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An adaptive fractional-order nonsingular terminal sliding mode controller for a microgyroscope is presented with uncertainties
and external disturbances using a fuzzy neural network compensator based on a backstepping technique. First, the dynamic of
the microgyroscope is transformed into an analogical cascade system to guarantee the application of a backstepping design.
Then, a fractional-order nonsingular terminal sliding mode surface is designed which provides an additional degree of
freedom, higher precision, and finite convergence without a singularity problem. The proposed control scheme requires no
prior knowledge of the unknown dynamics of the microgyroscope system since the fuzzy neural network is utilized to
approximate the upper bound of the lumped uncertainties and adaptive algorithms are derived to allow online adjustment of
the unknown system parameters. The chattering phenomenon can be reduced simultaneously by the fuzzy neural network
compensator. The stability and finite time convergence of the system can be established by the Lyapunov stability theorem.
Finally, simulation results verify the effectiveness of the proposed controller and the comparison of root mean square error
between different fractional orders and integer order is given to signify the high precision tracking performance of the
proposed control scheme.

1. Introduction

Recently, serious efforts have been paid on the control of
the microgyroscope because of its significance in various
applications like automobile, navigation, and traffic that
require high precision in angular velocity measurement
and trajectory tracking. However, the microgyroscope
entails inherent uncertainties and nonlinearities produced
by the manufacturing process, external disturbances, ambi-
ent conditions, and so on, which makes the control very
complicated. In order to achieve better control perfor-
mance, many advanced control methods have been imple-
mented such as backstepping technique, adaptive control,
sliding mode control, fuzzy control, and neural network
control. Two adaptive controllers were proposed to tune
the natural frequency of the drive axis for a vibrational
microgyroscope in [1].

The sliding mode control (SMC) is considered to be an
efficient control scheme for both linear and nonlinear sys-
tems and certain and uncertain systems for its insensitivity
to parameter uncertainties. In conventional SMC, a linear
sliding surface is chosen which only guarantees asymptotic
stability of the system in a sliding phase. Namely, no matter
how the parameters of the sliding surface are adjusted, it is
impossible for the system states to reach the equilibrium
point within a finite time. To address this problem, terminal
sliding mode control (TSMC) schemes with a nonlinear slid-
ing surface have been proposed in [2] which offer faster and
finite time convergence, greater control precision, and stron-
ger robustness regarding uncertainties compared to conven-
tional SMC. A TSMC method with observer-based rotation
rate estimation was investigated for a z-axis MEMS gyro-
scope in [3]. However, there still exist defects in traditional
terminal SMC including singularity problem and the
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requirement for prior knowledge of nonlinear system
dynamics. To solve singularity problems, a nonsingular ter-
minal sliding mode control (NTSMC) has been proposed in
[4, 5]. In [6], a robust adaptive terminal sliding mode
synchronized control was investigated for a class of nonau-
tonomous chaotic systems. In [7], an adaptive NTSMC was
presented using fuzzy wavelet networks to approximate
unknown dynamics of robots with an adaptive learning
algorithm. Adaptive NTSMC strategy techniques were inves-
tigated for the microgyroscope in [8, 9].

Neural networks and fuzzy systems are capable of
learning and approximating any smooth nonlinear func-
tion. A disturbance observer-based fuzzy sliding mode
controller was designed for a PV grid-connected inverter
in [10]. Liu et al. [11, 12] derived an adaptive fuzzy output
feedback control and a neural approximation-based adap-
tive control for nonlinear nonstrict feedback discrete-time
systems and nonlinear systems with full state constraint.
Wu et al. [13, 14] proposed mixed fuzzy/boundary control
schemes consisting of a feedback fuzzy controller and an
antidisturbance robust boundary controller for nonlinear
coupled ODE systems and nonlinear parabolic PDE
systems. Li et al. [15] developed an adaptive fuzzy strategy
with prescribed performance for block-triangular-
structured nonlinear systems. An adaptive sliding mode
control using a double-loop recurrent neural network
structure was developed in [16]. Neural networks are
employed to approximate unknown nonlinear functions
in [17]. An adaptive neural network output-feedback
control was proposed to tackle the unknown nonlinear
functions for nonlinear time-delay systems in [18]. The
fuzzy neural network (FNN) is a special architecture which
integrates the advantages of fuzzy systems and neural net-
works. An adaptive fuzzy neural network control scheme
was proposed to enhance the performance of a shunt
active power filter in [19].

SMC is applied not only to integer-order systems but also
to fractional-order ones. Fractional calculus is an expansion
of integer-order differentiation and integration to
fractional-order ones which can date back to three hundred
years ago [20]. Recently, more and more attention has been
focused on its application in control systems rather than a
pure theoretical mathematical subject due to its higher
control accuracy and additional degree of freedom in com-
parison with integer-order controllers. A fractional-order
controller was proposed for a microgrid in [21], where
fractional-order PID controller parameters are tuned with a
global optimization algorithm to meet system performance
specifications. In recent years, fractional calculus has been
merged into SMC in controller design for fractional-order
systems and their integer-order counterpart which provides
both merits simultaneously. Chen et al. developed an adap-
tive SMC for a fractional-order nonlinear system with uncer-
tainties in [22]. An adaptive fuzzy SMC with a fractional
integration scheme was presented in [23] to tune the param-
eter which can show better tracking performance and higher
degree of robustness to disturbances compared to classical
integer-order ones. A fractional-order sliding surface was
designed in [24] for both integer- and fractional-order

chaotic systems, which has shown an additional degree of
freedom in a fractional sliding surface. Nojavanzadeh and
Badamchizadeh proposed an adaptive fractional-order
NTSMC for robot manipulators with uncertainties solved
by adaptive tuning methods which guaranteed finite conver-
gence and better tracking performance in [25]. An adaptive
fractional-order sliding controller with a neural estimator
was discussed in [26].

The backstepping control is well known for its recursive
and systematic design for a nonlinear dynamical system by
choosing an appropriate function of the state variables as vir-
tual control for subsystems and designing control laws based
on Lyapunov functions. Usually, it is combined with other
control schemes like SMC and fuzzy control. Adaptive back-
stepping sliding mode controllers for the dynamic system
were proposed in [27]. An adaptive intelligent backstepping
SMC was proposed for a finite-time control of fractional-
order chaotic systems with uncertainties and external distur-
bances in [28].

Motivated by the above discussion, an adaptive
fractional-order nonsingular terminal sliding mode control
using a backstepping technique via a fuzzy neural network
compensator is proposed for a microgyroscope in this paper.
The sliding surface is a fractional-order nonsingular terminal
sliding surface, and the dynamics of the microgyroscope is
described by integer order not fractional order. The main
contributions of this paper are emphasized as follows:

(1) The superior characteristic of the proposed control
method is that a fractional-order term is adopted
in the sliding manifold which generates an extra
degree of freedom, fractional-order α, so that the
performance of the closed-loop system can be
improved a lot compared to the integer-order tra-
ditional sliding surface.

(2) The nonsingular terminal sliding mode surface cho-
sen in the controller design ensures the finite conver-
gence without singularity. A fractional-order
derivative offers an extra degree of freedom in the ter-
minal sliding surface and makes the corresponding
control laws more flexible.

(3) The backstepping control is a systematic and
recursive design method for nonlinear systems.
Based on the backstepping fractional-order
NTSMC scheme, adaptive algorithms are adopted
to estimate the system parameters online automat-
ically including damping and stiffness coefficients
and angular velocity.

(4) A fuzzy neural network compensator is used to
approximate the upper bound of the lumped uncer-
tainties of the system which relax the requirement
of unknown system dynamics and reduce the chatter-
ing phenomenon simultaneously.

The rest of this paper is organized as follows. The
dynamic of the microgyroscope system is described in
Section 2. In Section 3, some necessary preliminary
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knowledge of fractional calculus and fuzzy neural network
is introduced. The backstepping fractional-order nonsingu-
lar terminal sliding mode controller and the adaptive
fractional-order nonsingular terminal sliding mode control
using the backstepping technique via the fuzzy neural net-
work compensator are proposed in Section 4 and Section
5, respectively. Simulation results are shown in Section 6,
and the final section is the conclusions.

2. Dynamics of the Microgyroscope

The microgyroscope is composed of a proof mass, sensing
mechanisms, and electrostatic actuation which are used to
force an oscillatory motion and velocity of the proof mass
and to sense the position. Referring to [8], the dynamics of
the microgyroscope system can be derived under some
assumptions: (1) the stiffness of the spring in the z direction
is much larger than that in x and y directions, and the motion
of the proof mass is constrained to the x- and y-axes as seen
in Figure 1; (2) the gyroscope rotates at a constant angular
velocity Ωz over a sufficiently long time interval; and (3)
the centrifugal forces can be neglected. Then, the dynamics
of the microgyroscope can be expressed in the following
form:

mx + dxx + kx −m Ωz′
2 +Ωz′

2
x +mΩx′Ωy′y = ux′ + 2mΩz′y,

my + dyy + ky −m Ωx′
2 +Ωz′

2
y +mΩx′Ωy′x = uy′ − 2mΩz′x,

1

where m denotes the mass of the proof mass, dx,y and kx,y
are vectors representing damping and spring coefficients
along the x- and y-axes, respectively. Ωx,y,z′ is the angular

velocity along each axis, and ux,y′ is the control force in
the x- and y-axes.

Taking fabrication defects into consideration, the
dynamics for a z-axis microgyroscope can be revised as

mx +Dxxx +Dxyy + Kxxx + Kxyy = ux′ + 2mΩz′y,

my +Dxyx +Dyyy + Kxyx + Kyyy = uy′ − 2mΩz′x,
2

where Dxx ,Dyy and Kxx , Kyy are vectors denoting damping
terms and spring coefficient terms, respectively, Dxy and
Kxy are coupled damping and spring terms.

Dividing both sides of (2) by proof mass m, reference
length q0, and natural resonance frequency ω0 simulta-
neously yields

x + dxxx + dxyy + ωx
2x + ωxyy = ux + 2Ωzy,

y + dxyx + dyyy + ωxyx + ωy
2y = uy − 2Ωzx

3

In (3),

Dxx

mω0
⟶ dxx,

Dxy

mω0
⟶ dxy ,

Dyy

mω0
⟶ dyy,

Kxx

mω0
2 ⟶ω2

x,
Kxy

mω0
2 ⟶ωxy,

Kyy

mω0
2 ⟶ω2

y ,

ux′
mω2

0
⟶ ux,

uy′
mω2

0
⟶ uy ,

Ωz′
ω0

→Ωz

4

Through the equivalent transformation, the nondimen-
sional representation of the model can be established as

q +Dq + Kq = u − 2Ωq, 5

where

q =
x

y
,D =

dxx dxy

dxy dyy
, K =

ω2
x ωxy

ωxy ω2
y

,

u =
ux

uy
,Ω =

0 −Ωz

Ωz 0

6

3. Preliminaries

Some preliminaries of fractional-order calculus and fuzzy
neural network which will be utilized afterward are described
in this section.

3.1. Fractional-Order Calculus. As the generalization form of
the traditional calculus, Caputo (C), Riemann-Liouville (RL),
and Grunwald-Letnikov (GL) definitions are three of the
most outstanding definitions utilized in engineering, science,
and economics fields, especially the Caputo fractional defini-
tions because it takes the same form as integer-order

kxxdxx

dyy

kyy

𝛺z

m

Supporting frame

Actuators

x

Driving axis

ux

y
Sensing axis

uy

Actuators

Figure 1: Schematic diagram of a z-axis microgyroscope.
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differentiation in the initial condition. So, the following sec-
tion is based on Caputo derivative definition.

According to [26, 28], the Caputo fractional derivative of
order α of function f x is denoted as

aDt
α f t =

1
Γ n − α

t

a

f n τ

t − τ α−n+1 dτ,  n − 1 < α < n

dn

dtn
f t ,  α = n

,

7

where t and a are the upper and lower bounds of the
operator, respectively, and Γ is the Gamma function
which satisfies

Γ γ =
∞

0
e−t tγ−1dt 8

For the sake of convenience in description, aDt
α is

replaced by Dα in the following parts. It is noted that if
α = 0, then the operation D0 f x satisfies D0 f x = f x .

3.2. Fuzzy Neural Networks. Fuzzy neural networks (FNN)
proposed in this paper have the merits of fuzzy system
and neural network simultaneously. Not only can the
inference characteristic of the fuzzy system be brought
into neural networks but also the learning and computing
ability of the neural network can be applied for the adjust-
ment of the if-then fuzzy rules. The block diagram of a
four FNNs described in Figure 2 which comprises the
input, the membership, the rule, and the output layers is
used to approximate the unknown upper bound of the
lumped uncertainties. The signal propagation and the
operation functionalities in each layer of the FNN system
are depicted as follows:

In the following description, the input and output of a
node in the ith layer are described as netm and ym,
respectively.

(1) Input layer: All nodes in this layer are input nodes
which transmit input values to the next layer
directly, and the net input and output are described
as

net1i = X1
i , y1i = f 1i net1i = net1i , i = 1, 2, 9

where X1
1 =Q, X1

2 =Q.

(2) Membership function layer: Each node in this layer
performs a membership function represented by
the Gaussian function in this paper. For the jth node,

net2j =
− X2

i − cij
2

bij
2 ,

y2j = f 2j net2j = exp net2j , j = 1, 2,… , n,
10

where cij and bj denote the center mean and variance of the
Gaussian function, respectively, and n is the total number
of the linguistic variables related to the input nodes.

(3) Fuzzy rule layer: Each node in this layer is denoted by
layer 2. The fuzzy rules are implemented by the
product operator. For the kth node,

net3k =
j

w3
jkx

3
j , y3k = f 3k net3k = net3k, k = 1, 2,… , l,

11

Π

Π

Π

Π

Π

Π
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Π

Π
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Q

Q

ˆ

‧

Figure 2: The configuration of the fuzzy neural network.
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where l = n/i i, and w3
jk represents the weights between layer

2 and this layer.

(4) Output layer: The single node in this layer labeled as
∑ computes the overall output as the summation of
all input signals

net4o =〠
k

w4
kox

4
k, y4o = f 4o net4o = net4o, 12

where w4
ko denotes the connecting weight between the oth

and the kth rule. x4k is the kth input and y4o is the output of
the FNN.

For ease of notation, the outputs of FNN are represented
as the following vector form,

yi =wi
Tϕi, 13

where wi = wi1,wi2,… ,wil
T is the weight vector and ϕi =

ϕi1, ϕi2,… , ϕil
T is the normalized reliability of the FNN.

In the following discussion, it is assumed that both the
centers and widths of the FNN system have been selected
and fixed adequately, and the weight values will be adjusted
on line by an adaptive law.

4. Backstepping Fractional-Order Nonsingular
Terminal Sliding Mode Control

The fractional-order nonsingular terminal sliding mode
surface is proposed in this section since it combined the
advantages of fractional derivatives and the nonsingular
terminal sliding mode control which not only improve
the control precision and performance but also guarantee
the finite time convergence. The backstepping control is
usually applied to a class of special nonlinear dynamical
systems which can be built from subsystems by choosing
appropriate Lyapunov functions. Thanks to the recursive
procedure, good tracking performance and global stability
are guaranteed.

Consider the dynamic model of microgyroscope with
uncertainties and external disturbances as follows:

q + D + 2Ω + ΔD q + K + ΔK q = u + d, 14

where q is the position of the microgyroscope system, ΔD and
ΔK stand for the parameter uncertainties of the system, and d
denotes the disturbance vector.

The dynamics of the system can be rewritten as

q + D + 2Ω q + Kq = u + f , 15

where

f =
f1

f2
= d − ΔDq − ΔKq, 16

denotes the lumped uncertainties of the microgyroscope
system.

Remark 1. The lumped uncertainty and disturbance f is
input-related, bounded by a positive function of the position
and velocity measurements in the form of f < b0 + b1 q
+ b2 q 2, where b0, b1, and b2 are positive constants. For
the convenience of analysis, it is assumed that f is bounded
by a positive constant, that is, f i < ρi, i = 1, 2, ρ = ρ1 ρ2
represent the upper bounds of the lumped uncertainties.

By introducing the transformation

x1 = q,
x2 = q,

17

the dynamics in (2) can be converted as follows:

x1 = x2,
x2 = − D + 2Ω x2 − Kx1 + u + f

18

The control objective in this paper is to design an
appropriate controller for the position q of the system to
track the desired trajectory qr in finite time. The proposed
backstepping fractional-order nonsingular terminal sliding
mode control (BFONTSMC) strategy is designed to solve
the problem of position-tracking and is depicted step by
step as follows:

Step 1. For the objective of position-tracking, the tracking
error can be defined as

e1 = x1 − qr 19

Then the time derivate of e1 is

e1 = x1 − qr = x2 − qr 20

Define the virtual control as

α1 = −c1e1 + qr , 21

where α1 is the estimator of x2; c1 is a positive constant.
The estimator error between α1 and x2 is defined as

e2 = x2 − α1 22

Define the first Lyapunov function as

V1 =
1
2 e1

Te1 23

Differentiating it with respect to time yields

V1 = e1
Te1 = e1

T x2 − qr = e1
T e2 − c1e1 = e1

Te2 − c1e1
Te1
24
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If e2 = 0, then

V1 = −c1e1
Te1 ≤ 0 25

Step 2. The time derivative of e2 is calculated as

e2 = x2 − α1 = − D + 2Ω x2 − Kx1 + u + f − α1 26

In order to achieve a precise and better control perfor-
mance for the microgyroscope, a fractional-order nonsingu-
lar terminal sliding surface is defined as

s = e1 + λ1e2
p2/p1 + λ2D

α−1e1, 27

where λ1 and λ2 are positive constants, and p1 and p2 are pos-
itive odd integers which satisfy the condition 1 < p2/p1 < 2.
The third term is the fractional-order term with 0 < α < 1.

By deriving both sides of s, we have

s = e1 + λ1
p2
p1

diag e2
p2/p1−1 e2 + λ2D

αe1

= e1 + λ1
p2
p1

diag e2
p2/p1−1 − D + 2Ω x2

− Kx1 + u + f − α1 + λ2D
αe1

28

Let

λ1
p2
p1

diag e2
p2/p1−1 = R1 =

r1 0
0 r2

, 29

then

p1
λ1p2

diag e2
1−p2/p1 = R2 =

1
r1

0

0 1
r2

, 30

where

R1
∗R2 = I =

1 0
0 1

, 31

r1 = λ1 p2/p1 e21
p2/p1−1, r2 = λ1 p2/p1 e22

p2/p1−1, and e21
and e22 are the components of e2 along the x- and y-axes.

Define the second Lyapunov function as

V2 =V1 +
1
2 s

Ts 32

Taking the derivative of V2 and using (28), we have

V2 =V1 + sTs = e1
Te2 − c1e1

Te1
+ sT e1 + R1 − D + 2Ω x2
− Kx1 + u + f − α1 + λ2D

αe1 ,
33

In order to guarantee that V2 ≤ 0, the proposed backstep-
ping fractional-order nonsingular terminal sliding mode
controller is designed as

u1 = D + 2Ω e2 + α1 + K e1 + qr

−
ρ1 sgn s1

ρ2 sgn s2
+ α1 − R2e1

− R2λ2D
αe1 − R2

s

s 2 e1
Te2

34

Substituting (34) into (33) yields

V2 = −c1e1
Te1 + 〠

2

i=1
siri f i − ρi sgn si

≤ −c1e1
Te1 + 〠

2

i=1
ri si f i − ρiri si

= −c1e1
Te1 + 〠

2

i=1
ri si f i − ρi

≤ −c1e1
Te1 ≤ 0

35

The derivative of V2 keeps negative SEMI definite which
can be concluded that the stability of the BFONTSMC strat-
egy is guaranteed and the finite-time reachability is achieved,
which means the system trajectory will converge to the
fractional-order nonsingular terminal sliding (FONTS) sur-
face within a finite time.

5. Adaptive Fractional-Order Nonsingular
Terminal Sliding Mode Control Using the
Backstepping Technique via a Fuzzy Neural
Network Compensator

In the previous procedure, the control law (34) is derived
under the condition that parameter variations D, K ,Ω and
uncertain upper boundary ρ are known in advance. However,
the fact is that it is difficult to measure these variations in
practice. So, an adaptive algorithm and a fuzzy neural net-
work compensator are integrated to estimate the system
parameters with D̂, K̂ ,Ω and approximate the unknown
upper bound of lumped uncertainties ρi, respectively, which
attenuates the chattering phenomenon caused by a sign func-
tion in reaching the phase of the nonsingular terminal sliding
surface simultaneously, and then the adaptive backstepping
fractional-order nonsingular terminal sliding mode control-
ler via a fuzzy neural network (ABFONTSMC-FNN) com-
pensator is proposed. Suppose that position q and its
derivate q are the inputs of the fuzzy neural network. The
block diagram of the proposed ABFONTSMC-FNN is
depicted in Figure 3.
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In the presence of unknown system parameters and the
lumped uncertainties, the control law in (34) can bemodified as

u = D̂ + 2Ω e2 + α1 + K̂ e1 + qr + α1 −
ĥ1 sgn s1

ĥ2 sgn s2

− R2e1 − R2λ2D
αe1 − R2

s

s 2 e1
Te2,

36

where D̂, K̂ , andΩ are the estimators of system parameters D,
K , andΩ, and ĥi is the fuzzy neural network compensator
which satisfies

ĥi =wi
Tϕi 37

Assuming that the optimal output of FNN is in the form

ĥi
∗ =wi

∗Tϕi = ρi, 38

where wi
∗ denotes the optimal weight vector.

Define the parameter estimation error as

D = D̂ −D,
K = K̂ − K ,
Ω =Ω −Ω

39

Consider the third Lyapunov function candidate as

V3 =
1
2 e1

Te1 +
1
2 s

Ts + 1
2 tr DM−1D

T + 1
2 tr KN−1K

T

+ 1
2 tr ΩP−1ΩT + 1

2η〠
2

i=1
wi

Twi,

40

where M =MT ,N =NT , and P = PT are positive definite
matrices, wi =wi −wi

∗s, η is a positive constant, and tr ⋅
denotes the matrix trace operator.

Using (36) and taking the time derivation on both sides
of V3 yield

V3 = e1
Te1 + sTs + tr DM−1D

T
+ tr ΩP−1Ω

T

+ tr KN−1K
T

+ 1
η
〠
2

i=1
wi

Twi = −c1e1
Te1 + e1

Te2

+ sT e1 + λ2D
αe1 + sTR1 D + 2Ω e2 + α1

+ K e1 + qr −
ĥ1 sgn s1

ĥ2 sgn s2

+ f − R2e1 − R2λ2D
αe1

− R2
s

s 2 e1
Te2 + tr DM−1D

T
+ tr ΩP−1Ω

T

+ tr KN−1K
T

+ 1
η
〠
2

i=1
wi

Twi = −c1e1
Te1

+ sTR1 D + 2Ω e2 + α1 + K e1 + qr

+ 〠
2

i=1
siri f i − ĥi sgn si + tr DM−1D

T

+ tr ΩP−1Ω
T

+ tr KN−1K
T

+ 1
η
〠
2

i=1
wi

Twi

= −c1e1
Te1 + sTR1D e2 + α1 + tr DM−1D

T

+ sTR1K e1 + qr + tr KN−1K
T

+ 2sTR1Ω e2 + α1 + tr ΩP−1Ω
T

+ 〠
2

i=1
siri f i −wi

Tϕi sgn si

+ 1
η
〠
2

i=1
wi −wi

∗ Twi

41

Reference
model

Backstepping
step 1

Backstepping
step 2

Fractional
sliding surface

ABFONTSMC-
FNN controller

Adaption
laws Estimation

of angular
velocity

Microgyroscope

c1 q

S

D,K,𝛺

𝛺z

r

d (t)

𝛼1

d
dt

u

d
dt

.

. . .

Figure 3: Block diagram of the ABFONTSMC-FNN controller.
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Since D =DT , K = KT ,Ω = −ΩT and sTR1D e2 + α1 =
e2 + α1

TDR1s are scalar, one can obtain

sTR1D e2 + α1 = 1
2 sTR1D e2 + α1 + e2 + α1

TDR1s

= tr 1
2 D e2 + α1 sTR1 +DR1s e2 + α1

T

42

Simultaneously, we have

sTR1K e1 + qr = 1
2 sTR1K e1 + qr + e1 + qr

TKR1s

= tr 1
2 K e1 + qr s

TR1 + KR1s e1 + qr
T

2sTR1Ω e2 + α1 = sTR1Ω e2 + α1 − e2 + α1
TΩR1s

= tr Ω e2 + α1 sTR1 −ΩR1s e2 + α1
T

43

Substituting (42) and (43) into (41) results

V3 = −c1e1
Te1 + tr D M−1D

T
+ 1
2 e2 + α1 sTR1

+ R1s e2 + α1
T + tr K N−1K

T
+ 1
2 e1 + qr s

TR1

+ R1s e1 + qr
T + tr Ω P−1Ω

T
+ e2 + α1 sTR1

− R1s e2 + α1
T + 〠

2

i=1
siri f i −wi

Tϕi sgn si

+ 1
η
〠
2

i=1
wi −wi

∗ Twi

44

In order to ensure V3 ≤ 0, the online adapting laws for
parameters and the weight adaption law are derived, respec-
tively, as follows:

D̂
T
=D

T
= −

1
2M e2 + α1 sTR1 + R1s e2 + α1

T ,

K̂
T
= K

T
= −

1
2N e1 + qr sTR1 + R1s e1 + qr

T ,

Ω
T
=Ω

T
= −P e2 + α1 sTR1 − R1s e2 + α1

T ,

wi =wi = ηri si ϕi

45

Substituting (45) into (44) yields

V3 = −c1e1
Te1 + 〠

2

i=1
siri f i −wi

Tϕi sgn si

+ 〠
2

i=1
wi −wi

∗ Tϕiri si = −c1e1
Te1

+ 〠
2

i=1
siri f i −wi

∗Tϕiri si ≤ −c1e1
Te1

+ 〠
2

i=1
si ri f i − ρi ≤ −c1e1

Te1 ≤ 0

46

V3 is proved to be negative semidefinite which implies
that V3, s,D, K , andΩ are all bounded and converge to zero.
Integrating V3 with respect to time, we have t

0c1e1
Te1 +

∑2
i=1 si ri ρi − f i ≤V 0 −V t dt. Since V 0 is bounded

and V t is bounded and nonincreasing, then t
0c1e1

Te1dt

and t
0∑

2
i=1 si ri ρi − f i dt are all bounded. According to

Barbalat’s lemma, limt→∞e1 t = 0 and limt→∞s t = 0,
which means the FONTSM surface converges to zero in finite
time and D, K , andΩ converge to their true values if the per-
sistent excitation condition is satisfied.

6. Simulation Study

In this section, the proposed ABFONTSMC-FNN is applied
for trajectory tracking of a z-axis microgyroscope by
Matlab/Simulink. Referring to [8], the parameters of the
microgyroscope are chosen as follows:

m = 1 8 × 10−7 kg,
dxx = 1 8 × 10−6 N s/m,
dyy = 1 8 × 10−6 N s/m,

dxy = 3 6 × 10−7 N s/m,
kxx = 63 955N/m,
kyy = 95 92N/m,
kxy = 12 779N/m

47

Assume that the unknown angular velocity is Ωz =
100 rad/s. Then, the nondimensional gyroscope parameter
matrices can be derived as follows:

D =
0 01 0 002
0 002 0 01

,

K =
355 3 70 99
70 99 532 9

,

Ω =
0 −0 1
0 1 0

48
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We will track the reference trajectory qr1 = sin 4 17t
and qr2 = 1 2 sin 5 11t with the initial states of the sys-
tem q1 0 = 0 5, q1 0 = 0, q2 0 = 0 5, q2 0 = 0. Choose
the initial conditions of D, K ,Ω as D0 = 0 95∗D, K0 =
0 95∗K ,Ω0 = 0 95∗Ω. Select the sliding surface parameters
p1 = 3, p2 = 5, λ1 = λ2 = 1, the control parameter c1 = 10,
and the adaptive gain M =N = P = diag 150, 150 .

The architecture of FNN is specified as 2, 6, 9, and 1 neu-
rons at the input, membership, rule, and output layer, respec-
tively. It is assumed that qi qi

T is the input of the fuzzy
neural network. The initial values of the Gaussian width
vector and the center vector are set as

C = cij =
−5 −2 5 0 2 5 5

−5 −2 5 0 2 5 5
49

and B = bij = 3 3 3 3 3 T . The initial values of
the weights are selected as random numbers between −1
and 1. The learning rate in the adaptive law of wi in
(45) is designed as η = 0 01. When the fractional order
is set as α = 0 9 and the lumped uncertainty is applied as
random signal f = 0 5∗ rand n 1, 1 ; 0 5∗ rand n 1, 1 , the
corresponding simulation results are shown in Figures 4–10.

The reference trajectories are well tracked as seen
from Figure 4 which demonstrates that the proposed
ABFONTSMC-FNN strategy is satisfactory as expected.
Figure 5 describes the tracking error of the microgyroscope
system along the x- and y-axes. It is obvious that the tracking
errors under the ABFONTSMC-FNN scheme are bounded
and converge to zero in finite time compared to the tracking
errors under the conventional adaptive sliding mode control
scheme as shown in Figure 6. Tracking errors under the

conventional adaptive sliding controller converges with small
fluctuations near zero.

Figure 7 plots the convergence of the fractional-order
nonsingular terminal sliding surface. It is intuitive that the
designed sliding surface converges to zero within finite time
which insures that the trajectory of the system attains to the
sliding surface. Figure 8 illustrates the smooth control input
signals of the MEMS gyroscope along the x- and y-direc-
tions without any chattering because of the approximation
for the gain of switching function using the fuzzy neural net-
work compensator. Figures 9 and 10 draw the estimation of
the system parameter matrices D and K , respectively, which
verified that the estimations converge to their true values
with persistent sinusoidal signals. The adaption of angular
velocity is described in Figure 11 whose estimate value also
converges to its true value.

In order to observe the tracking performance under
different fractional orders and integer orders visually, a
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Figure 4: Tracking trajectory using ABFONTSMC-FNN.
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Figure 5: Tracking error using ABFONTSMC-FNN.
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Figure 6: Tracking error using the adaptive sliding mode control.
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universal standard is adopted here to quantify the tracking
error by calculating the root mean square error (RMSE)
which reflects how much the measured value deviates from
its true value. The smaller the RMSE is, the higher the
measurement accuracy is. Thus, RMSE can be a criterion
to evaluate the tracking performance of the proposed con-
trol strategy under different fractional orders. The RMSE
along the x- and y-axes under different orders is shown
in Table 1.

For fairness, the fractional-order α is added in the form of
a ladder-type increase and the integer order is α = 1. It is easy
to see that the value of the fractional-order α will make a dif-
ference on system tracking errors. So, a better tracking per-
formance can be achieved by adjusting the value α. When
the fractional-order α is selected as 0.9, the RMSE seems to
be minimal; this is the reason we choose α = 0 9 in the

previous control design. In the case of the integer order, the
RMSE values along the x- and y-axes are 0.2243 and
0.1590, respectively, which are larger than the case of α =
0 9. This effectively verified that the adaptive backstepping
fractional-order nonsingular terminal sliding mode control-
ler via a fuzzy neural network control scheme is superior to
the conventional integer-order ones.

7. Conclusions

In this paper, a novel fractional-order intelligent control
scheme combining adaptive control, nonsingular terminal
sliding mode control, fuzzy neural network, and backstep-
ping control is proposed for the microgyroscope system in
the presence of uncertainties and external disturbances. The
finite time convergence, nonsingularity, and extra freedom
of degree are achieved by the fractional-order nonsingular
terminal sliding mode controller. The fuzzy neural network
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Figure 7: Fractional-order nonsingular terminal sliding surface.
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is employed to approximate the upper bound of the lumped
uncertainties which also reduces the chattering phenome-
non. In addition, adaptive estimators are utilized to identify
the angular velocity and other unknown system parameters.
Finally, the effectiveness of the proposed controller and the
best value of the fractional-order α can be confirmed by sim-
ulation results. In this paper, the dynamics of the system is
represented by integer-order calculus; we hope to study the
fractional-order system and apply an intelligent method to
it in the future.
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