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This paper investigates the existence and globally asymptotic stability of equilibrium solution for Riemann-Liouville fractional-
order hybrid BAM neural networks with distributed delays and impulses. The factors of such network systems including the
distributed delays, impulsive effects, and two different fractional-order derivatives between the 𝑈-layer and 𝑉-layer are taken into
account synchronously. Based on the contraction mapping principle, the sufficient conditions are derived to ensure the existence
and uniqueness of the equilibrium solution for such network systems. By constructing a novel Lyapunov functional composed of
fractional integral and definite integral terms, the globally asymptotic stability criteria of the equilibrium solution are obtained,
which are dependent on the order of fractional derivative and network parameters. The advantage of our constructed method is
that one may directly calculate integer-order derivative of the Lyapunov functional. A numerical example is also presented to show
the validity and feasibility of the theoretical results.

1. Introduction

Since fractional derivatives are nonlocal and have weakly
singular kernels, the subject of fractional calculus has been
attracting attention and interest in various fields of diffu-
sion [1], physics [2], market dynamics [3], engineering [4],
control system [5], biological system [6], financial system
[7], epidemic model [8], and so on. At the same time,
fractional-order differential equations have been proved to be
an excellent tool in themodelling ofmany phenomena [9–11].
Recently, some important advances on dynamical behaviors
such as chaos phenomena, Hopf bifurcation, synchronization
control, and stabilization problems for fractional-order sys-
tems or fractional-order practical models have been reported
in [12–16]. These proposed results show the superiority and

importance of fractional calculus and effectively motivate the
development of new applied fields.

Note that various classes of neural networks such as
Hopfield neural networks [17, 18], recurrent neural networks
[19, 20], cellular neural networks [21], Cohen-Grossberg
neural networks [22], and bidirectional associative memory
(BAM) neural networks [23–25] have been widely used in
solving some signal processing, optimization, and image
processing problems. In the last few years, some researchers
have introduced fractional operators to neural networks to
form fractional-order neural models [26–30], which could
better describe the dynamical behaviors of the neurons. As an
important dynamic behavior, stability is one of the most con-
cerned problems for any dynamic system. For example, Song
and Cao [26] have established some sufficient conditions to
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ensure the existence and uniqueness of the nontrivial solution
by using the contraction mapping principle, Krasnoselskii
fixed point theorem, and the inequality technique, in which
uniform stability conditions of fractional-order neural net-
works are also derived in fixed time-intervals. Note that time-
delay (see [23–25, 31–37]) is a common phenomenon and
is inevitable in practice, which often exists in almost every
neural network and has an important effect on the stability
and performance of system.

There are also several recent results discussing the topics
including stability analysis for fractional-order dynamical
systems in [38, 39]. For instance, the stability problems of
main concern for control theory in finite-dimensional linear
fractional-order systems have been considered [38], in which
both internal and external stabilities for fractional-order dif-
ferential systems in state-space form have been studied. For
fractional-order differential systems in polynomial represen-
tation, the external stability has been thoroughly discussed.
In [39], Matouk has investigated the stability conditions of a
class of fractional-order hyperchaotic systems; then the sta-
bility conditions have been applied to a novel fractional-order
hyperchaotic system. Based on the Routh-Hurwitz theorem,
the conditions for controlling hyperchaos via feedback con-
trol approach have also been derived. At the same time, the
various kinds of stability of delayed fractional-order neural
networks have been extensively investigated. For example,
Mittag-Leffler stability of fractional-order delayed neural net-
works has been investigated by applying fractional Lyapunov
direct method [28, 30, 32].The finite-time stability of Caputo
fractional-order delayed neural networks has been studied
by applying Gronwall’s inequality approach and inequality
scaling techniques [33, 34]. The delay-independent stability
criteria of Riemann-Liouville fractional-order neutral-type
delayed neural networks have been proposed based on
classical Lyapunov functional method [35]. The uniform
stability and global stability of fractional neural networks
with delay are considered based on the fractional calculus
theory and analytical techniques [36]. Global 𝑜(𝑡−𝛼) stability
and global asymptotical periodicity for a class of fractional-
order complex-valued neural networks with time-varying
delays are discussed by using the fractional Lyapunovmethod
and a Leibniz rule for fractional differentiation [37].

Although most dynamical systems are analyzed in either
the continuous-time or discrete-time domain, many real
systems in physics, engineering, chemistry, biology, and
information science may experience abrupt changes as cer-
tain instants during the continuous dynamical processes.
This kind of impulsive behaviors can be modelled by impul-
sive systems [23, 25, 29, 32, 40–42]. On the other hand,
bidirectional associative memory (BAM) neural networks
attract many studies due to its extensive applications in many
fields [22–25, 43–46]. In [43], Kosko first introduced hybrid
BAM neural network models. The remarkable feature of the
proposed BAM neural networks lies in the close relation of
the neurons between the 𝑈-layer and 𝑉-layer. That is, the
neurons in one layer are fully interconnected to the one in
the other layer, but there are not any interconnections among
neurons in the same layer. It is worth mentioning that many
contributions have been made concerning the dynamics of

fractional-order BAM delayed neural networks (see [44–
46]) including finite-time stability [44] and Mittag-Leffler
synchronization [45]. In [46], globally asymptotic stability
problem of impulsive fractional-order neural networks with
discrete delays has been studied, yet the existence of the equi-
librium solution for fractional-order BAM neural networks
has not been taken into account. On the other hand, it should
be pointed out that the finite-time stability and asymptotic
stability in the sense of Lyapunov are different concepts,
because finite-time stability does not contain Lyapunov
asymptotic stability and vice versa [34, 47]. Although the
signal transmission is sometimes instantaneous modelling
with discrete delays, it may be sometimes a distribution
propagation delay over a period of time so that distributed
delays (see [20, 23, 25]) should not be ignored in the model.
Compared to the advances of integer-order neural networks
with or without time delays, the research on the stability
of fractional-order BAM delayed neural networks is still at
the stage of exploiting and developing [44–46]. To the best
of our knowledge, there are few papers on investigating the
global stability of the fractional-order hybrid BAM neural
networks with both impulse and distributed delay in the
current literature.

Motivated by the above discussions, this paper investi-
gates the existence and globally asymptotic stability of equi-
librium solution for impulsive Riemann-Liouville fractional-
order hybrid BAM neural networks with distributed delays.
The factors of such network systems including the distributed
delays, impulses, and two different fractional-order deriva-
tives between the𝑈-layer and𝑉- layer are taken into account
synchronously. Based on the contraction mapping principle,
the sufficient conditions are presented for the existence and
uniqueness of the equilibrium solution for such network
systems. By constructing a suitable Lyapunov functional asso-
ciated with fractional integral terms, the globally asymptotic
stability criteria of the equilibrium point are derived. The
advantage of constructing the Lyapunov functional is that
one can directly calculate its first-order derivative to check
global stability. A numerical example is also given to show
the validity and feasibility of the theoretical results.

This paper is organized as follows. In Section 2, we
recall some definitions concerning fractional calculus and
describe impulsive Riemann-Liouville fractional-order BAM
neural networks with distributed delays. In Section 3, the
existence and uniqueness of the equilibrium solution for
such network systems are discussed based on the contraction
mapping principle. In Section 4, the globally asymptotic
stability criteria of the equilibrium solution are derived. An
illustrative example is given to show the effectiveness and
applicability of the proposed results in Section 5. Finally,
some concluding remarks are drawn in Section 6.

2. Preliminaries and Model Description

In this section, we recall the definitions of fractional calculus
and several basic lemmas. Moreover, we describe a class
of impulsive fractional-order hybrid BAM neural network
models with distributed delays.
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Definition 1 (see [10]). The Riemann-Liouville fractional
integral of order 𝑞 for a function 𝑓 is defined as

𝑡0
𝐷−𝑞
𝑡
𝑓 (𝑡) = 1Γ (𝑞) ∫

𝑡

𝑡0

(𝑡 − 𝑠)𝑞−1 𝑓 (𝑠) 𝑑𝑠, (1)

where 𝑞 > 0, 𝑡 ⩾ 𝑡0. The Gamma function Γ(𝑞) is defined by
the integral

Γ (𝑧) = ∫+∞
0

𝑠𝑧−1𝑒−𝑠𝑑𝑠, (Re (𝑧) > 0) . (2)

Currently, there exist several definitions about the frac-
tional derivative of order 𝑞 > 0 includingGrünwald-Letnikov
(GL) definition, Riemann-Liouville (RL) definition, and
Caputo definition [9–11]. In this paper, our consideration is
the fractional-order neural networks with Riemann-Liouville
derivative, whose definition and properties are given below.

Definition 2 (see [10]). The Riemann-Liouville fractional
derivative of order 𝑞 for a function 𝑓 is defined as

RL
𝑡0
𝐷𝑞
𝑡
𝑓 (𝑡) = 𝑑𝑚𝑑𝑡𝑚 [ 𝑡0𝐷−(𝑚−𝑞)𝑡

𝑓 (𝑡)]
= 1Γ (𝑚 − 𝑞) 𝑑

𝑚

𝑑𝑡𝑚 ∫
𝑡

𝑡0

(𝑡 − 𝑠)𝑚−𝑞−1 𝑓 (𝑠) 𝑑𝑠,
(3)

where 0 ⩽ 𝑚 − 1 < 𝑞 < 𝑚, 𝑚 ∈ Z+.
In particular, for 𝛼 ∈ (0, 1) case, the Riemann-Liouville

fractional derivative of order 𝛼 for a constant 𝑥∗ is
RL
0𝐷𝛼𝑡 𝑥∗ = 𝑡−𝛼Γ (1 − 𝛼)𝑥∗. (4)

Lemma 3 (see [10]). If 𝑓(𝑡), 𝑔(𝑡) ∈ C𝑚[𝑡0, 𝑏], and 𝑚 − 1 ⩽𝑝 < 𝑚 ∈ Z+, then
(1) RL
𝑡0
𝐷𝑞
𝑡
(𝐿1𝑓(𝑡) + 𝐿2𝑔(𝑡)) = 𝐿1RL𝑡0𝐷𝑞𝑡𝑓(𝑡) + 𝐿2RL𝑡0𝐷𝑞𝑡𝑔(𝑡),𝐿1, 𝐿2 ∈ R, 𝑞 > 0;

(2) 𝑡0𝐷−𝑝𝑡 ( 𝑡0𝐷−𝑞𝑡 𝑓(𝑡)) = 𝑡0𝐷−(𝑝+𝑞)𝑡
𝑓(𝑡), 𝑝, 𝑞 > 0;

(3) RL
𝑡0
𝐷𝑝
𝑡
( 𝑡0𝐷−𝑞𝑡 𝑓(𝑡)) = RL

𝑡0
𝐷𝑝−𝑞
𝑡
𝑓(𝑡), 𝑝 > 𝑞 > 0;

(4) RL
𝑡0
𝐷𝑝
𝑡
( 𝑡0𝐷−𝑞𝑡 𝑓(𝑡)) = 𝑡0𝐷−(𝑞−𝑝)𝑡

𝑓(𝑡), 𝑞 > 𝑝 > 0.
The following lemmas will be used in the proof of our

main results.

Lemma4 (contractionmapping principle [48]). Suppose that(𝑋, 𝜌) is a completemetric space,Φ : 𝑋 → 𝑋, and there is some
real number 0 < 𝑘 < 1 such that

𝜌 (Φ (𝑥) , Φ (𝑦)) ⩽ 𝑘𝜌 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋; (5)

then there is a unique point 𝑥0 ∈ 𝑋 such that Φ(𝑥0) = 𝑥0.
Lemma5 (fractional Barbalat lemma [42]). If∫𝑡

𝑡0
𝑤(𝑠)𝑑𝑠has a

finite limit as 𝑡 → +∞, and RL
𝑡0
𝐷𝛼
𝑡
𝑤(𝑡) is bounded, then𝑤(𝑡) →0 as 𝑡 → +∞, where 0 < 𝛼 < 1.

In this paper, we consider the Riemann-Liouville frac-
tional-order hybrid BAM neural network models with dis-
tributed delay and impulsive effects described by the follow-
ing states equations:

RL
0𝐷𝛼𝑡 𝑥𝑖 (𝑡) = −𝑎𝑖𝑥𝑖 (𝑡) +

𝑚∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑖𝑗 (𝑠) 𝑓𝑗 (𝑦𝑗 (𝑡 − 𝑠)) 𝑑𝑠 + 𝐼𝑖,

𝑡 > 0, 𝑡 ̸= 𝑡𝑘,
Δ𝑥𝑖 (𝑡𝑘) = 𝛾(1)𝑘 (𝑥𝑖 (𝑡𝑘)) ,

𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . ,
RL
0𝐷𝛽𝑡 𝑦𝑗 (𝑡) = −𝑐𝑗𝑦𝑗 (𝑡) +

𝑛∑
𝑖=1

𝑑𝑗𝑖𝑔𝑖 (𝑥𝑖 (𝑡))

+ 𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑗𝑖 (𝑠) 𝑔𝑖 (𝑥𝑖 (𝑡 − 𝑠)) 𝑑𝑠 + 𝐽𝑗,

𝑡 > 0, 𝑡 ̸= 𝑡𝑘,
Δ𝑦𝑗 (𝑡𝑘) = 𝛾(2)𝑘 (𝑦𝑗 (𝑡𝑘)) ,

𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . ,

(6)

where 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and 𝑉 = {𝑦1, 𝑦2, . . . , 𝑦𝑚} are two
layers in the BAMmodel (6);𝑥𝑖(𝑡) and𝑦𝑗(𝑡) are state variables
of 𝑖th neuron in the 𝑈-layer and 𝑗th neuron in the 𝑉-layer,
respectively; RL

0𝐷𝛼𝑡 𝑥𝑖(⋅) and RL
0𝐷𝛽𝑡 𝑦𝑗(⋅) denote an 𝛼 and a 𝛽

order Riemann-Liouville fractional-order derivative of 𝑥𝑖(⋅)
and 𝑦𝑗(⋅), respectively; the constants 𝛼 and 𝛽 satisfy 0 < 𝛼 <1, 0 < 𝛽 < 1. 𝑎𝑖 > 0 and 𝑐𝑗 > 0 denote decay coefficients of
signals from neurons 𝑥𝑖 to 𝑦𝑗, respectively; 𝑓𝑖 and 𝑔𝑗 are the
neuron activation functions; 𝑏𝑖𝑗, 𝑑𝑗𝑖, 𝑟𝑖𝑗(𝑡) and 𝑝𝑗𝑖(𝑡) represent
the weight coefficients of the neurons; 𝐼𝑖 and 𝐽𝑗 denote the
external inputs of 𝑈-layer and 𝑉-layer, respectively; 𝜏 >0 denotes the maximum possible transmission delay from
neuron to another. Moreover, impulsive moments {𝑡𝑘 | 𝑘 =1, 2, . . .} satisfy 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅ , 𝑡𝑘 → +∞
as 𝑘 → +∞, and

Δ𝑥𝑖 (𝑡𝑘) = 𝑥𝑖 (𝑡+𝑘 ) − 𝑥𝑖 (𝑡−𝑘 ) ,
𝑥𝑖 (𝑡+𝑘 ) = lim

𝜀→0+
𝑥𝑖 (𝑡𝑘 + 𝜀) , 𝑥𝑖 (𝑡−𝑘 ) = 𝑥𝑖 (𝑡𝑘) ,

Δ𝑦𝑗 (𝑡𝑘) = 𝑦𝑗 (𝑡+𝑘 ) − 𝑦𝑗 (𝑡−𝑘 ) ,
𝑦𝑗 (𝑡+𝑘 ) = lim

𝜀→0+
𝑦𝑗 (𝑡𝑘 + 𝜀) , 𝑦𝑗 (𝑡−𝑘 ) = 𝑦𝑗 (𝑡𝑘) ,

(7)

where 𝑥𝑖(𝑡+𝑘 ) and 𝑥𝑖(𝑡−𝑘 ) represent the right and left limits of𝑥𝑖(𝑡) at 𝑡 = 𝑡𝑘, respectively; 𝑥𝑖(𝑡−𝑘 ) = 𝑥𝑖(𝑡𝑘) and 𝑦𝑗(𝑡−𝑘 ) = 𝑦𝑗(𝑡𝑘)
imply that 𝑥𝑖(𝑡) and 𝑦𝑗(𝑡) are both left continuous at 𝑡 =𝑡𝑘. The initial conditions associated with Riemann-Liouville
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fractional-order network system (6) can be expressed as (see
[9–11])

0𝐷−(1−𝛼)𝑡 𝑥𝑖 (𝑡) = 𝜑𝑖 (𝑡) ,
0𝐷−(1−𝛼)𝑡 𝑦𝑗 (𝑡) = 𝜓𝑗 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚, 𝑡 ∈ [−𝜏, 0] .
(8)

Throughout this paper, we assume that the neuron acti-
vation functions 𝑓𝑗, 𝑔𝑖 and impulsive operators 𝛾(1)

𝑘
(𝑥𝑖(𝑡𝑘)),𝛾(2)

𝑘
(𝑦𝑗(𝑡𝑘)) satisfy the following conditions:
(H1) For 𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚, the functions 𝑟𝑖𝑗(⋅)

and 𝑝𝑗𝑖(⋅) are continuous on [0, 𝜏]. Thus, there exist positive
constants 𝑅𝑖𝑗, 𝑃𝑗𝑖 ∈ R+ such that󵄨󵄨󵄨󵄨󵄨𝑟𝑖𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 ⩽ 𝑅𝑖𝑗,󵄨󵄨󵄨󵄨󵄨𝑝𝑗𝑖 (𝑠)󵄨󵄨󵄨󵄨󵄨 ⩽ 𝑃𝑗𝑖,

∀𝑠 ∈ [0, 𝜏] .
(9)

(H2) The neuron activation functions 𝑓𝑗(⋅), 𝑔𝑖(⋅) (𝑖 =1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚) are Lipschitz continuous. That is,
there exist positive constants 𝐹𝑗, 𝐺𝑗 ∈ R+ such that󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑥) − 𝑓𝑗 (𝑦)󵄨󵄨󵄨󵄨󵄨 ⩽ 𝐹𝑗 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑔𝑖 (𝑥) − 𝑔𝑖 (𝑦)󵄨󵄨󵄨󵄨 ⩽ 𝐺𝑖 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ,

∀𝑥, 𝑦 ∈ R.
(10)

(H3)The impulsive operators 𝛾(1)
𝑘
(𝑥𝑖(𝑡𝑘)) and 𝛾(2)𝑘 (𝑦𝑗(𝑡𝑘))

satisfy

𝛾(1)𝑘 (𝑥𝑖 (𝑡𝑘)) = −𝜆(1)𝑖𝑘 (𝑥𝑖 (𝑡𝑘) − 𝑥∗𝑖 ) ,
𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . ,

𝛾(2)𝑘 (𝑦𝑗 (𝑡𝑘)) = −𝜆(2)𝑗𝑘 (𝑦𝑗 (𝑡𝑘) − 𝑦∗𝑗 ) ,
𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . ,

(11)

where 𝜆(1)
𝑖𝑘
∈ (0, 2) (𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . .), and 𝜆(2)

𝑗𝑘
∈(0, 2) (𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . .).

Remark 6. The purpose of this paper is to investigate the
existence and globally asymptotic stability conditions of
the equilibrium solution for fractional-order BAM network
model (6). In discussing the stability of neural networks,
the neuron activation functions are usually assumed to be
bounded, monotonic [23], and differential [36, 37]. In system
(6), the neuron activation functions are not necessarily
bounded, monotonic, and differential.Therefore, the globally
asymptotic stability criteria are more general and less conser-
vative in this paper.

3. Existence of Equilibrium Solution

In this section, the sufficient conditions for the existence
and uniqueness of the equilibrium solution of system (6) are
derived based on the contraction mapping principle [48].

Similar to integer-order differential systems, we first
define the equilibrium solution of fractional-order network
systems. It should be pointed out that Riemann-Liouville
fractional-order derivative of a nonzero constant is not
equal to zero, which leads to the remarkable difference of
the equilibrium solution between integer-order systems and
Riemann-Liouville fractional-order systems.

Definition 7. Aconstant vector (𝑥∗𝑇, 𝑦∗𝑇)𝑇 = (𝑥∗1 , 𝑥∗2 , . . . , 𝑥∗𝑛 ,𝑦∗1 , 𝑦∗2 , . . . , 𝑦∗𝑚)𝑇 ∈ R𝑛+𝑚 is an equilibrium solution of system
(6) if and only if 𝑥∗ = (𝑥∗1 , 𝑥∗2 , . . . , 𝑥∗𝑛 )𝑇 and 𝑦∗ = (𝑦∗1 , 𝑦∗2 , . . . ,𝑦∗𝑚)𝑇 satisfy the following equations:

RL
0𝐷𝛼𝑡 {𝑥∗𝑖 } = −𝑎𝑖𝑥∗𝑖 +

𝑚∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦∗𝑗 )

+ 𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑖𝑗 (𝑠) 𝑓𝑗 (𝑦∗𝑗 ) 𝑑𝑠 + 𝐼𝑖,

𝑖 = 1, 2, . . . , 𝑛,
RL
0𝐷𝛽𝑡 {𝑦∗𝑗 } = −𝑐𝑗𝑦∗𝑗 +

𝑛∑
𝑖=1

𝑑𝑗𝑖𝑔𝑖 (𝑥∗𝑖 )

+ 𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑗𝑖 (𝑠) 𝑔𝑖 (𝑥∗𝑖 ) 𝑑𝑠 + 𝐽𝑗,

𝑗 = 1, 2, . . . , 𝑚,

(12)

and the impulsive jumps 𝛾(1)
𝑘
(𝑥𝑖(𝑡𝑘)) and 𝛾(2)

𝑘
(𝑦𝑗(𝑡𝑘)) are

assumed to satisfy

𝛾(1)𝑘 (𝑥∗𝑖 ) = 0,
𝛾(2)𝑘 (𝑦∗𝑗 ) = 0,

𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . .
(13)

In what follows, we use the following vector norm of
R𝑛+𝑚:

‖𝑢‖ = 𝑛+𝑚∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨 , 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛+𝑚)𝑇 ∈ R𝑛+𝑚. (14)

Theorem 8. Suppose that conditions (H1)–(H3) hold; then
there exists a unique equilibrium solution for system (6), if the
following inequalities simultaneously hold for a small enough
constant 𝜀 > 0

𝜔1 = max
1⩽𝑖⩽𝑛

{{{
𝜀Γ (1 − 𝛼) ⋅ 1𝑎𝑖 +

𝐺𝑖𝑎𝑖
𝑚∑
𝑗=1

[󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖]}}}
< 1,
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𝜔2 = max
1⩽𝑗⩽𝑚

{ 𝜀Γ (1 − 𝛽) ⋅ 1𝑐𝑗 +
𝐹𝑗𝑐𝑗
𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗]}
< 1.

(15)

Proof. According to Definition 2, for 𝛼, 𝛽 ∈ (0, 1), the
Riemann-Liouville fractional-order derivatives of the con-
stants 𝑢∗𝑖 and V∗𝑗 can be written as the following forms:

RL
0𝐷𝛼𝑡 𝑢∗𝑖 = 𝑡−𝛼Γ (1 − 𝛼)𝑢∗𝑖 ,

RL
0𝐷𝛽𝑡 V∗𝑗 = 𝑡−𝛽Γ (1 − 𝛽)V∗𝑗 ,

𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚.
(16)

Define a mapping Φ : R𝑛+𝑚 → R𝑛+𝑚, where u = (𝑢1, . . . , 𝑢𝑛,
V1, . . . , V𝑚)𝑇 ∈ R𝑛+𝑚 and

Φ (u) =

[[[[[[[[[[[[[[[[[[[[[
[

𝑚∑
𝑗=1

𝑏1𝑗𝑓𝑗 (V𝑗𝑐𝑗 ) +
𝑚∑
𝑗=1

∫𝜏
0
𝑟1𝑗 (𝑠) 𝑓𝑗 (V𝑗𝑐𝑗 )𝑑𝑠 + 𝐼1 −

𝑡−𝛼Γ (1 − 𝛼) 𝑢1𝑎1...
𝑚∑
𝑗=1

𝑏𝑛𝑗𝑓𝑗 (V𝑗𝑐𝑗 ) +
𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑛𝑗 (𝑠) 𝑓𝑗 (V𝑗𝑐𝑗 )𝑑𝑠 + 𝐼𝑛 −

𝑡−𝛼Γ (1 − 𝛼) 𝑢𝑛𝑎𝑛
𝑛∑
𝑖=1

𝑑1𝑖𝑔𝑖 (𝑢𝑖𝑎𝑖 ) +
𝑛∑
𝑖=1

∫𝜏
0
𝑝1𝑖 (𝑠) 𝑔𝑖 (𝑢𝑖𝑎𝑖 )𝑑𝑠 + 𝐽1 −

𝑡−𝛽Γ (1 − 𝛽) V1𝑐1...
𝑛∑
𝑖=1

𝑑𝑚𝑖𝑔𝑖 (𝑢𝑖𝑎𝑖 ) +
𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑚𝑖 (𝑠) 𝑔𝑖 (𝑢𝑖𝑎𝑖 )𝑑𝑠 + 𝐽𝑚 −

𝑡−𝛽Γ (1 − 𝛽) Vm𝑐𝑚

]]]]]]]]]]]]]]]]]]]]]
]

. (17)

Consider ∀u = (𝑢1, . . . , 𝑢𝑛, V1, . . . , V𝑚)𝑇 ∈ R𝑛+𝑚; then it
follows from (14) that

‖Φ (u) − Φ (u)‖ ⩽ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑚∑
𝑗=1

{𝑏𝑖𝑗 [𝑓𝑗 (V𝑗𝑐𝑗 ) − 𝑓𝑗 (
V𝑗𝑐𝑗 )] + ∫

𝜏

0
𝑟𝑖𝑗 (𝑠) [𝑓𝑗 (V𝑗𝑐𝑗 ) − 𝑓𝑗 (

V𝑗𝑐𝑗 )]𝑑𝑠}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑖=1

{𝑑𝑗𝑖 [𝑔𝑖 (𝑢𝑖𝑎𝑖 ) − 𝑔𝑖 (
𝑢𝑖𝑎𝑖 )] + ∫

𝜏

0
𝑝𝑗𝑖 (𝑠) [𝑔𝑖 (𝑢𝑖𝑎𝑖 ) − 𝑔𝑖 (

𝑢𝑖𝑎𝑖 )]𝑑𝑠}
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡−𝛼Γ (1 − 𝛼) [𝑢𝑖𝑎𝑖 −

𝑢𝑖𝑎𝑖 ]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑡−𝛽Γ (1 − 𝛽) [

V𝑗𝑐𝑗 −
V𝑗𝑐𝑗 ]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(18)

According to (H1)-(H2), one has

‖Φ (u) − Φ (u)‖ ⩽ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

{󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐹𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
V𝑗 − V𝑗𝑐𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ ∫𝜏
0

󵄨󵄨󵄨󵄨󵄨𝑟𝑖𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝐹𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
V𝑗 − V𝑗𝑐𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠}

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

{󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐺𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢𝑖 − 𝑢𝑖𝑎𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ ∫𝜏
0

󵄨󵄨󵄨󵄨󵄨𝑝𝑗𝑖 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝐺𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢𝑖 − 𝑢𝑖𝑎𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑠} +
𝑡−𝛼Γ (1 − 𝛼)

⋅max
1⩽𝑖⩽𝑛

{ 1𝑎𝑖} ⋅
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 − 𝑢𝑖󵄨󵄨󵄨󵄨 + 𝑡−𝛽Γ (1 − 𝛽) ⋅ max
1⩽𝑗⩽𝑚

{ 1𝑐𝑗}
⋅ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 − V𝑗󵄨󵄨󵄨󵄨󵄨 ,
(19)

For 𝛼, 𝛽 ∈ (0, 1), we have lim𝑡→+∞𝑡−𝛼 = 0, lim𝑡→+∞𝑡−𝛽 = 0.
Therefore, there exists a small enough constant 𝜀 > 0 such
that 𝑡−𝛼 < 𝜀, 𝑡−𝛽 < 𝜀. Thus, it follows from (19) that

‖Φ (u) − Φ (u)‖ ⩽ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

[
󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗𝑐𝑗 𝐹𝑗 󵄨󵄨󵄨󵄨󵄨V𝑗 − V𝑗󵄨󵄨󵄨󵄨󵄨]

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

[
󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖𝑎𝑖 𝐺𝑖 󵄨󵄨󵄨󵄨𝑢𝑖 − 𝑢𝑖󵄨󵄨󵄨󵄨] + 𝜀Γ (1 − 𝛼)
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⋅max
1⩽𝑖⩽𝑛

{ 1𝑎𝑖} ⋅
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 − 𝑢𝑖󵄨󵄨󵄨󵄨 + 𝜀Γ (1 − 𝛽) ⋅ max
1⩽𝑗⩽𝑚

{ 1𝑐𝑗}

⋅ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 − V𝑗󵄨󵄨󵄨󵄨󵄨
⩽ max
1⩽𝑗⩽𝑚

{ 𝜀Γ (1 − 𝛽) ⋅ 1𝑐𝑗 +
𝐹𝑗𝑐𝑗
𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗]}

⋅ 𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 − V𝑗󵄨󵄨󵄨󵄨󵄨

+max
1⩽𝑖⩽𝑛

{{{
𝜀Γ (1 − 𝛼) ⋅ 1𝑎𝑖 +

𝐺𝑖𝑎𝑖
𝑚∑
𝑗=1

[󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖]}}}
⋅ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 − 𝑢𝑖󵄨󵄨󵄨󵄨 .
(20)

Let 𝑘 = max{𝜔1, 𝜔2}, where 𝜔1 and 𝜔2 are defined in (15).
Hence, we have

‖Φ (u) − Φ (u)‖ ⩽ 𝑘[
[
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 − 𝑢𝑖󵄨󵄨󵄨󵄨 +
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 − V𝑗󵄨󵄨󵄨󵄨󵄨]]
= 𝑘 ‖u − u‖ .

(21)

Thus, it follows from (15) that 0 < 𝑘 < 1, which implies thatΦ : R𝑛+𝑚 → R𝑛+𝑚 is a contraction mapping.Therefore, from
Lemma 4, there exists a unique fixed point of the map Φ :
R𝑛+𝑚 → R𝑛+𝑚, such thatΦ(u∗) = u∗. Thus, from (17), we get

𝑚∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (V
∗
𝑗𝑐𝑗 ) +

𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑖𝑗 (𝑠) 𝑓𝑗 (V

∗
𝑗𝑐𝑗 )𝑑𝑠 + 𝐼𝑖

− 𝑡−𝛼Γ (1 − 𝛼)
𝑢∗𝑖𝑎𝑖 = 𝑢∗𝑖 , 𝑖 = 1, 2, . . . , 𝑛,

𝑛∑
𝑖=1

𝑑𝑗𝑖𝑔𝑖 (𝑢∗𝑖𝑎𝑖 ) +
𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑗𝑖 (𝑠) 𝑔𝑖 (𝑢∗𝑖𝑎𝑖 )𝑑𝑠 + 𝐽𝑗

− 𝑡−𝛽Γ (1 − 𝛽)
V∗𝑗𝑐𝑗 = V∗𝑗 , 𝑗 = 1, 2, . . . , 𝑚.

(22)

Let 𝑥∗𝑖 = 𝑢∗𝑖 /𝑎𝑖, 𝑦∗𝑗 = V∗𝑗 /𝑐𝑗; then it follows from (22) that
𝑚∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦∗𝑗 ) + 𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑖𝑗 (𝑠) 𝑓𝑗 (𝑦∗𝑗 ) 𝑑𝑠 + 𝐼𝑖

− 𝑡−𝛼Γ (1 − 𝛼)𝑥∗𝑖 = 𝑎𝑖𝑥∗𝑖 , 𝑖 = 1, 2, . . . , 𝑛,
𝑛∑
𝑖=1

𝑑𝑗𝑖𝑔𝑖 (𝑥∗𝑖 ) + 𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑗𝑖 (𝑠) 𝑔𝑖 (𝑥∗𝑖 ) 𝑑𝑠 + 𝐽𝑗

− 𝑡−𝛽Γ (1 − 𝛽)𝑦∗𝑗 = 𝑐𝑗𝑦∗𝑗 , 𝑗 = 1, 2, . . . , 𝑚;

(23)

that is
𝑚∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑦∗𝑗 ) + 𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑖𝑗 (𝑠) 𝑓𝑗 (𝑦∗𝑗 ) 𝑑𝑠 + 𝐼𝑖 − 𝑎𝑖𝑥∗𝑖

= RL
0𝐷𝛼𝑡 {𝑥∗𝑖 } , 𝑖 = 1, 2, . . . , 𝑛,

𝑛∑
𝑖=1

𝑑𝑗𝑖𝑔𝑖 (𝑥∗𝑖 ) + 𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑗𝑖 (𝑠) 𝑔𝑖 (𝑥∗𝑖 ) 𝑑𝑠 + 𝐽𝑗 − 𝑐𝑗𝑦∗𝑗

= RL
0𝐷𝛽𝑡 {𝑦∗𝑗 } , 𝑗 = 1, 2, . . . , 𝑚.

(24)

According to (H3), we know that

𝛾(1)𝑘 (𝑥∗𝑖 ) = 0,
𝛾(2)𝑘 (𝑦∗𝑗 ) = 0,

𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . .
(25)

Thus, it follows from Definition 7 that (𝑥∗1 , 𝑥∗2 , . . . , 𝑥∗𝑛 , 𝑦∗1 ,𝑦∗2 , . . . , 𝑦∗𝑚)𝑇 ∈ R𝑛+𝑚 is a unique equilibrium solution for
system (6). The proof is complete.

The following corollary is the direct result of Theorem 8.

Corollary 9. Suppose that conditions (H1)–(H3) hold; then
there exists a unique equilibrium solution for system (6), if the
following inequalities simultaneously hold for a small enough
constant 𝜀 > 0

min
1⩽𝑖⩽𝑛

{{{
𝑎𝑖 − 𝜀Γ (1 − 𝛼) − 𝐺𝑖

𝑚∑
𝑗=1

[󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖]}}}
> 0,

min
1⩽𝑗⩽𝑚

{𝑐𝑗 − 𝜀Γ (1 − 𝛽) − 𝐹𝑗
𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗]} > 0.
(26)

Remark 10. Theorem 8 and Corollary 9 reveal that the
conditions of existence and uniqueness of the equilibrium
solution for system (6) are based on the contraction mapping
principle, which can be expressed in terms of the algebraic
inequalities. The conditions of existence and uniqueness of
the equilibrium point for system (6) reflect the close relation
between the coefficients, neuron activation functions, and
time-delay of network parameters, which are also dependent
on the orders 𝛼 and 𝛽 of Riemann-Liouville derivatives. On
the other hand, if we only assume that (H1)–(H3) hold, then
there exists at least an equilibrium solution for system (6)
by applying Schauder fixed point theorem, whose proof is
omitted here.

4. Globally Asymptotic Stability Criteria

In this section, by constructing a novel Lyapunov functional,
we obtain the sufficient conditions to ensure the globally
asymptotic stability of the equilibrium solution for system (6)
based on fractional Barbalat theorem and classical Lyapunov
stability theory.
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Theorem 11. Suppose that conditions (H1)–(H3) hold; then a
unique equilibrium solution for system (6) is globally asymptot-
ically stable, if the following inequalities simultaneously hold for
a small enough constant 𝜀 > 0

𝜂1 = min
1⩽𝑖⩽𝑛

{{{
𝑎𝑖 − 𝐺𝑖 𝑚∑

𝑗=1

[󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖]}}}
> 𝜀Γ (1 − 𝛼) ,

𝜂2 = min
1⩽𝑗⩽𝑚

{𝑐𝑗 − 𝐹𝑗 𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗]} > 𝜀Γ (1 − 𝛽) .
(27)

Proof. From Corollary 9, there exists a unique equilibrium
solution (𝑥∗𝑇, 𝑦∗𝑇)𝑇 for system (6). By using the variable
transformation method, we can shift the equilibrium point
to the origin. Let 𝑢𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥∗𝑖 , V𝑗(𝑡) = 𝑦𝑗(𝑡) − 𝑦∗𝑗 ; then
system (6) is transformed into

RL
0𝐷𝛼𝑡 𝑢𝑖 (𝑡)
= −𝑎𝑖𝑢𝑖 (𝑡) + 𝑚∑

𝑗=1

𝑏𝑖𝑗 [𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗 (𝑦∗𝑗 )]

+ 𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑖𝑗 (𝑠) [𝑓𝑗 (𝑦𝑗 (𝑡 − 𝑠)) − 𝑓𝑗 (𝑦∗𝑗 )] 𝑑𝑠,

𝑡 ̸= 𝑡𝑘,
𝑢𝑖 (𝑡+𝑘 ) = (1 − 𝜆(1)𝑖𝑘 ) 𝑢𝑖 (𝑡−𝑘 ) ,

𝑖 = 1, 2, . . . , 𝑛; 𝑘 = 1, 2, . . . ,
RL
0𝐷𝛽𝑡 V𝑗 (𝑡)
= −𝑐𝑗V𝑗 (𝑡) + 𝑛∑

𝑖=1

𝑑𝑗𝑖 [𝑔𝑖 (𝑥𝑖 (𝑡)) − 𝑔𝑖 (𝑥∗𝑖 )]

+ 𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑗𝑖 (𝑠) [𝑔𝑖𝑥𝑖 (𝑡 − 𝑠) − 𝑔𝑖 (𝑥∗𝑖 )] 𝑑𝑠,

𝑡 ̸= 𝑡𝑘,
V𝑗 (𝑡+𝑘 ) = (1 − 𝜆(2)𝑗𝑘 ) V𝑗 (𝑡−𝑘 ) ,

𝑗 = 1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . .

(28)

Construct a novel Lyapunov functional composed of frac-
tional-order integral and definite integral terms:

𝑉 (𝑡) = 0𝐷−(1−𝛼)𝑡 [ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨]

+ 0𝐷−(1−𝛽)𝑡
[
[
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨]]

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ∫
𝑡

𝑡−𝜏

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 ∫
𝑡

𝑡−𝜏

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0
∫𝑡
𝑡−𝑠

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝜂)󵄨󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0
∫𝑡
𝑡−𝑠

󵄨󵄨󵄨󵄨𝑢𝑖 (𝜂)󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠.
(29)

The time derivative of 𝑉(𝑡) along the trajectories of system
(6) can be calculated, which are carried out for the following
cases.

Case 1. For 𝑡 ̸= 𝑡𝑘, from Lemma 3, we obtain

𝑑+𝑉 (𝑡)𝑑𝑡 = RL
0𝐷𝛼𝑡 [

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨] + RL
0𝐷𝛽𝑡 [[

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨]]
+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨󵄨]

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨]

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0
[󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨󵄨] 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0
[󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨] 𝑑𝑠.

(30)

An application of Definition 2 yields

RL
0𝐷𝛼𝑡 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 = sgn (𝑢𝑖 (𝑡)) ⋅ (RL0𝐷𝛼𝑡 𝑢𝑖 (𝑡)) ,

RL
0𝐷𝛽𝑡 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 = sgn (V𝑗 (𝑡)) ⋅ (RL0𝐷𝛽𝑡 V𝑗 (𝑡)) ,

(31)

where sgn(⋅) denotes the standard signum function. Thus,
(30) can be rewritten as

𝑑+𝑉 (𝑡)𝑑𝑡 = 𝑛∑
𝑖=1

sgn (𝑢𝑖 (𝑡)) [RL0𝐷𝛼𝑡 (𝑢𝑖 (𝑡))]

+ 𝑚∑
𝑗=1

sgn (V𝑗 (𝑡)) [RL0𝐷𝛽𝑡 (V𝑗 (𝑡))]

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨󵄨]
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+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨]

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0
[󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨󵄨] 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0
[󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨] 𝑑𝑠.

(32)

Combining (28) and (32) yields

𝑑+𝑉 (𝑡)𝑑𝑡 = 𝑛∑
𝑖=1

sgn (𝑢𝑖 (𝑡)){{{
−𝑎𝑖𝑢𝑖 (𝑡)

+ 𝑚∑
𝑗=1

𝑏𝑖𝑗 [𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗 (𝑦∗𝑗 )]

+ 𝑚∑
𝑗=1

∫𝜏
0
𝑟𝑖𝑗 (𝑠) [𝑓𝑗 (𝑦𝑗 (𝑡 − 𝑠)) − 𝑓𝑗 (𝑦∗𝑗 )] 𝑑𝑠}}}

+ 𝑚∑
𝑗=1

sgn (V𝑗 (𝑡)) {−𝑐𝑗V𝑗 (𝑡)

+ 𝑛∑
𝑖=1

𝑑𝑗𝑖 [𝑔𝑖 (𝑥𝑖 (𝑡)) − 𝑔𝑖 (𝑥∗𝑖 )]

+ 𝑛∑
𝑖=1

∫𝜏
0
𝑝𝑗𝑖 (𝑠) [𝑔𝑖𝑥𝑖 (𝑡 − 𝑠) − 𝑔𝑖 (𝑥∗𝑖 )] 𝑑𝑠}

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨󵄨]

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨] +
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗
⋅ ∫𝜏
0
[󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨󵄨] 𝑑𝑠 +

𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖
⋅ ∫𝜏
0
[󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨] 𝑑𝑠.

(33)

By computations, we have

𝑑+𝑉 (𝑡)𝑑𝑡 ⩽ − 𝑛∑
𝑖=1

𝑎𝑖 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 −
𝑛∑
𝑗=𝑚

𝑐𝑗 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨󵄨
+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨󵄨]

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 [󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨]

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0
[󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨󵄨] 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0
[󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡 − 𝑠)󵄨󵄨󵄨󵄨] 𝑑𝑠

⩽ − 𝑛∑
𝑖=1

𝑎𝑖 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 −
𝑛∑
𝑗=𝑚

𝑐𝑗 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑑𝑠

⩽ 𝑛∑
𝑖=1

{{{
−𝑎𝑖 + 𝐺𝑖 𝑚∑

𝑗=1

(󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖)}}}
󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨

+ 𝑚∑
𝑗=1

{−𝑐𝑗 + 𝐹𝑗 𝑛∑
𝑖=1

(󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗)} 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
⩽ − 𝜀Γ (1 − 𝛼)

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡)󵄨󵄨󵄨󵄨
− 𝜀Γ (1 − 𝛽)

𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨 , 𝑡 ̸= 𝑡𝑘,
(34)

which implies that 𝑑+𝑉(𝑡)/𝑑𝑡 ⩽ 0 as 𝑡 ̸= 𝑡𝑘. Hence, for any𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘), we get
𝑉 (𝑡) + ∫𝑡𝑘

𝑡𝑘−1

[
[

𝜀Γ (1 − 𝛼)
𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑠)󵄨󵄨󵄨󵄨

+ 𝜀Γ (1 − 𝛽)
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨]]
𝑑𝑠 ⩽ 𝑉 (𝑡+𝑘−1) .

(35)
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Case 2. For 𝑡 = 𝑡𝑘, from (29), one has

𝑉 (𝑡+𝑘 ) = 0𝐷−(1−𝛼)𝑡+
𝑘

[ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡+𝑘 )󵄨󵄨󵄨󵄨]

+ 0𝐷−(1−𝛽)𝑡+
𝑘

[
[
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡+𝑘 )󵄨󵄨󵄨󵄨󵄨]]
+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ∫
𝑡+
𝑘

𝑡+
𝑘
−𝜏

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 ∫
𝑡+
𝑘

𝑡+
𝑘
−𝜏

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0
∫𝑡+𝑘
𝑡+
𝑘
−𝑠

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝜂)󵄨󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0
∫𝑡+𝑘
𝑡+
𝑘
−𝑠

󵄨󵄨󵄨󵄨𝑢𝑖 (𝜂)󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠.

(36)

From (H3), we get

𝑉 (𝑡+𝑘 ) = 0𝐷−(1−𝛼)𝑡+
𝑘

[ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨1 − 𝜆(1)𝑖𝑘 󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡−𝑘 )󵄨󵄨󵄨󵄨]

+ 0𝐷−(1−𝛽)𝑡+
𝑘

[
[
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨1 − 𝜆(2)𝑗𝑘 󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡−𝑘 )󵄨󵄨󵄨󵄨󵄨]]
+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ∫
𝑡+
𝑘

𝑡+
𝑘
−𝜏

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 ∫
𝑡+
𝑘

𝑡+
𝑘
−𝜏

󵄨󵄨󵄨󵄨𝑢i (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0
∫𝑡+𝑘
𝑡+
𝑘
−𝑠

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝜂)󵄨󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0
∫𝑡+𝑘
𝑡+
𝑘
−𝑠

󵄨󵄨󵄨󵄨𝑢𝑖 (𝜂)󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠.

(37)

Note that the inequalities |1−𝜆(1)
𝑖𝑘
| < 1 and |1−𝜆(2)

𝑗𝑘
| < 1 hold;

then

𝑉 (𝑡+𝑘 ) ⩽ 0𝐷−(1−𝛼)𝑡−
𝑘

[ 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡−𝑘 )󵄨󵄨󵄨󵄨]

+ 0𝐷−(1−𝛽)𝑡−
𝑘

[
[
𝑚∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑡−𝑘 )󵄨󵄨󵄨󵄨󵄨]]
+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ∫
𝑡+
𝑘

𝑡+
𝑘
−𝜏

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝑠)󵄨󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 ∫
𝑡+
𝑘

𝑡+
𝑘
−𝜏

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹𝑗𝑅𝑖𝑗 ∫𝜏
0
∫𝑡+𝑘
𝑡+
𝑘
−𝑠

󵄨󵄨󵄨󵄨󵄨V𝑗 (𝜂)󵄨󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠

+ 𝑚∑
𝑗=1

𝑛∑
𝑖=1

𝐺𝑖𝑃𝑗𝑖 ∫𝜏
0
∫𝑡+𝑘
𝑡+
𝑘
−𝑠

󵄨󵄨󵄨󵄨𝑢𝑖 (𝜂)󵄨󵄨󵄨󵄨 𝑑𝜂 𝑑𝑠 = 𝑉 (𝑡−𝑘 )
= 𝑉 (𝑡𝑘) .

(38)

Let 𝑈(𝑡) = ∑𝑛𝑖=1 |𝑢𝑖(𝑡)| + ∑𝑚𝑗=1 |V𝑗(𝑡)|, for any 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘);
then we have the following estimations:

𝑉 (𝑡) ⩽ −∫𝑡
𝑡𝑘−1

𝑈 (𝑠) 𝑑𝑠 + 𝑉 (𝑡+𝑘−1)
⩽ −∫𝑡
𝑡𝑘−1

𝑈 (𝑠) 𝑑𝑠 + 𝑉 (𝑡−𝑘−1)
⩽ −∫𝑡
𝑡𝑘−2

𝑈 (𝑠) 𝑑𝑠 + 𝑉 (𝑡−𝑘−2) ⩽ ⋅ ⋅ ⋅
⩽ −∫𝑡
0
𝑈 (𝑠) 𝑑𝑠 + 𝑉 (0) ;

(39)

Thus, we can get the following inequality:

𝑉 (𝑡) + ∫𝑡
0
𝑈 (𝑠) 𝑑𝑠 ⩽ 𝑉 (0) , (40)

which implies that lim𝑡→+∞𝑈(𝑡) is bounded. From (28),
|RL0𝐷𝛼𝑡 𝑢𝑖(𝑡)| and |RL0𝐷𝛽𝑡 V𝑗(𝑡)| are also bounded. FromLemma5,
we have lim𝑡→+∞∑𝑛𝑖=1 |𝑢𝑖(𝑡)| = 0 and lim𝑡→+∞∑𝑚𝑗=1 |V𝑗(𝑡)| =0.Therefore, according to Lyapunov stability theory, a unique
equilibrium solution (𝑥∗𝑇, 𝑦∗𝑇)𝑇 for system (6) is globally
asymptotically stable. This completes the proof.

The following corollary is the direct result of Theorem 11.

Corollary 12. Suppose that (H1)–(H3) hold; then a unique
equilibrium solution for system (6) is globally asymptotically
stable, if the following inequalities simultaneously hold for a
small enough constant 𝜀 > 0

𝜔1 = max
1⩽𝑖⩽𝑛

{{{
𝜀Γ (1 − 𝛼) ⋅ 1𝑎𝑖 +

𝐺𝑖𝑎𝑖
𝑚∑
𝑗=1

[󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖]}}}
< 1,

𝜔2 = max
1⩽𝑗⩽𝑚

{ 𝜀Γ (1 − 𝛽) ⋅ 1𝑐𝑗 +
𝐹𝑗𝑐𝑗
𝑛∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗]}
< 1.

(41)

Remark 13. Different from fractional Lyapunov functional
method in [30, 32, 37], an appropriate Lyapunov functional
composed of fractional integral and definite integral terms
in the proof of Theorem 11 is presented, and we only
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need to calculate its first-order derivative to derive stability
conditions. As discussed in [35], in general speaking, it is
very difficult to calculate the fractional-order derivatives of a
Lyapunov functional.Themain advantage of our constructed
method is that we can avoid computing the fractional-order
derivatives of the Lyapunov functional.

Remark 14. The globally asymptotic stability criteria of a
unique equilibrium solution for system (6) are described by
the algebraic inequalities, which are dependent on the orders𝛼 and 𝛽 of fractional derivatives and reflect the close relation
between the coefficients, neuron activation functions, and
time-delay of network parameters. Moreover, the globally
asymptotic stability criteria are more easily checked and
contribute to reducing the computational burden.

Remark 15. When𝛼 = 𝛽 = 1, system (6) is reduced to integer-
order BAM neural networks with distributed delays and
impulses [23]. Note that the Riemann-Liouville derivative
is a continuous operator of the order (see [9–11]); then we
can obtain globally asymptotic stability criteria for impulsive
integer-order hybrid BAMneural networks from the proof of
Theorem 11.

Remark 16. In [33, 34, 44], the authors have focused on
studying the finite-time stability of fractional-order delayed
neural networks. However, it should be pointed out that the
finite-time stability and asymptotic stability in the sense of
Lyapunov are different concepts, because finite-time stability
does not contain Lyapunov asymptotic stability and vice versa
[34, 47]. This is also the motivation of this paper.

5. An Illustrative Example

In this section, an example for impulsive fractional-order
hybrid BAM neural networks with distributed delays is given
to illustrate the effectiveness and feasibility of the theoretical
results.

Example 17. Consider the four-state Riemann-Liouville frac-
tional-order hybrid BAM neural network model with dis-
tributed delays and impulsive effects described by

RL
0𝐷0.2𝑡 𝑥1 (𝑡) = −0.7𝑥1 (𝑡) − 0.2𝑓1 (𝑦1 (𝑡))

+ 0.1𝑓2 (𝑦2 (𝑡))
+ 2∫0.2
0
𝑠𝑓1 (𝑦1 (𝑡 − 𝑠)) 𝑑𝑠

+ ∫0.2
0
𝑠𝑓2 (𝑦2 (𝑡 − 𝑠)) 𝑑𝑠,

RL
0𝐷0.2𝑡 𝑥2 (𝑡) = −0.6𝑥2 (𝑡) + 0.3𝑓1 (𝑦1 (𝑡))

+ 0.2𝑓2 (𝑦2 (𝑡))
+ ∫0.2
0
𝑠𝑓1 (𝑦1 (𝑡 − 𝑠)) 𝑑𝑠

− ∫0.2
0
𝑠3𝑓2 (𝑦2 (𝑡 − 𝑠)) 𝑑𝑠,

Δ𝑥𝑖 (𝑡𝑘) = −0.3 (𝑥𝑖 (𝑡𝑘) − 𝑥∗𝑖 ) ,
𝑖 = 1, 2; 𝑘 = 1, 2, . . . ,

RL
0𝐷0.6𝑡 𝑦1 (𝑡) = −0.7𝑦1 (𝑡) + 0.4𝑔1 (𝑦1 (𝑡))

+ 0.2𝑔2 (𝑦2 (𝑡))
− ∫0.2
0
𝑠𝑔1 (𝑦1 (𝑡 − 𝑠)) 𝑑𝑠

+ ∫0.2
0
𝑠2𝑔2 (𝑦2 (𝑡 − 𝑠)) 𝑑𝑠,

RL
0𝐷0.6𝑡 𝑦2 (𝑡) = −0.6𝑦2 (𝑡) + 0.1𝑔1 (𝑦1 (𝑡))

− 0.3𝑔2 (𝑦2 (𝑡))
+ ∫0.2
0
𝑠2𝑔1 (𝑦1 (𝑡 − 𝑠)) 𝑑𝑠

+ ∫0.2
0
𝑠𝑔2 (𝑦2 (𝑡 − 𝑠)) 𝑑𝑠,

Δ𝑦𝑗 (𝑡𝑘) = −0.4 (𝑦𝑗 (𝑡𝑘) − 𝑦∗𝑖 ) ,
𝑗 = 1, 2; 𝑘 = 1, 2, . . . ,

(42)

where 𝛼 = 0.2, 𝛽 = 0.6, 𝜏 = 0.2, 𝑎1 = 𝑐1 = 0.7, 𝑎2 = 𝑐2 = 0.6,𝑏11 = −0.2, 𝑏12 = 0.1, 𝑏21 = 0.3, 𝑏22 = 0.2, 𝑑11 = 0.4, 𝑑12 = 0.2,𝑑21 = 0.1, 𝑑22 = −0.3, 𝑟11(𝑠) = 2𝑠, 𝑟12(𝑠) = 𝑠, 𝑟21(𝑠) = 𝑠,𝑟22(𝑠) = −𝑠3, 𝑝11(𝑠) = −𝑠, 𝑝12(𝑠) = 𝑠2, 𝑝21(𝑠) = 𝑠2, 𝑝22(𝑠) = 𝑠,
and

𝑓𝑗 (𝑦𝑗) = 12 (󵄨󵄨󵄨󵄨󵄨𝑦𝑗 + 1󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 − 1󵄨󵄨󵄨󵄨󵄨) , 𝑗 = 1, 2,
𝑔𝑖 (𝑥𝑖) = 12 (󵄨󵄨󵄨󵄨𝑥𝑖 + 1󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑥𝑖 − 1󵄨󵄨󵄨󵄨) , 𝑖 = 1, 2.

(43)

From (43), we know that 𝐹1 = 𝐹2 = 𝐺1 = 𝐺2 = 1. Since𝑓1(0) = 𝑓2(0) = 0,𝑔1(0) = 𝑔2(0) = 0, then (𝑥∗1 , 𝑥∗2 , 𝑦∗1 , 𝑦∗1 )𝑇 =(0, 0, 0, 0)𝑇 is an equilibrium solution for system (42). Next,
we applyTheorem 11 or Corollary 12 to check the uniqueness
and global asymptotic stability of the equilibrium point for
system (42).

In fact, by computations, one can get that𝑅11 = 0.4,𝑅12 =𝑅21 = 0.2, 𝑅22 = 0.008, 𝑃11 = 𝑃22 = 0.2, and 𝑃12 = 𝑃21 = 0.04.
Choosing a positive constant 𝜀 = 0.04 > 0, thenwe can obtain

𝜂1 = min
1⩽𝑖⩽2

{{{
𝑎𝑖 − 𝐺𝑖 2∑

𝑗=1

[󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖]}}}
= 0.052

> 𝜀Γ (1 − 𝛼) = 0.044,
𝜂2 = min
1⩽𝑗⩽2

{𝑐𝑗 − 𝐹𝑗 2∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗]} = 0.116
> 𝜀Γ (1 − 𝛽) = 0.045,
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Figure 1: State trajectories of BAM neural network (42) with 𝛼 = 0.2; 𝛽 = 0.6 under different initial conditions.

𝜔1 = max
1⩽𝑖⩽2

{{{
𝜀Γ (1 − 𝛼) ⋅ 1𝑎𝑖 +

𝐺𝑖𝑎𝑖
2∑
𝑗=1

[󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑃𝑗𝑖]}}}
= 0.856 < 1,

𝜔2 = max
1⩽𝑗⩽2

{ 𝜀Γ (1 − 𝛽) ⋅ 1𝑐𝑗 +
𝐹𝑗𝑐𝑗
2∑
𝑖=1

[󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜏𝑅𝑖𝑗]}
= 0.722 < 1.

(44)

Thus, the conditions of Theorem 11 or Corollary 12 are satis-
fied. For numerical simulations, Figure 1 depicts the state tra-
jectories of system (42) under different initial conditions with𝛼 = 0.2, 𝛽 = 0.6. It can be directly observed that the unique
equilibrium solution (0, 0, 0, 0)𝑇 for system (42) is globally
asymptotically stable with 𝛼 = 0.2, 𝛽 = 0.6. Therefore, the
numerical simulations further confirm the theoretical results
of this paper.

6. Conclusions

In this paper, the sufficient conditions for the existence and
uniqueness of the equilibrium solution are presented based

on the contractionmapping principle. By constructing a suit-
able Lyapunov functional composed of fractional integral and
definite integral terms, we calculate its first-order derivative
to derive global asymptotic stability of the equilibrium point.
The constructed method avoids calculating the fractional-
order derivative of the Lyapunov functional. Furthermore,
the presented results are described as the algebraic inequal-
ities, which are convenient and feasible to verify the existence
and asymptotic stability of the equilibrium solution. For
further research, it is interesting and challenging to discuss
the chaos phenomena,Hopf bifurcation, and synchronization
control problem for fractional-ordermemristor-based hybrid
BAM neural networks with leakage, time-varying, and dis-
tributed delays.
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