
Abstract
This paper addresses the separation of ground points from
raw lidar data for bald ground digital elevation model (DEM)
generation in urban areas. This task is considered to be a la-
beling process through which a lidar point is labeled as either
a ground point or a non-ground point. Mathematical formula-
tion is presented to define the ground. A new approach is pro-
posed that conducts one-dimensional labeling in two opposite
directions followed by a linear regression, both along the lidar
scan line profile. The study shows that the one-dimensional
characteristic makes the calculation efficient, and the reliabil-
ity is assured by the bidirectional labeling process. Lidar data
over suburban and downtown Baltimore (Maryland), Osaka
(Japan), and Toronto (Canada) are used for the study. Quality
assessment is designed and conducted to investigate the per-
formance of the labeling approach by using manually-selected
ground truth. It is shown that 2.7 percent ground points are
wrongly labeled as building points, and 2.6 percent building
points are mistakenly labeled as ground points over the four
study areas. Detailed graphic and numerical results are pro-
vided to illustrate the proposed labeling approach and its per-
formance for complex urban areas.

Introduction
Lidar (LIght Detection And Ranging) is a remote sensing
technique based on laser technology. It measures the two-
way travel time of the emitted laser pulses to determine the
distance between the sensor and the ground (Wehr and Lohr,
1999). Combined with a Global Positioning System (GPS) and
an Inertial Measurement Unit (IMU), lidar can generate a 
three-dimensional (3D) dense, geo-referenced point clouds for
the reflective terrain surface. Compared to the traditional
photogrammetric approach, lidar is less dependent on the
weather, season, and time of the day in data collection, and
can generate 3D topographic surface information more rapidly
(Ackermann, 1999; Balsavias, 1999). Despite this advantage,
however, lidar measurements are not selective. The original
lidar data consist of tremendous points returned from all pos-
sible reflective terrain objects, including (bald) ground, build-
ings, bridges, vehicles, trees, and other non-ground features.
For many topographic, hydrographic, agricultural, and con-
struction applications, the non-ground returns must be de-
tected, separated, and removed in order to generate the (bald)
digital elevation model (DEM) (Fowler, 2001, pp. 208–236).

This paper will focus on the DEM generation over urban
areas from raw lidar point data. In the following section, a
literature review on different methodologies developed in
recent years is presented based on their assumptions about
the ground. The Test Data section describes the four test data
sets used in this study. In the Labeling section, the labeling
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approach is introduced and graphically illustrated. It labels
each lidar point (return) as either ground or non-ground point
based on the computation result along the one-dimensional
(1D) lidar profile. Characteristics of this 1D profile-based label-
ing approach are discussed. Results of four urban areas (sub-
urban and downtown Baltimore, Osaka, and Toronto) with
dense and complex buildings and other urban features are
presented in the Results and Assessment section to demon-
strate the properties and performance of the proposed labeling
approach. Also presented in this section is a comprehensive
quantitative evaluation on the performance of the algorithm
based on manually selected ground truth in the four data sets.
A summary of the paper is presented in the final section as
concluding remarks.

What is the Ground?—A Literature Review
The process of eliminating non-ground points from the entire
lidar data to obtain ground points is often referred as filtering
(Vosselman, 2000). Although a variety of different methods
have been proposed for this task, all of them essentially need to
answer, either explicitly or implicitly, a fundamental question:
what is the ground? For the convenience of reviewing and
comparison, this paper groups the filtering techniques into two
general categories, labeling approach and adjustment approach.
The following presents a brief review on these approaches in
terms of the way they address this fundamental question.

A labeling approach detects the ground points using
certain operators. An operator distinguishes ground points
from non-ground points based on the output of its calculation.
Different labeling approaches have been proposed and imple-
mented. As one of the early efforts, Lindenberger (1993) intro-
duces mathematical morphologic operators for this task. In
this approach, an opening operator with horizontal structure
element is first used to detect possible ground points. Points
within a certain vertical distance to the estimated local aver-
age elevation are defined as ground points. An auto-regression
process is then followed to refine the initial results obtained
from the morphologic operation. Noticing this algorithm is
vulnerable to the size of the structure element, Kilian, et al.
(1996) uses a series of morphologic operators with different
sizes to find out the ground. To consider the local relief,
Vosselman (2000) proposes a slope-based filter which is
shown to be closely related to the erosion operator in mathe-
matic morphology. In this approach, the ground is essentially
defined as points that are within a given slope range. Training
may be needed to determine the parameters when implement-
ing this filtering process (Vosselman, 2000). In addition to
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these morphology-based or –related operators, terrain slope
(Axelsson, 1999; Sithole, 2001; Yoon and Shan, 2001) and
local elevation difference (Wang, et al., 2001) are also used as
criteria for DEM generation. Haugerud and Harding (2001) uses
a de-spike algorithm to remove forest coverage in lidar data.
Based on the assumption that smoothness is a property of the
ground surface, the algorithm searches for aberration points
where strong local curvature occurs and then removes these
points. Similar work is reported by (Raber, et al., 2002) that
uses an adaptive point removal process to extract accurate
DEM under vegetation coverage.

Ground points can also be identified through an adjust-
ment process. A mathematical function, usually selected as a
two-dimensional (2D) polynomial surface, can be used to ap-
proximate the ground. In this approach, ground is essentially
represented as a continuous or at least a piecewise continuous
surface. Points within a certain vertical distance above the
surface are treated as ground points. Least squares adjustment
is used to detect the non-ground points as if they were blun-
ders by reducing their weights in each iteration calculation.
Typical methods of this kind are proposed by (Kraus and
Pfeifer, 1998, 2001; Schickler and Thorpe, 2001) based on
classical surface modeling and recently by (Elmqvist, 2002)
based on active shape modeling.

Most of the above approaches limit their processing
within a 2D neighborhood of a lidar point or a subset of the
lidar points. Finding and storing such neighborhood proxim-
ity requires a significantly large amount of computation and
memory because of the large volume of lidar data and their
irregular sampling pattern. To facilitate the computation a
Triangulated Irregular Network (TIN) is used by (Axelsson,
2000; Haugerud and Harding, 2001; Vosselman, 2000;
Vosselman and Mass, 2001) to determine the filter proximity
and consider the discontinuity in the terrain surface. 

Despite the above reviewed studies and the fact that DEM
products can be prepared from many lidar service providers,
difficulties still remain in this task. The DEM generation from
lidar data is not yet mature (Vosselman and Maas, 2001). Inter-
active evaluation and manual editing is still a necessary and
inevitable step for DEM generation in practice (Petzold, et al.,
1999; Knabenschuh and Petzold, 1999). To obtain reliable and
accurate DEM products for different complexity of topography
is still one primary topic in academia and industry as reflected
in recent publications (Crombaghs, et al., 2002; Fowler, 2001;
Masaharu and Ohtsubo, 2002; Sithole, 2002). Further efforts
are needed to handle complex urban areas. Efficient algo-
rithms are also needed to relieve the need on 2D proximity
neighborhood in the calculation. Moreover, we still need a
comprehensive understanding on the performance of the
filtering process and the quality of the resultant DEM, which
have been rarely studied until recently (Crombaghs, et al.,
2002; Huising and Gomes Pereira, 1998; Sithole, 2002). Our
study is motivated by the above observations and will address
most of the issues.

Test Data
Four airborne lidar data sets are used in this study, and their
coded elevation maps are shown in Figure 1. The first two data
sets were collected by EarthData Technologies and cover sub-
urban and downtown Baltimore, Maryland, respectively. Sub-
urban Baltimore (Figure 1a) mostly has trees, vehicles, and
long buildings with flat roofs. Downtown Baltimore (Figure 1b)
is covered densely by tall buildings with complex roofs. Its
non-ground features include bridges, vehicles, and trees. Be-
sides, this data set has a harbor where only ships and decks in
the water returned lidar signals. The third and fourth data sets
are respectively for Osaka, Japan and Toronto, Canada, pro-
vided by Optec, Inc. The Osaka data set (Figure 1c) consists of
trees, and mostly long and flat buildings. The Toronto data
(Figure 1d) are full of tall and complex buildings and other
typical urban features.

Table 1 summarizes the properties of the four data sets;
the total number of lidar points used in our study is listed, and
these points are a portion of the entire data sets. The dimen-
sions of the study area is given by the number of points across
track (scanning direction) and along track (flight direction).
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Figure 1.  Lidar surface elevation maps and selected
ground truth for assessment: (a) Suburban Baltimore, (b)
Downtown Baltimore, (c) Osaka, and (d) Toronto. Dark poly-
gons: buildings; light polygons: ground. The figures are not
to exact scale.

TABLE 1. PROPERTIES OF THE TEST LIDAR DATA SETS

Site Name Baltimore Suburb Baltimore Downtown Osaka Toronto

Total points # 30,000 50,000 50,000 50,000

Dimension (across * along track, ∼548 * 312 ∼1,216 * 405 ∼500 * 400 ∼167 * 420
in square meters) (minus 101,660 water) (minus 32,958 no data area)

Percentile ground slope 0.2; 2.7; 18.7 0.2; 1.6; 15.8 0; 1.6; 10.7 0; 2.7; 44.3
(5%, 50%, 95% in deg.)

Ground spacing (across/along track, 2.3�4.5 2.5�4.0 1.6�1.7 1.0�1.5
in meters.)

Point density (points/ 1.8 1.3 3.0 7.2
10 square meters)

Labeled ground points # 13,802 25,089 26,416 25,821
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It is noted that the Baltimore downtown and Osaka data sets
contain a no-data or no-return region as shown in Figure 1b
and 1c, respectively. To characterize the topographic relief of
the study areas, we list the 5, 50 (median) and 95 percentiles
of the ground slope in the study sites. It is shown that Toronto
area has very complex topography with a ground slope range
of 44.3 degrees, whereas the other three areas are relatively
moderate with a maximum ground slope range of 18.5 degrees
(Baltimore suburb). The point density stands for the number of
lidar points per ten square meters which is calculated by the
total number of lidar points divided by the entire area covered
by the lidar data. As shown in Table 1, the point density varies
from minimum 1.3 points (Baltimore downtown) to maximum
7.2 points (Toronto) per ten square meters in the four data sets.
The number of ground points as the result of labeling opera-
tion is listed at the bottom of Table 1.

It should be noted that the ground spacing of lidar points is
not even. As shown in Table 1, the ground spacing across track
can be as twice smaller (Baltimore suburb) as the one in along-
track. To illustrate and further examine this, Figure 2 presents
and compares the distribution of samples points from suburban
Baltimore and Osaka data sets. For the Baltimore data shown in
Figure 2a, the ground spacing across track averaged about 2.3
meters, whereas the distance between two neighboring lidar
profiles alternates with two different spacing intervals. The
smaller along track spacing is at about 2.0 meters while the
larger one is about 4.8 meters. Similarly, the Osaka data set

shown in Figure 2b presents a similar pattern, though not as
apparent as in the Baltimore dataset. This uneven spacing can
be explained with the principles described by Wehr and Lohr
(1999). The ground spacing across track is dependent on the
laser pulse repetition frequency and the scan angle off the
nadir. Therefore, the across track spacing can be treated as a
constant in a small area as shown in Figure 2 and becomes
larger at the swath boarder. Due to acceleration or slow-down
of the scan mechanism, the points at the swath borders exhibit
unwanted characteristics and are sometimes removed from the
raw data set (Wehr and Lohr, 1999). As for the along-track
ground spacing, it is determined by the airplane speed and the
time period of one line scan. The bidirectional oscillating scan-
ning causes a zigzag pattern with uneven distances along the
flight direction. The ground spacing is smaller where the oscil-
lating mirror finishes one scan line and changes its direction to
start a new scan line, whereas it is larger between the start of
one scan line and the end of the new scan line. This pattern re-
peats as shown in Figure 2. Because of this uneven distribution
of lidar points in both along-track and across-track, we prefer
using the term point density instead of ground spacing to de-
scribe the resolution of a lidar data set.

One Dimensional, Bidirectional Labeling
In this section, we propose a filtering approach that has two
sequential steps along the 1D lidar profile: labeling and adjust-
ment. The labeling approach is based on both slope and eleva-
tion evaluation and implemented along the lidar profile in
two opposite directions. A local linear regression along the
lidar profile is then followed to further remove the possible
non-ground points remaining from the previous step. This
filtering process can be run multiple times if needed.

In order to eliminate non-ground points, the ground
needs to be mathematically defined. Our definition is based
on the slope between two consecutive points in a lidar profile
as well as the elevation difference of a lidar point relative to
its neighborhood in the profile. First, slopes at the border be-
tween non-ground (such as buildings) and ground are usually
significantly larger than the ground slope at common lidar
point density and continuous ground. Second, ground points
have lower elevations than non-ground in the neighborhood.
These two criteria are used to determine whether a lidar point
is a ground point or a non-ground point. The slope criterion
detects the edge points of buildings or other non-ground ob-
jects, such as bridges, vehicles, and trees. The elevation crite-
rion considers the situation where the building roofs are not
flat. When the building roof is complex and has many local
changes in slope, using only the slope criterion may lead to
erroneous results. The elevation criterion uses the fact that
the elevation of a roof point is significantly higher than the
ground elevation in its vicinity. Mathematically, we can
express this observation as:

5Pi : � (1)

This definition can be verbally described: for any lidar point
Pi, if the slope Sv at its vicinity is greater than a given thres-
hold ST and its elevation Zi is greater than a given threshold
ZT, then the point Pi is labeled as non-ground point; otherwise
it will be labeled as ground point. Two criteria are considered
in this formulation: slope and elevation. The check on the
vicinity slope Sv essentially detects the presence of non-
ground objects while the elevation condition determines if the
lidar point belongs to the object or ground.

The implementation of the above criteria will affect the effi-
ciency and performance of the DEM generation process. We pro-
pose a 1D, bidirectional labeling approach to separate ground
from non-ground points based on the above criteria. First, the

if (Sv � ST and Zi � ZT ) non-ground point
.otherwise ground point
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Figure 2. Point distribution and ground spacing: (a) Suburban
Baltimore, and (b) Osaka.
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slope Si for lidar point Pi is calculated with two consecutive
points along the lidar profile using the following equation

Si � arctan� � Si ∈ �� , �,
(2)

where (Xi�1, Yi�1, Zi�1) and (Xi, Yi, Zi) are the coordinates of
two consecutive points in a lidar profile with Z coordinate
pointing to the elevation direction and X, Y coordinates lying
in the horizontal plane. Note the slope in Equation 2 can take
both positive and negative signs. Point sequence entering a
building from ground will get a positive (ascending) slope at
the ground-building border while point sequence leaving a
building will get a negative (descending) slope at the build-
ing-ground border. In our filtering approach, initially we as-
sume the point sequence entering building from ground.
Therefore, once a lidar point gets a slope greater than the
given slope threshold ST, it means the lidar profile reaches a
building edge at this point. It will then be labeled as a non-
ground point. The elevation and slope of the nearest detected
ground point in the profile will be noted for prediction use.
The algorithm continues labeling the subsequent points as
building points until a negative slope is encountered. This
negative slope (descending) point may possibly be a ground
point and needs to be examined. We compare its elevation
with the elevation of the nearest labeled ground point where
the lidar profile reached the building. If the two elevations are
close within an established tolerance, the algorithm labels the
descending point as ground which means the lidar profile
leaves the building and returns to ground at this point. This
method works well when the topography is relatively flat. For
hilly regions, prediction is needed. We use the slope of the
nearest ground point to predict the elevation of the descend-
ing point. If the elevation of the descending point is higher
than the predicted one, it will still be labeled as building,
otherwise the lidar profile leaves the building and returns to
ground. This labeling process continues until the last lidar
point in the file. This is regarded as the forward labeling
process. To consider the situation when the first lidar point in
the file is a non-ground point, we repeat the above process in
the reverse direction by starting the labeling process from the
last point in the data set, namely the backward labeling pro-
cess. The resultant non-ground points are then the union of
the two labeling processing results, whereas the resultant
ground points are equivalently the intersection of the two
labeling process results.

After the forward and backward labeling, a 1D linear re-
gression is carried out to further remove possible remaining
non-ground points in the labeled ground points. This assumes
that the local topography of a certain neighborhood in the lidar
profile can be expressed as an equal slope Z-profile, namely

Z � a0 � a1D D � DT, (3)

where a0, a1 are the coefficients of the local Z-profile, D is the
distance between lidar points within the neighborhood which
is defined by a given distance threshold DT. Points within the
window will be used to determine the local Z-profile based
on the least squares regression. Points that have more than
three times of the standard deviation of the regression will
be removed as non-ground points.

The entire labeling process is illustrated step-by-step in
Figure 3 by a lidar profile of approximately 250 meters long in
suburban Baltimore. Figure 3a plots the original lidar points.
Figure 3b and 3c are respectively the ground points obtained
from the forward (from right to left) and backward (from left
to right) labeling processes. The combination (intersection)

�
�
2

�
�
2

Zi � Zi�1
����
�(Xi �X�i�1)2 �� (Yi �� Yi�1)

2�

of these two is shown in Figure 3d, which is further filtered
by the 1D linear regression. The final result is shown in
Figure 3e. As shown in Figure 3b and 3c, either forward or
backward processing can correctly label almost all ground
points and most building points. However, each step mistak-
enly labels several building points as ground points. It is no-
ticed that these two wrongly labeled point sets have almost
no common points (Figure 3b and 3c). Therefore, keeping the
points that are both labeled as ground points in the forward
and backward processes will correct the falsely identified
ground points. The combined result is shown as in Figure 3d.
The final 1D regression further filters possible building points
and keeps all ground points as shown in Figure 3e. Figure 4
illustrates the same process, however, in a 3D perspective
view, where lidar points are overlaid atop the lidar surface
model. As shown in Figure 4, the labeling process in one
direction, either forward or backward, may detect more build-
ing points than the other. In this example, the backward
labeling identifies most building points. The combination of
the forward and backward labeling detects almost all building
points, except some points on one long building at the upper
left portion of the 3D view in Figure 4. Satisfactory results are
obtained after applying the 1D linear regression. No obvious
building points are left in the resultant ground model. A
visual check in Figure 4e also reveals that building edges are
well identified and no apparent ground points are labeled as
building points.

The proposed approach has a few distinctions. First, it
is computationally efficient as the calculation is performed
within the 1D lidar profile. For the slope calculation in Equa-
tion 2, only two consecutive points are needed. The local ele-
vation and slope are updated every time a building is encoun-
tered along the profile and adapts itself in accordance to the
topography of the area. Moreover, for the final 1D linear regres-
sion, a window of lidar profile is needed. Because the raw
lidar data is at irregular interval and stored as a sequence of
sample points, the only explicit topologic relationship is the
neighborhood of two consecutive points along a profile. By
taking advantage of this, the proposed algorithm does not re-
quire any preprocessing to form a special data structure, such
as TIN or a grid, to facilitate the filtering process. It needs no
searching or calculation outside a lidar profile. In this way, the
required computations are reduced to minimum, which will
substantially increase the efficiency in handling large volume
lidar data for practical applications.

Second, the use of the raw lidar data instead of its inter-
polated values, e.g., a regular grid, assures the calculated
slopes rigorously reflect the local elevation change. This is be-
cause the calculation is undertaken for all consecutive sample
points along the profile in the raw data, and no smoothing or
interpolation operation is involved. Therefore, no artificial
points are introduced in the calculation as it would if interpo-
lation were used. In this way, using raw lidar data avoids a
potential meaningless operation of judging whether a non-
existent point generated during the interpolation process is
a ground or non-ground point. 

Third, the combination of slope and elevation criteria
can consider the complexity of building architecture. As ad-
dressed earlier, the slope criterion essentially detects the
ground-building edge while the elevation criterion identifies
the roof points within a building region. The selection of the
local ground elevation threshold is adaptive. Each time a
building is encountered, the elevation of the nearest ground
point is then chosen as the elevation threshold. When the
terrain has extreme relief, the nearest ground slope is used to
predict the ground elevation on the other side of the building.
In this way, the approach is adaptive to terrain type and
building complexity, and we avoid the difficulty to handle
the fact that anything can occur at any elevation.
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Finally, the bidirectional labeling process avoids the
potential vulnerability of the filtering operation. If a labeling
process starts with lidar points on relatively flat roofs, the
building may not be correctly detected. All the roofs points
in that building would be mistakenly labeled as ground points
(see Figure 3b). However, the labeling process in the reverse
direction will enable the labeling sequence enter the building
from ground which means the ground-building edge will be
correctly determined. Therefore, the missed buildings in the
first labeling step will be identified in the second labeling
step from the opposite direction (see Figure 3c). Through

this bidirectional labeling process, the reliability of the
filtering operation is assured.

Results and Assessment
The proposed filtering approach is implemented to four urban
data sets. The test areas are mixed with buildings and other
urban objects. A 30 degree slope threshold is chosen for all
data sets except Toronto. The Toronto data have higher point
density and complex topography, such as, cliffs or large ramps
towards the northern edge of the area. The labeling process
repeats twice in this case. A relative large slope threshold of
70 degrees is given to remove buildings and sparse tree
canopy in the first filtering. In the second filtering, a relative
smaller slope threshold of 40 degrees is chosen mainly to
remove the vehicles on the streets.

To quantitatively assess the labeling results, a number
of homogenous ground and building regions defined by poly-
gons are selected as ground truth in each data set. The poly-
gons are manually delineated over the lidar data coded by
elevation and evenly distributed in the study area as shown
in Figure 1, where building and ground polygons are shown
in black and white, respectively. The number of delineated
building and ground polygons is listed in Table 2.

Labeling results are compared with the selected ground
truth to conduct the assessment. The ground truth is obtained
by counting the number of raw lidar points inside the se-
lected building and ground polygons, respectively. The
counting results are shown under the “Ground truth”
columns in Table 2. For the labeling results, however, the
building points may be wrongly labeled as ground points
while the ground points may be wrongly labeled as building
points. Therefore, both building points and ground points in
the labeling results need to be counted against the ground
truth polygons. The counting results are listed under “Label-
ing results” columns in Table 2. Rows in Table 2 under “La-
beling results” contain the number of points and their per-
centage (within parentheses) that are either correctly or
wrongly labeled for each study area. As a general assessment,
the overall labeling results for all the four study areas are
listed at the bottom of the table which essentially is an aver-
age performance measure. 

Table 2 is used to evaluate the performance of the proposed
labeling approach. A comparison on the number of points
counted from labeling results and the ground truth will serve
this purpose. As is shown in Table 2, for the ground regions, an
average 97.3 percent of the total points are correctly labeled.
Accordingly, the mislabeling rate for ground points (false nega-
tive rate, wrongly labeled as building) is about 2.7 percent in
average. For building regions, the average correct labeling rate
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Figure 4. Stepwise 3D illustration of the labeling process
(Suburban Baltimore): (a) Raw data. (b) Ground points from
forward labeling, (c) Ground points from backward labeling,
(d) Ground points after forward, and backward labeling, and
(e) Final ground points after regression.

TABLE 2. QUALITY OF THE LABELING ALGORITHM

Ground Truth Labeling Results

Site Name Point Type # of Regions # of Points Ground (# and %) Building (# and %)

Baltimore Ground 18 1692 1645 (97.2) 47 (2.8)
Suburb Building 22 4012 21 (0.5) 3991 (99.5)

Baltimore Ground 19 1784 1747 (97.9) 37 (2.1)
Downtown Building 24 8081 122 (1.5) 7959 (98.5)

Osaka Ground 15 3069 3036 (98.9) 33 (1.1)
Building 14 4668 72 (1.5) 4596 (98.5)

Toronto Ground 14 3387 3234 (95.5) 153 (4.5)
Building 15 9282 455 (4.9) 8827 (95.1)

Overall Ground 66 9932 9662 (97.3) 270 (2.7)
(Average) Building 75 26043 670 (2.6) 25373 (97.4)
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is 97.4 percent, with an average false positive (wrongly labeled
as ground) rate 2.6 percent. These quantities can be understood
as the overall performance of the proposed approach. The simi-
lar error rates (2.6 percent versus 2.7 percent) of the two possi-
ble mistakes suggest a good balance is achieved in the algo-
rithm’s performance. Table 2 also suggests that the performance
of the labeling approach varies with the topographic complex-
ity. The study areas of Baltimore suburb and downtown, and
Osaka are relatively flat as listed in Table 1. Their labeling error
rate ranges from 0.5 percent (Baltimore suburb, false positive) to
2.1 percent (Baltimore urban, false negative). For the Toronto
area, cliffs or large ramps exist as shown in Figure 8 and Figure
10d. Their labeling error rates may increase to 4.9 percent (false
positive) and 4.5 percent (false negative), respectively.

Figure 5 and 6 respectively present selected 2D and 3D
views of the labeling results for the four study areas. In the 2D
views available orthoimages produced from digital images
collected during the lidar flight are also shown for the two
Baltimore data sets. Both figures show ground points in black
and non-ground points in white. All results in Figure 5 and 6
exhibit that all buildings, including the complex roofs and
side architectures, can be correctly identified. A closer exami-
nation of the results in Baltimore suburban and Osaka (Fig-
ure 5a, 5c) suggests the approach can also successfully label
individual trees and vehicles in relatively open areas. Figure
5b and 5d show less successful, yet still quite satisfactory,
labeling results in highly urban areas. Almost all vehicles in
the surface parking area in the middle of in Figure 5b are cor-
rectly labeled. However, some ground points on the horizontal
street at the bottom of Figure 5b are mistakenly labeled as
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Figure 5. Labeling results (ground: black; non-ground: light):
(a) Ortho image (left) and labeling results (right) in Subur-
ban Baltimore, (b) Ortho image (left) and labeling results
(right) in Downtown Baltimore, (c) Osaka, and (d) Toronto.

Figure 6. 3D view of labeling results (ground: black; non-
ground: white): (a) Suburban Baltimore, (b) Downtown
Baltimore, (c) Osaka, and (d) Toronto.
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Figure 7. Orthophoto image (left) and labeling results
(right) in Baltimore: (a) Building 1, (b) Building 2, (c)
Bridges and trees, and (d) Water.

Figure 8. Steep terrain with trees (Toronto).

Figure 9. Ground sinks (Looking from underground, Toronto).

non-ground, as a trade-off that many vehicles on that street are
identified correctly. The 3D views in Figure 6 provide a clear
perception that complex buildings, trees and vehicles, which
appear to be bumps in the 3D view, are correctly labeled.

Figure 7 is several selected closer examinations for handling
typical urban man-made features. Shown in this figure are com-
plex buildings, bridges, trees, and water body (harbor) along with
their orthophoto images from the Baltimore downtown data. No-
tice that the two small concave parts in the middle left and right
of Figure 7a are not identical in height. The left is ground, while
the right is part of the building. The algorithm successfully de-
tects this, which is then verified by manually measuring their el-
evation and comparing it with the vicinity ground. Figure 7b
shows the labeling of a likely ring-shape building. The labeling
process identifies the inner part as building other than ground
which is further verified by manual check. Notice the black ob-
ject on the roof does not produce any return; the lidar data are
void in this part. However, this does not cause problem in the la-
beling algorithm, Figure 7c attempts to demonstrate the capabil-
ity of labeling bridges as non-ground. As is shown, all three
bridges are correctly labeled. The labeling of the water body is
shown in Figure 7d. The returns from water surface or its objects
are very sparse. Because of its flat surface, water and the deck are
labeled as ground. To ultimately determine the thematic nature
of those labels, only using spatial information in the lidar data
may not be sufficient. Spectral information from images can be of
great help to intercept these features.

Figure 8 and 9 examine the labeling performance for dis-
continuity areas of ground elevation in the Toronto data set.
Presented in Figure 8 is a ramp or cliff of sudden and large el-

evation change. As is shown in Figure 8, the ramp is likely
covered by trees or bushes. Points with high slopes in the
ramp are labeled as non-ground while others are labeled as
ground. Due to the dense canopy coverage, many points in the
ramp are filtered out as no-ground points. As a result of this,
the final DEM for the ramp is greatly smoothed as shown in
Figure 10d. It is also shown that all complex buildings are
correctly labeled; so are the most vehicles on the streets.

A singular situation (outlier) occurs when the ground has a
sink. As shown in Figure 9, for unknown reasons the ground
shows single-point sinks. The individual sinks are correctly la-
beled as ground, however, the vicinity ground may possibly
wrongly labeled as non-ground. To avoid this over-filtering
(ground wrongly labeled as a building), we restrict the number of
labeled consecutive non-ground points to a limit. This limit cor-
responds to the possible maximum length of a building, which is
chosen as 200 meters in this study. In this way, the mislabeling,
if it occurs, will be limited to a certain extent other than deterio-
rate the entire results. Areas with such sinks may need special
treatment as discussed in (Masaharu and Ohtsubo, 2002).

As the final outcome, Figure 10 presents 3D shaded relief
of the DEM generated using the labeled ground points. The
number of ground points used is listed in Table 1. The DEM
grids are generated using natural-neighbor (Watson and Phillip,
1987) interpolation method at a cell size of one meter, and the
elevation exaggeration factor is 2.5. Since the DEM is shaded
according to the slope, terrain relief change is magnified.
Comparing to 3D perspective views, the shaded relief provides
a better and exaggerated way to visually examine the quality
of filtering operation. As is shown in Figure 10, the generated
DEM reflect the natural relief of the areas. No large man-made
objects are visible. However, speckle-type artifacts exit in the
final DEM. They are typically caused by individual points re-
turned from trees and vehicles remaining from the labeling
process. It should be noted that the speckle offsets are very
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small. Almost all of them are within one meter above the
ground. As estimated above, such error rate is maximum 4.9
percent (Toronto) as a trade-off of balancing the two types of
labeling mistakes.

Conclusions
Generating the bald ground DEM from raw lidar data requires
a mathematic formulation, which should consider both
slope and elevation criteria. The slope criterion detects the
presence of non-ground objects, while the elevation crite-
rion determines if the lidar points belong to an object or
ground. The proposed labeling approach is computationally
efficient and reliable because of its 1D bidirectional imple-
mentation. The adaptive thresholding technique based on
local topography makes this approach applicable to a vari-
ety of urban areas with different building complexity and
terrain relief. 

The proposed approach can provide satisfactory DEM in
complex urban environments. Most urban features, such as
complex buildings, bridges, vehicles, and trees can be correctly
separated from ground. Difficulty may occur at places being
full of vehicles or trees, and vehicle-present streets and objects
(such as a bridge) that have a small slope change along the
lidar scan line. The complete separation of water from ground
may need spectral information. Quality assessment based on
ground truth suggests that an optimal filtering approach essen-
tially needs to achieve the best balance of the false positive and
false negative errors. The proposed labeling approach exhibits
an average 2.6 percent false positive and 2.7 percent false nega-
tive mislabeling rates over the four study areas. These error
rates increase when the topography has larger range of ground
slopes. Further effort will be made to detect and remove very
small artifacts remaining from the labeling process and to use
imagery along with lidar data for a complete separation of
ground features.
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