E-W 46 Howell et al. 

(2006)
2010 NW and SW PIO 94B73RR 168 277 1665 na 0 E-W 20
† Calibration data not used to test model.
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where Tmax is the maximum daily air temperature, Tmin is the 
minimum daily air temperature, Tp is the peak development tem-
peratures, and all temperature variables have (°C) units. Although 
air temperature at hourly or similar time steps may result in more 
accurate GDD calculation compared with daily time steps (Snyder, 
1985), daily time step data are more likely to be available, and 
GDD calculation based on Eq. [9] and [10] appear to be the most 
widely accepted method (McMaster and Wilhelm, 1997). Values 
of Tb and Tp for corn, cotton, sorghum, and soybean used in GDD 
calculations and relevant references are in Table 5.

Model Test Criteria

The allometric models were evaluated by calculating means, 
standard deviations, and various measures of discrepancies 
between measured and calculated LAI. Discrepancy measures 
included the coefficient of determination (r2), intercept, slope, 
root mean square error (RMSE), mean absolute error (MAE), and 
mean bias error (MBE). The extent that RMSE is greater than 
MAE indicates the presence of outliers (Legates and McCabe, 
1999). In addition, the model index of agreement (IOA) was 
calculated (Legates and McCabe, 1999), which is essentially a first-
order version of the Nash-Sutcliffe coefficient of model efficiency 
(Nash and Sutcliffe, 1970). Values of IOA range from –¥ to 1.0, 
where larger values indicate smaller discrepancy between measured 
and calculated variables, and IOA = 0 indicates the model gives no 
better calculations compared with the mean of all measurements 
(Legates and McCabe, 1999). All calculations used MATLAB 

Release 2016b; r2 was calculated as described in Section 2.2 
(Model Development), intercept and slope were calculated by 
dividing the calculated matrix by the measured matrix, and

2
,calc ,meas(LAI LAI )

1
RMSE

i i

n

i

n

-
=
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where LAIi,calc and LAIi,meas are calculated and measured LAI 
values, respectively, n is the sample size, and the term with the 
overbar is the sample mean.

RESULTS
Model Calibration

Each dataset used to calibrate the allometric models had 
mean LAI that would be expected over a full growing season 
for each crop at the study location (Table 6). Mean LAICH 
was less than mean LAI for corn (i.e., mean CH > 1.0 m), but 
greater than LAI for the other crops (i.e., mean CH < 1.0 m). 
This was also consistent for mean LAPP vs. mean LAPPCH. 
Convergence was obtained for each calibration of four allome-
tric model versions (Eq. [1] to [4]) and each crop, with r2 from 
0.49 to 0.94 (all P < 0.001), and SEE were 15 to 40% of mean 

Table 5. Base (Tb) and peak (Tp) temperatures for crops used in 
the present study.

Crop Tb Tp References

––––––––– °C –––––––––
Corn 10 30 Gilmore and Rogers (1958)
Cotton 15 50 Peng et al. (1989)
Sorghum 10 38 Gerik et al. (2003)
Soybean 8 30 Major et al. (1975)

Table 6. Allometric models fit to log normal function driven by normalized cumulative growing degree days (CGDD), with allometric vari-
able mean, coefficient of determination (r2), standard error of the estimate (SEE), and three fitted parameters (Y0 = maximum value of 
allometric variable; q0 = normalized CGDD at Y0; g = shape parameter).

Crop (n) Allometric model Units Mean r2 SEE Y0 q0 g

Corn LAI m2 m–2 2.88 0.91 0.57 5.00 0.611 0.395
(60) LAICH m–1 1.83 0.70 0.40 2.47 0.450 0.532

LAPP m2 0.38 0.94 0.062 0.658 0.618 0.410
LAPPCH m 0.25 0.73 0.049 0.330 0.444 0.542

Cotton LAI m2 m–2 1.47 0.91 0.41 3.67 0.715 0.190
(48) LAICH m–1 1.91 0.89 0.53 4.30 0.679 0.204

LAPP m2 0.10 0.78 0.046 0.241 0.758 0.180
LAPPCH m 0.12 0.75 0.047 0.240 0.712 0.233

Sorghum LAI m2 m–2 3.57 0.75 0.52 4.71 0.585 0.532
(84) LAICH m–1 3.91 0.51 0.86 5.11 0.423 0.731

LAPP m2 0.22 0.79 0.034 0.299 0.600 0.492
LAPPCH m 0.23 0.49 0.052 0.307 0.484 0.624

Soybean LAI m2 m–2 2.64 0.69 1.11 4.77 0.629 0.258
(54) LAICH m–1 3.69 0.53 1.20 5.24 0.537 0.402

LAPP m2 0.071 0.85 0.019 0.131 0.640 0.250
LAPPCH m 0.10 0.72 0.024 0.143 0.565 0.363
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allometric model values. Examples of measurements and result-
ing log normal models vs. normalized CGDD were plot for 
each crop for LAPPCH (Fig. 1). The log normal models were 
plot for 0 < normalized CGDD < 1 to show that their calcu-
lated values were physically plausible beyond the measured 
data. For corn and sorghum, the measured data and model 
increased and peaked when normalized CGDD was approxi-
mately 0.4, and then declined except for a small increase during 
0.6 < normalized CGDD < 0.8. This occurred around anthesis 
for both crops, and was likely related to CH increasing due to 
tasseling or heading, while LA began to decrease (this small 
depression was not visible for LAPP; data not shown). This may 
be a weakness in the three-parameter log normal model used 
herein, which does not accommodate secondary peaks. For cot-
ton, measured data increased during most of the season until 
normalized CGDD of ~0.85, then decreased sharply. The gen-
erally increasing scatter as the season progressed, and decline 
in scatter near the end of the season when normalized CGDD 
of ~0.98 (i.e., when leaves were mostly senesced) was consistent 
with LAI measurements for this season, which was discussed 
in Colaizzi et al. (2012) and Evett et al. (2012). However, the 
resulting model peaked somewhat earlier, when normalized 
CGDD of ~0.75. For soybean, measured data and the model 
increased up to normalized CGDD of ~0.65, followed by 
a decrease. Similar to cotton, scatter of soybean LAPPCH 
steadily increased as the season progressed, but did not decrease 
by the end of the season, which may have been related to the 
last leaf area measurements being obtained before senescence 
was complete. Overall, the timing of peak LAPPCH was ear-
lier for the C4 and determinate crops of corn and sorghum, but 
later for the C3 and indeterminate crop of cotton and C3 and 
less determinate crop of soybean.

Model Test
Measurements of LAI used to test the models were typical 

of crops over the growing season at the study location, and 
maximum measured LAI for each crop did not exceed 6 to 
7 m2 m-2 (Fig. 2). Measured and calculated means and standard 
deviations of LAI used to test the models were also as expected 
(Table 7).

For corn, discrepancies between measured and calculated 
LAI were smallest for the LAICH and LAPPCH models (for 
each discrepancy measure, smallest discrepancies are shown 
in bold in Table 7). Here, r2 > 0.84, IOA were both 0.84, 
RMSE were <0.87 m2 m–2 (<33% of measured mean), MAE 
was ≤0.60 m2 m-2 (23% of measured mean), and |MBE| was 
≤0.040 m2 m–2 (1.5% of measured mean). Measured and cal-
culated LAI discrepancies were larger for the LAPP model, 
and the largest discrepancy occurred for the LAI model. 
Therefore, corn LAI is related to both CGDD and CH, and 
these relationships are likely to depend on cultivar, biotic and 
abiotic stresses, and irrigation and agronomic management. 
Furthermore, CH should be included in allometric models 
used to estimate LAI for corn.

Cotton measured vs. calculated LAI discrepancies were 
larger for each model compared with those of corn (Table 7). 
The smallest discrepancies occurred for the LAPPCH model 
(r2 = 0.63; IOA = 0.67; RMSE = 0.83 m2 m–2 [60%]; MAE = 
0.67 m2 m–2 [48%]; however, MBE = –0.24 m2 m–2 [–17%], 
which was slightly larger compared with the LAI model, where 
MBE = 0.048 m2 m–2 [3.4%]). Discrepancies were larger for the 
LAICH, LAI (except for MBE), and LAPP models. These results 
also pointed to CH as being an important variable for develop-
ing allometric models to estimate cotton LAI, and inclusion of 
PP reduced discrepancies further compared with CH alone.

Fig. 1. Measured leaf area per plant per plant height (LAPPCH) (+ symbols), three parameter log normal model (solid line) with ± standard 
error (dotted lines) vs. normalized cumulative growing degree days (CGDD) for each crop. See Table 6 for fitted model parameters.
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Sorghum appeared least sensitive to the choice of allometric 
model, with measured vs. calculated LAI discrepancies having 
greater similarity for each model compared with other crops 
(Table 7). The least discrepancy occurred for the LAPP model 
(r2 = 0.74; IOA = 0.72; RMSE = 0.84 m2 m–2 [30%]; MAE = 
0.66 m2 m–2 [24%]; however MBE = 0.42 m2 m–2 [15%], but 
this was not much larger than MBE for the LAPPCH model 
at 0.34 m2 m–2 [12%]). Other discrepancy measures (r2, IOA, 
RMSE, and MAE) for the LAPPCH model were not much 
greater than the LAPP model, and discrepancies were only slightly 
larger for the LAICH and LAI models. These results implied 
that CH, LAI, and CGDD were strong covariates, so that inclu-
sion of CH in a sorghum allometric model does not add much 
information beyond CGDD only. The same appeared to apply to 
PP. Previous studies have shown that planting sorghum in clumps 
reduced tillers and leaves per plant compared with uniform plant 
spacing (Bandaru et al., 2006; Krishnareddy et al., 2009), which 
implied that LAPP varied with planting geometry, but could con-
ceivably have had a compensating effect on LAI (i.e., LAI and PP 
were weakly correlated). Nonetheless, inclusion of either CH or PP 
did reduce measured vs. calculated LAI discrepancies for sorghum.

Soybean model discrepancy measures (r2, IOA, RMSE, 
and MAE) were consistent across models, where respective 
discrepancies increased for LAICH, LAPP, and LAI (Table 7). 
Discrepancies for the LAPPCH model were r2 = 0.81, IOA = 
0.79, RMSE = 0.80 m2 m-2 (36%), and MAE = 0.62 m2 m-2 
(28%). However, MBE was –0.26 m2 m-2 (–12%), which was 
substantially larger in magnitude than MBE for the LAI and 
LAPP models (≤|–0.078| m2 m-2 [≤|–3.6%|]). Although inclu-
sion of CH reduced discrepancies in terms of IOA, RMSE, and 
MAE compared with PP alone, inclusion of CH resulted in 
larger MBE in magnitude (i.e., more negative).

In summary, measured vs. calculated LAI discrepancies 
in terms of r2, IOA, RMSE, and MAE were generally the 
smallest for the LAPPCH model for cotton and soybean, 
smallest for the LAICH model for corn, and smallest for the 
LAPP model for sorghum (Table 7). However, discrepancies 
for the LAPPCH model were the same or similar to LAICH 
for corn, and similar to LAPP for sorghum. For all crops and 
models, RMSE/MAE was ≤1.43, indicating discrepancies 
were relatively free of outliers (Legates and McCabe, 1999). 
Discrepancies in terms of the magnitude of MBE was smallest 
for the LAPPCH model for corn and sorghum, but not cot-
ton and soybean. The LAPPCH allometric model nonetheless 
appeared the most robust for the different crops (both C3 and 
C4), cultivars, and wide range of management, growing, and 
climatic conditions.

The scatter of calculated vs. measured LAI were plot for each 
crop using the LAPPCH allometric model (Fig. 2). The scatter 
from the 1:1 line was similar for each crop, but differed relative 
to measured LAI. Scatter tended to be greater for the larger 
LAI measurements of corn and sorghum, and greater for the 
smaller LAI measurements for cotton and soybean.

DISCUSSION
The present study aimed to establish robust relationships 

for multiple crops between LAI and CH, PP, and normalized 
CGDD. These variables may be more widely available in crop 
production and other agro-ecological datasets compared with 
variables more typically used in previous allometric studies, 
such as leaf length or width, leaf dry mass, plastochron index, 
or stem node number (McKee, 1964; Wiersma and Bailey, 
1975; Sinclair, 1984; Pengelly et al., 1999; Stewart and Dwyer, 
1999; Soltani et al., 2006; Kathirvelan and Kalaiselvan, 2007; 

Fig. 2. Calculated vs. measured leaf area index (LAI) using the leaf area per plant per plant height (LAPPCH) allometric model (+ symbols), 
1:1 line (dashed line), and linear regression (solid line) for each crop. See Table 7 for calculated vs. measured discrepancy parameters.
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Rouphael et al., 2007; Vyas et al., 2010; Khosravi et al., 2012; 
Nehbandani et al., 2013). Previous studies usually reported 
allometric relationships in terms of r2 only, and were typically 
>0.90. In the present study, r2 for allometric relationships 
were 0.23 to 0.85, with most relationships having r2 ≥ 0.50 
(Table 7). These were somewhat less compared with previous 
studies, but their relationships were often developed using more 
limited ground truth data. Allometric relationships in previous 
studies were usually linear, polynomial, or power functions. 
Several studies also estimated the plastochron index as a func-
tion of CGDD, which was used to estimate LA (Sinclair, 1984; 
Pengelly et al., 1999; Soltani et al., 2006), or estimated LAI as 
an exponential function of days since planting (Nehbandani 
et al., 2013). These contrasted with the present approach, 
where a log normal model as a function of normalized CGDD 
was used, which was selected because it met a greater range of 
physically realistic criteria (i.e., it was bell-shaped, it did not go 
negative over the exploratory variable range, it tended to zero 
as exploratory variable tended to zero, and required only three 
parameters that were physically meaningful).

Several previous studies went further and tested allometric 
relationships using independent datasets, where discrepancies 
between measured and calculated LA or LAI were reported 
(also usually in terms of r2 only). These were mostly comparable 
to calculated vs. measured LAI discrepancies reported in the 
present study. Rouphael et al. (2007) calculated LA for sun-
flower using leaf length and width, and reported r2 = 0.97 for 
calculated vs. measured LA. Blanco and Folegatti (2003) cal-
culated LAI for cucumber and tomato using leaf height, width, 
and position (relative leaf height), and reported r2 = 0.98 for 
calculated vs. measured LAI. Vyas et al. (2010) calculated LAI 
for teak and bamboo based on canopy width, and reported 
RMSE 0.38 to 1.15 m2 m-2 for calculated vs. measured LAI. 
Carberry et al. (1993) calculated LAI for sorghum using main 
culm leaf number (as established by Hammer et al., 1993), 
resulting in r2 = 0.86 and RMSE = 0.54 m2 m-2. In the present 
study (Table 7), the LAPPCH model resulted in comparable 
r2 (0.63–0.84) and RMSE (0.80–0.92 m2 m-2). However, the 
present study differed in that datasets were usually larger and 
included a wider range of climatic and growing conditions 
(albeit only one location), and as stated before, used the log nor-
mal model in the allometric relations.

Retrieval of LAI has been demonstrated using remote sens-
ing methods. Discrepancies with independent, ground-based 
estimates of LAI were reported, also usually in terms of r2. 
Although these r2 were comparable to the present study 
(Table 7), their independent, ground-based LAI were estimated 
indirectly. For example, Kross et al. (2015) retrieved LAI for 
corn and soybean using various reflectance-based indices and 
measurements from the RapidEye, Landsat, and SPOT satel-
lites, resulting in r2 ≥ 0.76 and MAE ≤ 0.97 m2 m-2 compared 
with LAI estimated by ground-based hemispherical photogra-
phy. Mathews and Jensen (2013) compared LAI estimated by a 
digital camera aboard an unmanned aerial vehicle to indirect, 
ground-based estimates of LAI using a ceptometer for vine-
yards, and reported r2 = 0.57. Kalisperakis et al. (2015) also 
estimated LAI of vineyards using an unmanned aerial vehicle, 
but they used both digital photography and hyperspectral 
sensors, and compared LAI estimated by remote sensing to Ta
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LAI estimated by independent leaf counts of individual vines, 
resulting in r2 > 0.73. Morsdorf et al. (2006) and Solberg et al. 
(2009) estimated LAI of forests using airborne laser scanning, 
and compared this to indirect, ground-based LAI estimates 
using hemispherical photography (r2 = 0.69) or irradiance 
extinction (r2 ≥ 0.73), respectively.

The goal of developing a more robust allometric model 
using more readily available inputs compared with previous 
approaches nonetheless includes several limitations, which 
provides rationale for future studies. Specifically, greater model 
robustness often carries with it greater discrepancies between 
measured and calculated response variables (in this case, LAI) 
compared with previous studies. This was likely related to 
limiting the input variables to normalized CGDD and com-
binations of PP and CH, and perhaps using a relatively simple 
three-parameter model. Other variables impacting LAI might 
include biotic and abiotic stresses, such as soil water availability, 
soil temperature and microclimate, nutrients, pests, and com-
petition from weeds (e.g., Evett et al., 2012; Yin et al., 2003). 
These may well induce spatial variability of LAI that is not 
captured in PP or CH measurements, along with measurement 
error of model inputs themselves. Reflectance-based remote 
sensing techniques such as those discussed here may provide a 
way to better quantify spatial variability of LAI beyond PP or 
CH; these could be extended to thermal remote sensing that 
has been long shown to detect shortages in soil water, which 
also impacts LAI (e.g., Howell et al., 2004).

Conclusion
Allometric models were developed and tested to estimate 

LAI for row crops, including corn, cotton, sorghum, and 
soybean, where LAI was measured directly by destructive 
sampling. The allometric models were based on four variants 
of a three-parameter log normal function driven by normal-
ized CGDD. The four model variants included LAI calculated 
as a function of normalized CGDD only (LAI), normalized 
CGDD and CH (LAICH), normalized CGDD and PP 
(LAPP), or normalized CGDD, CH, and PP (LAPPCH). 
These variables are usually more widely available in crop pro-
duction and other agro-ecological datasets compared with 
variables typically used in previous allometric studies, such 
as length and width of individual leaves, leaf dry mass, plas-
tochron index, or stem node number. The three parameters 
used in the log normal function were specific to the allometric 
model version and crop. The resulting allometric relationships 
had r2 that varied from 0.23 to 0.85, with most r2 ³ 0.50, 
which were less than previous studies, where r2 > 0.90 were 
typically reported, but often included smaller datasets that 
were subject to less variable crop management, growing, and 
climatic conditions.

Models were tested using independent data from several crop 
seasons, which included wide ranges of agronomic and irriga-
tion management methods, and growing and climatic condi-
tions. Discrepancies between calculated and measured LAI 
were calculated in terms of r2, IOA, RMSE, MAE, and MBE. 
Discrepancies were mostly smallest for cotton and soybean 
using the LAPPCH model, for corn using the LAICH model, 
and for sorghum using the LAPP model. However, discrepan-
cies using the LAPPCH model for corn and sorghum were 

very similar to the LAICH and LAPP models, respectively. 
Therefore, the LAPPCH model appeared robust for the four 
crops and wide ranges of conditions considered. A few previous 
studies tested allometric models to calculate LAI, and usually 
reported results in terms of r2 (>0.86). These were comparable 
to r2 for the LAPPCH model of the present study (0.63–0.84).

The allometric models developed herein were designed to 
address the paucity of LAI data relative to other, more common 
plant physical measurements typically included in agro-ecolog-
ical datasets. Because LAI controls and interacts with virtu-
ally every aspect of the mass and energy balance of vegetated 
surfaces, this approach should encourage additional studies of 
LAI estimation for other crops and vegetation, and should also 
enhance the utility of datasets used in advancing the agricul-
tural and natural sciences.
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