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G protein-coupled receptors (GPCRs) are the largest receptor superfamily. In this paper, we try to employ physical-chemical
properties, which come from SVM-Prot, to represent GPCR. Random Forest was utilized as classifier for distinguishing them
from other protein sequences. MEME suite was used to detect the most significant 10 conserved motifs of human GPCRs. In the
testing datasets, the average accuracy was 91.61%, and the average AUC was 0.9282. MEME discovery analysis showed that many
motifs aggregated in the seven hydrophobic helices transmembrane regions adapt to the characteristic of GPCRs. All of the above
indicate that our machine-learning method can successfully distinguish GPCRs from non-GPCRs.

1. Introduction

The G protein-coupled receptors (GPCRs) are only discov-
ered in eukaryotes, which constitute a vast protein family
and perform their various functions always through coupling
with G proteins in the cell. GPCRs have many aliases such as
heptahelical receptors, serpentine receptor, G protein-linked
receptors (GPLR), and seven-transmembrane (7TM) domain
receptors; all the GPCRs contain a single polypeptide chain
that pass through the cell membrane seven times [1]. There
are roughly 1000 GPCRs in human genome (accounting
for about 2% coding genes); thus, they form the largest
receptor superfamily [2]; they are also involved in various
diseases and constituted approximately 40% of drug targets.
BecauseRobert J. Lefkowitz andBrianK.Kobilka revealed the
biochemical mechanism of GPCRs for signaling pathways,
they were awarded with 2012 Nobel Prize in chemistry [3].

Many different approaches have been utilized for GPCRs
classification, such as protein motif-based systems, machine-
learning methods [4], and other techniques. Based on
the original sequence similarity and phylogenetic studies,
GPCRs superfamily can be divided into five, six, or seven
classes at different periods [5, 6]. According to GPCRdb

(http://gpcrdb.org/) database developed by Kolakowski and
updated by Horn et al. [7], which contains data, diagrams,
and web tools involving collection of both GPCRs crystal
structures and receptor mutants, GPCRs are classified into
six main families: class A (Rhodopsin), class B1 (Secretin),
class B2 (Adhesion), class C (Glutamate), class F (Frizzled),
and other GPCRs. The former five classes are consistent with
the Glutamate, Rhodopsin, Adhesion, Frizzled, and Secretin
(GRAFS in short) classification system [8, 9]. Table 1 shows
the protein number and composition for every class.

Class A rhodopsin-like receptors constitute the largest
(more than 80%) of the humanGPCR subtypes.Theymediate
numerous effects of endogenous peptides including neuro-
transmitters, hormones, and paracrine signals. For example,
biogenic amines [10] such as norepinephrine, dopamine, and
serotonin commonly play their role of drugs for patholog-
ical diseases through binding to GPCRs. Although the N-
terminal extracellular domain is very short, class A receptors
can form dimers, in homo/heterodimerization [11].This class
also includes approximately 60 orphan receptors which have
no defined ligands or functions at all [12, 13].

Class B1 secretin-like receptors belong to one of hormone
and neuropeptide receptor families; they consist of a large
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Table 1: The number of proteins and composition for every class of GPCRs (from GPCRdb).

GPCRdb family Number of proteins (human) Composition

Class A (rhodopsin) 16526 (311)
Aminergic receptors, peptide receptors, protein receptors, lipid
receptors, melatonin receptors, nucleotide receptors, steroid
receptors, alicarboxylic receptors, sensory receptors, orphan
receptors, and others

Class B1 (secretin) 748 (15) Peptide receptors
Class B2 (adhesion) 381 (33) Orphan receptors

Class C (glutamate) 1038 (22) Ion receptors, amino acid receptors, sensory receptors, and
orphan receptors

Class F (frizzled) 48 (11) Peptide receptors
Other GPCRs 37 (6) Orphan receptors

and versatile N-terminal extracellular domain (ECD) which
functions as an affinity trap to hormone [14]. Moreover, they
are of ancient origin and can bind with various peptides
such as secretin, corticotrophin releasing factor, glucagon,
parathyroid hormone, calcitonin, growth hormone releasing
hormone, and calcitonin gene-related peptide [15].

Class B2 adhesion-like receptors are also known as
the adhesion G protein-coupled receptors (ADGRs) with
ancient origin; they make the function in various tissues
include synapses of the brain [16]. Most ADGRs contain
various domains in the N-terminus provided for binding
site of other cells [17]; these domains have over sixteen
types, including cadherin-like repeats, thrombospondin-like
repeats, and calnexin domain. ADGRs have the characteristic
of N-terminal adhesive domains [18]. For example, ADGR
subfamily G4 (ADGRG4) has the sequence characteristics
of a unique highly conserved motif and some functionally
important motifs similar to class A, class B1, and combined
elements [19].

Class C GPCRsmainly comprise metabotropic glutamate
receptors (mGluRs), one type of L-glutamate binding recep-
tors; another type is ionotropic glutamate receptors (iGluRs)
which belong to a ligand-gated ion channels not the GPCR
family. Class C GPCRs contain a large N-terminal domain
for ligand-binding. There exist 8 isoforms of mGluRs to
form signalingmolecules via secondmessenger systems [20],
which transfer extracellular signal through the mechanism
of receptor dimer packing and allosteric regulation [21]. The
activation of mGluRs is an indirect metabotropic process
by the aid of binding to glutamate, a major excitatory
neurotransmitter in the brain. The extracellular glutamate
concentration (at micromolar range) is lower than the intra-
cellular (atmillimolar range) in neuron [22]. HumanmGluRs
are found in pre- and postsynaptic neurons, including the
hippocampus, cerebellum, and other brain regions’ synapses,
and in peripheral tissues. mGluRs play an important role in
regulating neuronal excitability and synaptic plasticity and in
serving as mental disorders drug targets [23].

Class F frizzled/smoothened receptors are involved in
Wnt binding whereas the smoothened receptor (belongs
to GPCRs) reconciles hedgehog signaling via the required
region cysteine-rich domain (CRD) in the N-terminus [24],
because smoothened protein sequence is homologous to

frizzled. The two proteins have the same 7TM structure
and evolutionary relationship [25]. But the secreted frizzled-
related proteins can exert its function by promoting or block-
ing Wnt3𝛼/𝛽-catenin signaling in different concentration of
secreted frizzled-related protein 1 and cellular context [26].

Other GPCRs include some orphan receptors except for
the above classes; the characteristics of these receptors are
that they have a similar structure to other identified receptors
but lack endogenous ligand.They have altogether 37 proteins
and 6 in human. Among them, Gpr175 (also called Tpra1)
and GPR157 are well studied. Gpr175 is an orphan GPCR
with positive regulation of the Hedgehog signaling pathway
[27]; GPR157 couples with Gq protein and then activate IP

3
-

mediated Ca2+ cascade, which is also a signaling molecule
involved in positive regulation of neuronal differentiation of
radial glial progenitors through the GPR157-Gq-IP

3
cascade

pathway [28].
Generally, GPCRs interact with a varieties of ligands

which can be classified as agonists, antagonists, or inverse
agonists, three classes based on the receptor effect [29,
30]; these include different forms of “information,” such as
photons, taste, odorants [31], ions, pheromones, eicosanoids,
nucleotides, nucleosides [9], neurotransmitters, amino acids
[32], peptides, proteins, and hormones [33]. These ligands
vary in size containing small molecules and large proteins.

GPCRs are transmembrane receptors that transduce
extracellular stimuli into intracellular signals through acti-
vating intracellular heterotrimeric G protein complex, which
comprise 15 G𝛼 subunits, 5 G𝛽 subunits, and 12G𝛾 subunits.
Based on the sequence similarity and functional characteris-
tics of G𝛼 subunits, G proteins are divided into four major
classes: G𝛼s, G𝛼i/o, G𝛼q/11, and G𝛼12/13 [34]. G𝛼 activa-
tion or deactivation cycle controls the signal transduction,
when cell is at resting mode, GDP binds to G𝛼 forming
G𝛼-GDP and then joins G𝛽𝛾 generating G𝛼𝛽𝛾 complex,
and G𝛼 is inactive at this stage; when stimulate signal is
introduced from GPCR, G𝛼 raises a conformational change,
GTP binds to G𝛼 forming G𝛼-GTP and destabilizing the
G𝛼𝛽𝛾 complex, G𝛽𝛾 are disassociated and bound by G𝛽𝛾
interacting proteins, and G𝛼 is active at this stage. When
G𝛼 fulfilled signal transduction to the downstream pathway,
G𝛼 hydrolyzes GTP to GDP through its intrinsic GTPase
activity to form G𝛼-GDP and returns to the resting mode;
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Table 2: The composition of 188D features of a protein.

Physicochemical property Dimensions
Amino acid composition 20
Hydrophobicity 21
Normalized Van der Waals volume 21
Polarity 21
Polarizability 21
Charge 21
Surface tension 21
Secondary structure 21
Solvent accessibility 21
Total 188

this process constitutes a G protein cycle [35]. Activated
G𝛼s catalyzes ATP to cAMP by adenylyl cyclase (AC) and
results in the activation of protein kinase A (PKA) and phos-
phorylation of downstream effector. On the contrary, G𝛼i
plays inhibition role of AC and suppresses cAMP production.
G𝛼q/11 activates phospholipase C𝛽 (PLC𝛽) and produces
inositol-1,4,5-trisphosphate (IP

3
) and diacylglycerol (DAG)

which can form PLC𝛽-IP
3
-DAG signaling pathway. G𝛼12/13

activates Rho GTPase families through RhoGEF to regulate
cytoskeleton remodeling; these G protein families take the
major effect in signal transduction [3].Therefore, GPCR-G𝛼-
AC-PKA and GPCR-G𝛼-PLC-IP

3
constitute two main signal

transduction cascades within the cell.
In this paper, we performed an in silico analysis on

the GPCRs amino acids information and other polypeptide
physicochemical features and constructed 188D feature vec-
tors (Table 2) of the proteins into an ensemble classifier
[36–41]. The first 20D of 188D represents the 20 kinds of
natural amino acids composition; the other 168D includes
eight physical-chemical properties each deriving from the
so-call CTD mode [42], where C stands for amino acid
contents for each type of hydrophobic amino acids, T stands
for the frequency of bivalent peptide, and D stands for
amino acid distribution from five positions of a sequence.
These 188D feature vectors have been integrated into software
BinMemPredict which performed well in membrane protein
prediction [42]. Moreover, we also performed motif analysis
by MEME Suite (http://meme-suite.org/) because a motif
may directly accord with the active site of an enzyme or
a domain of the protein. MEME have been not only used
to predict conserved motif regions but also employed for
primers design with low quality sequence similarity patterns
in multiple global alignments [43].

2. Materials and Methods

2.1. Data Retrieval and Pretreatment. GPCR sequences with
fasta formatwere retrieved from theUniProt database (http://
www.uniprot.org/); we obtained initial 5027 sequences alto-
gether. To improve analysis performance, the raw dataset
was preprocessed by the protein-clustering program CD-
HIT (http://cd-hit.org/) for reducing the sequence homology
bias of prediction; the sequence identity threshold was set

at 0.80 and other parameters as default; thus, the highly
homology sequences were removed, and finally 2495 GPCR
protein sequences were gained as positive dataset, and the
negative examples were from all the protein sequences but
removing the positive ones, and 10386 entries (non-GPCRs)
were acquired as negative dataset.

2.2. Extracting the Discriminative Feature Vector for Classify-
ing and Testing by Random Forest Classifier. Protein features
were extracted from the primary sequences according to
their compositions of 20 kinds of amino acids and their
eight types of physical-chemical properties; based on these
characteristics, Cai et al. [44] and Zou et al. [42] had raised
188D feature vectors of SVM-Prot. The workflow was as
follows:

(1) All distinct positive protein samples were employed to
extract their corresponding protein families for Pfamnumber
from the “Family and Domains” section of uniprot website
and excluded the same and redundant Pfam number; the
unique Pfam number set for positive dataset (in fasta format)
was acquired.

(2) All the protein sequences were integrated into a Pfam
number file; the same Pfam sequences were combined to the
same file named with Pfam number; then, the positive Pfam
number files were removed; the rest of Pfam number files
were extracted only in the longest sequence for each Pfam as
the negative dataset (in fasta format).

(3) Because the protein sequences possessed different
length, each sequence needed to transform into fixed-size
vectors for classification, both the positive and negative
datasets were input to the 188D SVM-Prot programme for
their feature vectors, the positive samples were given the label
“1” at the end of vectors, the negative samples were given the
label “−1” at the end of vectors, and the positive and negative
files combined into a file with the filename format ended
in .arff.

(4)The above file on positive and negative vector datasets
was randomly divided into five parts, respectively, among
which, every four parts were served as training examples and
the remaining one part as test ones, every part contained both
positive and negative samples (Table 3), and fivefold cross-
validation was used.

(5) The training and test datasets were successively
imported into weka data mining package (http://www.cs
.waikato.ac.nz/ml/weka/), amachine-learning workbench. In
weka, the training datasets were filtered with the synthetic
minority oversampling technique (SMOTE) [45, 46] and
changed the positive samples from 100 percent into 300
percent to overcome the highly imbalanced property of
positive and negative cases; after preprocessing with SMOTE
technique the two-group data kept an amount equilibrium,
and the vector data were classified automatically via visual-
ization analysis [47]. Based on the optimal features with some
preliminary trials, we finally chose a Random Forest (RF)
[48] module and “use training set” item on test options as
classifier for training dataset, while for test dataset we chose
“supplied test set” item on test options to predict the samples
as GPCRs or non-GPCRs: that is, the prediction module
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Table 3: The distribution of positive and negative sample numbers for training and test dataset.

Performance Part Number of GPCRs Number of non-GPCRs Total number
1st Training 1996 8309 10305
1st Test 499 2077 2576
2nd Training 1996 8309 10305
2nd Test 499 2077 2576
3rd Training 1996 8309 10305
3rd Test 499 2077 2576
4th Training 1996 8309 10305
4th Test 499 2077 2576
5th Training 1996 8308 10304
5th Test 499 2078 2577

Table 4: Performance measures for random forest from SVM-Prot feature.

Measure Formula Meaning

Sensitivity Sn = TP
TP + FN

Measure to avoid type II error

Specificity Sp = TN
TN + FP

Measure to avoid type I error

Accuracy Acc = TP + TN
TP + FP + TN + FN

Measure of correctness

Matthew’s correlation coefficient MCC = TP ∗ TN − FP ∗ FN
√(TP + FN) (TP + FP) (TN + FP) (TN + FN)

Correlation coefficient

TP (true positive) stands for the number of true GPCRs that are predicted correctly, TN (true negative) stands for the number of true non-GPCRs that are
predicted correctly, FP (false positive) is the number of true non-GPCRs that are incorrectly predicted to be GPCRs, and FN (false negative) is the number of
true GPCRs that are incorrectly predicted to be non-GPCRs.

using the results of the just training set to distinguish the two
classes.

Tomeasure the performance quality of the statistical clas-
sificationmore intuitively in the field ofmachine learning, we
adopted 5-fold cross-validation for test dataset and calculated
four common parameters [49, 50]: sensitivity (Sn), specificity
(Sp), accuracy (Acc), and Matthew’s correlation coefficient
(MCC) to adopt for evaluating the SVM-Prot features and
classifier, which are formulated as Table 4.

2.3. Conserved Motif Analyses of Human GPCR Proteins.
OnlineMEME Suite 4.11.0 (http://meme-suite.org/) was used
to analyze conserved motif analyses. MEME was a powerful,
comprehensive web-based tool for mining sequence motifs
in proteins, DNA, and RNA [51]. Currently, the MEME Suite
has added 6 new tools since the Nucleic Acids Research Web
Server Issue in 2009, and the web-based version tools reached
13.Themaximummotif width, the minimal motif width, and
the maximum number of motifs were set to 50, 6, and 10,
respectively.

3. Results

3.1. Reclassification of Positive and Negative Proteins on Five
Test Datasets. We obtained the 188D feature vectors con-
taining positive and negative samples and divided them into
training and test datasets as input to the Weka explorer,

respectively, the results showed exactly classifying for all
the five training datasets; therefore, the trained classifier
could be utilized to verify the predication effect, and the
test dataset was used to predict its class label directly. The
correctly classified rates for five testing datasets were 90.64%,
90.37%, 88.04%, 93.28%, and 95.73%, respectively (mean ±
SD: 91.61%±2.96%); the other indices were shown in Table 5.

3.2. Conserved Motifs Analysis for Human GPCRs. For the
purpose of disclosing the evolutionary relationship of the
conserved motifs of GPCRs, we randomly selected six classes
of human GPCRs and gained 66 protein sequences which
were analyzed by MEME software. The multiple local align-
ments were performed by MEME to generate the most
significant 10 conserved motifs for the sequences (Figure 1
and Table 6).

4. Discussion

In this study we show that the novel SVM-Prot features based
binary classifier can well discriminate GPCRs from non-
GPCRs; we obtain exact classification model from the five
training datasets and the AUC equals 1, and on the five testing
datasets we get the average correctly classified rates of 91.61%
and the average AUC of 0.9282; these indicate that predicted
GPCRs and true GPCRs have a good overall consistency.
AUC is a plot with𝑥-axis representing false positives (equal to
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Table 5: Performance qualities measure for test dataset by using the models from the corresponding training dataset.

Test dataset Sn Sp Acc MCC AUC∗

1st 0.5952 0.9812 0.7882 0.6248 0.930
2nd 0.5832 0.9807 0.7820 0.6146 0.909
3rd 0.6013 0.9620 0.7817 0.5763 0.879
4th 0.7675 0.9726 0.8700 0.7562 0.943
5th 0.9238 0.9654 0.9446 0.8900 0.980
Mean ± SD 0.6942 ± 0.1491 0.9724 ± 0.0087 0.8333 ± 0.0726 0.6924 ± 0.1296 0.928 ± 0.038
∗AUC, also called receiver operating characteristic (ROC) area, means the area under the receiver operating characteristic curve which is a measure of the
accuracy of a classification model.

Table 6: Human top 10 conserved motifs of GPCR sequences found by the MEME system.

Motif Width 𝐸-value Best possible match
1 40 4.3𝑒 − 239 KMACTIMAMFLHYFYLAAFFWMLIEGLHLYLMAVMVWHHE
2 29 1.5𝑒 − 168 VMHYLFTIFNSFQGFFIFIFHCLLNRQVR
3 41 4.4𝑒 − 105 CLDRPIPPCRSLCERARQGCEPLMNKFGFPWPEMMKCDKFP
4 50 5.3𝑒 − 098 VITWVGIIISLVCLLICIFTFLFCRAIQNTRTSIHKNLCICLFLAHLLFL
5 21 3.8𝑒 − 088 NKTHTTCRCNHLTNFAVLMAH
6 29 1.0𝑒 − 076 GTDKRCWLHLDKGFIWSFIGPVCVIILVN
7 50 3.9𝑒 − 063 IFFIITLWIMKRHLSSLNPEVSTLQNTRMWAFKAFAQLFILGCTWCFGIL
8 29 1.8𝑒 − 054 LQVHQWYPLVKKQCHPDLKFFLCSMYAPV
9 29 1.6𝑒 − 052 CQPIDIPLCHDIGYNQMIMPNLLNHETQE
10 50 2.0𝑒 − 052 MKHDGTKTEKLEKLMIRIGVFSVLYTVPATIVIACYFYEQAFRDHWERTW

1 − specificity) and 𝑦-axis representing true positives (equal
to sensitivity), which is based on different cutoff values of a
score from a binary classifier [52, 53]. AUC of 1 represents
a perfect model; the more AUC is close to 1, the better
prediction model we can develop, but if the value is reduced
to 0.5, the model becomes no predictive ability at all. On
our binary classification model we acquired high specificity
and accuracy for testing datasets, but the values of sensitivity
and Matthew’s correlation coefficient were relatively low at
about 0.7; this might be due to the problem of imbalance
dataset where the size of positive was less than negative with
the proportion of about 1 : 4; thus the false negative rate was
relatively higher.This defect may also come from the intrinsic
restriction of supervised learning algorithm, because the
classification model built from training dataset can only have
a good predictive effect on the test dataset having the same
probability distribution as the training dataset [54].

The top ten human GPCR motifs show the feature
of some motifs aggregation that appeared from the block
diagram; this reflected in the structure characteristic of 7TM
helices regions of GPCRs. Motifs 1,4,6,7, and 10 belonged
to these 7TM domains; among them, the former 4 motifs
displayed containing the region highly homologous to the
class B1 secretin family, and motif 10 was a Fz domain
in the membrane spanning region which is located near
to the intracellular C-terminal region of GPCRs, which
contained an alpha-helical Cys-rich domain (CRD) of Friz-
zled that was essential for Wnt binding [55, 56]. Motifs
3, 8, and 9 were CRD Frizzled-1 like domains involved in
Wnt signal as well [57]. Motif 5 was latrophilin/CL-1-like

G protein–coupled receptor proteolysis site motif (GPS)
which was first identified in a neuronal Ca2+-independent
receptor of alpha-latrotoxin (CIRL)/latrophilin, an orphan
GPCR [58]. GPS was a part of GPCR autoproteolysis-
inducing (GAIN) domain which held a formative feature
of adhesion GPCRs, and GPS cleavage process played an
important role in renal organ physiology [59]. Take the
first sequence Q9BY15, for instance, there listed 3 kinds
of conserved domains start from the N-terminus: calcium-
binding EGF domain (not shown), GPS domain, and 7TM
domain of secretin family. The latter two domains appeared
with concentration on the block diagram.

Support VectorMachine (SVM) is a supervisedmachine-
learning algorithm on the basis of statistical learning theory
[53, 60–65]. Due to the robustness, rapidness, and repeata-
bility, machine-learning method is regarded as one of the
best ways to efficiently classify numerous protein molecules.
In two-class problems, our SVM classifier mapped the input
188D feature vectors into a higher dimensional feature space
and then founded the optimal separation hyperplane [66]
for GPCRs and non-GPCRs, while avoiding overfitting and
underfitting problems. This approach belongs to linear clas-
sification model [67].

All the GPCR superfamily contains seven highly con-
served 7TM regions with the feature of hydrophobicity;
these 7TM can be identified by Hidden Markov Models
(HMMs) and machine-learning methods [68]. The GPCRs
structure researchers revealed that the classical sequence
contained the following: the seven-transmembrane seg-
ments [TM1–7], three extracellular loops [EL1–3], three
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Sequence E-value

sp|Q9BY15|AGRE3_HUMAN

sp|Q9UHX3|AGRE2_HUMAN

sp|O75084|FZD7_HUMAN

sp|Q9HAR2|AGRL3_HUMAN

sp|Q9UP38|FZD1_HUMAN

sp|O95490|AGRL2_HUMAN

sp|Q86SQ3|AGRE4_HUMAN

sp|Q9HBW9|AGRL4_HUMAN

sp|Q14246|AGRE1_HUMAN

sp|Q9H461|FZD8_HUMAN

sp|Q9NPG1|FZD3_HUMAN

sp|Q6QNK2|AGRD1_HUMAN

sp|Q5T4F7|SFRP5_HUMAN

sp|Q8N474|SFRP1_HUMAN

sp|Q96HF1|SFRP2_HUMAN

sp|Q8IZP9|AGRG2_HUMAN

sp|Q86SQ4|GP126_HUMAN

sp|Q92765|SFRP3_HUMAN

sp|O60241|AGRB2_HUMAN

sp|Q8IZF5|AGRF3_HUMAN

sp|Q9Y653|GPR56_HUMAN

sp|Q8IZF2|AGRF5_HUMAN

sp|Q5T601|AGRF1_HUMAN

sp|Q86Y34|AGRG3_HUMAN

sp|Q96PE1|AGRA2_HUMAN

sp|P34998|CRFR1_HUMAN

sp|Q8IZF7|AGRF2_HUMAN

sp|P41594|GRM5_HUMAN

sp|P28233|5HT2A_HUMAN

sp|P25106|ACKR3_HUMAN

sp|Q8IYL9|PSYR_HUMAN
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Figure 1: Continued.
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Figure 1: The discovered motifs of human GPCRs from the MEME system (for details see Table 6). (a) MEME run showing combined block
diagram for top ten motifs distribution with corresponding sequence ID and E-value (E-value threshold: 0.01, showing 31 GPCR sequences).
(b) The ten motif logos found by MEME.
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intracellular loops [IL1–3], and the protein termini. There-
fore, GPCR can be sequentially distributed into the follow-
ing regions: N-terminus-TM1-IL1-TM2-EL1-TM3-IL2-TM4-
EL2-TM5-IL3-TM6-EL3-TM7-C terminus. In summary, we
have successfully developed a SVM-Prot features based Ran-
dom Forest for identifying GPCRs from non-GPCRs based
on the protein sequence information and their physicochem-
ical properties. Nevertheless, this prediction model needs to
be further explored so as to discriminate the subfamily and
sub-subfamily of GPCRs.
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