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Abstract: Online transient stability assessment (TSA) is of great necessity for fast awareness of transient instability caused by
fault contingencies. In this paper, a non-parametric statistics based scheme is proposed for response-based online TSA. A
critical clearing time-based stability margin index is defined as the predictive output and 14 kinds of severity indicators are
proposed as input features for the TSA predictor. With no prior knowledge of the correlation structure, the non-parametric
additive model is used as the basis of the predictor. To screen out the weakly correlated indicators and reduce the
dimensionality of the input space, two-stage feature selection is fulfilled by non-parametric independence screening and group
Lasso penalised regression successively. The predictor is then learnt by least-squares regression in the reduced multi-feature
space. With phasor measurement unit measurements at generator buses, severity indicators can be computed in the real-time
and fast evaluation of post-fault stability margin can be made by the offline-trained predictor. The effectiveness of the proposed
non-parametric statistics based scheme is demonstrated in a modified New England 39-bus system and a practical 756-bus

transmission system in China.

1 Introduction

Transient stability refers to the ability of power systems to maintain
synchronism when subjected to severe disturbances such as faults
[1]. In large-scale interconnected power systems, a fault that occurs
in a subsystem may cause unexpected out-of-step of some
synchronous  generators, network splitting from critical
transmission corridors and ultimately blackouts. Online transient
stability assessment (TSA) is necessary for system operation since
it predicts the post-fault stability status in a real-time manner,
providing the opportunity for timely execution of remedial action
schemes to prevent system collapse.

Time-domain simulation (TDS) is the classical method for
TSA. However, TDS is not practical for online prediction of
transient stability due to the extensive computational burden of
solving the differential algebraic equations. Currently, prospective
methods for online TSA are the transient energy function (TEF)
methods, the hybrid methods, the Lyapunov exponents (LEs)
methods and the data-mining methods:

(1) The TEF methods construct the Lyapunov functions to evaluate
the transient energy and predict the post-fault stability by
comparing the energy at fault clearing time with the maximum
potential energy that can be absorbed by the post-fault system. TEF
models that incorporate with high-voltage DC transmission [2] and
stochastic renewable generation [3] have been proposed,
respectively, to accommodate the integration of these novel
components and to provide a more accurate assessment. However,
the difficulty of TEF-based real-time TSA is mostly the online
computation of the controlling unstable equilibrium point (CUEP)
and correspondingly the maximum potential energy. In [4], a look-
up table of potential modes of disturbance is built offline to assist
real-time identification of CUEP. However, the computation of
CUERP is only quickened but not displaced.

(2) Hybrid methods are referred to the combination of TDS and
TEF methods initially. However, with the deployment of phasor
measurement units (PMUs), trajectories from TDS are replaced by
online measurements, so that hybrid methods are adaptive to real-
time application. The concept of potential energy in the critical
corridors is used to detect loss of synchronism in [5]. The pair-wise
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relative energy function is proposed in [6] for fast identification of
the critical generators and then the single machine equivalents
(SIME) and the equal-area criterion are employed to qualify the
transient stability. Both the above-mentioned hybrid methods rely
on the prediction of the SIME's unstable equilibrium point since
they make use of the TEF concepts.

(3) On the basis of the ergodic theory of dynamic systems, LEs can
indicate the divergence or convergence of the generator angle
trajectories and thus the synchronism of generators can be detected
by tracking the sign of the maximal LE (MLE) [7]. A data-driven
approach for LE computation from time-series PMU measurements
is proposed in [8], so that the model-dependent problem in [7] is
overcome. Nevertheless, the post-fault stability status is still
difficult to determine because the MLE may oscillate from positive
and negative values before the post-fault system settles down. To
address this problem, a recursive least-squares-based method is
proposed in [9] for fast estimating the MLE, and therefore the
monitoring window is shortened. So far, the connection between
the change sign of MLE and the system's passing through the
CUERP has not been studied. The optimal time for remedial control
is thus not clear and future research is needed.

(4) As for data-mining-based TSA, post-fault stability can be
assessed promptly by feeding the online measurements into the
offline-learned predictor. With the advent of data-rich and
processor-rich smart grid environment, data-mining techniques can
promote response-based TSA, enabling real-time awareness of
transient stability and also response-based remedial control
schemes [10].

Some promising results of response-based TSA by data mining
have been reported in [10-22]. Decision trees (DTs) have the
superiority of transparency [11] and do not rely on the back-
propagation (BP) training process [12] in comparison with neural
networks (NNs). To reduce the input dimension without
compromising the predictor's accuracy, a novel DT-based TSA
scheme is proposed by introducing the characteristic ellipsoid
(CELL) theory to extract the key features from limited PMU
measurements in [13]. Another DT-based framework is proposed in
[14] to predict the unstable generator grouping pattern in power
systems with renewable generation. On the basis of stability

5761

This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



prediction, the response-based one-shot control scheme is also
developed by using PMU measurements and DTs in [15]. Support
vector machine (SVM) and its derivatives such as core vector
machine (CVM) have also been applied to develop TSA classifiers.
n [16], the SVM classifier takes proximity of the actual voltage
variations to the pre-identified templates as inputs and
satisfactorily prediction can be made within the six-cycles
observation window. Another SVM classifier using TEF-based
features as inputs is also investigated in [17] and accurate
estimations can be provided for multiple contingencies with the
maximum load/generation deviation to be £20%. In [18], case
studies in two practical power systems in the USA and China have
also validated the effectiveness of CVM classifiers. Apart from
training a single conventional predictor, ensemble methods have
been proposed as well. Catastrophe predictors based on the random
forest (RF) are built on the basis of wide-area severity indices in
[10] and these RF-based predictors have shown the robustness to
different network dynamics when compared with a single DT. An
intelligent system (IS) is developed for post-disturbance TSA by
using an ensemble of extreme learning machines in [19]. Owing to
the fast learning speed of extreme learning machines (ELMs), the
ensemble classifiers can be updated by online pre-disturbance TSA
results, thus improving the self-adaptiveness of the IS. The
emerging deep learning techniques have also been proposed in
recent years. Following the framework of [19], the long short-term
memory network is used to develop a temporal self-adaptive TSA
system in [20]. To develop a scalable TSA framework for large-
scale power grids, MapReduce-based parallelised NNs are used for
instability prediction and critical unstable generators identification
in [21]. All the above-mentioned predictors only classify the post-

Table 1 Response-based severity indicators
Number Severity indicators Equations
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stability status, but none of them provide any quantitative
assessment. Multi-variate adaptive regression splines are used in
[22] to assess the transient stability margin based on real-time
measurements. However, the literature on developing quantitative
TSA predictor as [22] is very limited.

In this paper, a non-parametric statistics based scheme is
proposed for response-based online assessment of transient
stability margin. The stability margin based on critical clearing
time (CCT) is first defined as the predictive response, and 14 kinds
of severity indicators are proposed as input features. With no prior
knowledge of the correlation structure between severity indicators
and the corresponding stability margin, the non-parametric additive
model is used as the basis of the predictor. After forming a
knowledge base, weakly correlated severity indicators are screened
out by a novel two-stage non-parametric analytics based feature
selection. Predictor for online TSA is then learned by least-squares
regression in the reduced multi-feature space. Since the severity
indicators can be computed by post-fault PMU measurements, the
stability margin can be estimated by the predictor in real-time
operation. An illustrative case study on a modified New England
39-bus system and application of the proposed scheme on a
practical 756-bus transmission system in China are provided.

The rest of this paper is organised as follows. The CCT-based
stability margin index and the severity indicators are defined in
Section 2. The technical details of the proposed scheme and the
fundamentals of non-parametric statistics are introduced in Section
3. A case study on the New England 39-bus system is presented to
illustrate the effectiveness of the proposed scheme in Section 4.
Application to a practical transmission system is provided in
Section 5. Finally, conclusions are drawn in Section 6.

2 Stability margin and severity indicators

Data mining is performed to establish a projection between the
response and the features. As for data-mining-based TSA in this
paper, a stability margin index based on CCT is defined as the
predictive response, while 14 kinds of response-based severity
indicators are proposed as the inputs of the predictor.

2.1 CCT-based stability margin index

CCT represents the boundary of transient stability from the
perspective of fault clearing time. The margin of fault clearing time
as is shown in (1) can be used to evaluate the post-fault stability of
power systems

Ter — Lo
n=— ey

tCl"

where ¢, and z;jare the CCT and the fault clearing time of a fault
contingency, respectively.

2.2 Response-based severity indicators

Post-fault responses of power angles, rotor speeds and accelerating
powers of generators, and voltage magnitudes of buses contain key
information relating to transient stability. Numerous severity
indicators have been proposed for stability assessment [18, 23-26].
In this paper, 14 kinds of indicators are proposed to form the multi-
dimensional space of input features. Definitions of these indicators
are shown in Table 1.

The nomenclature is given as follows. Here, #, and #;are the
faults occurring time and the fault clearing time, respectively, while
fondis the moment at which observation window ends. g denotes the
serial number of generators while G represents the set of
generators. J, w, P, and P, are power angle, rotor speed,
mechanical power input and electrical power output of a generator.
V is the voltage magnitude of the generator bus and Vyis its rated
value.

Besides

M=) M, ©)
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M, (geG) is the inertia coefficient of a generator while Mis the
aggregated inertia coefficient of a power system. dcop, @cop and
Pcor are the phase angle, the angular frequency and the
accelerating power of centre of inertia (COI). The superscript of
COI represents that the parameters are under COI reference. Thus,
we have
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These indicators capture the post-fault response of a single
generator. To evaluate the impact of a fault contingency on the
system, five kinds of statistic indices, which are the maximum, the
minimum, the maximum separation, the average and the standard
deviation, are utilised. Therefore, an input space of 14 x5=70

indicators is formed. These statistic indexes will be presented by
x min _diff mean std

i P pits piv and p;' in this paper.

3 Proposed scheme

The proposed scheme for online TSA consists of four stages, which
are data preparation, feature reduction, predictor training and
online application. The technical details of these four stages will be
introduced along with the fundamentals of non-parametric statistics
in this section.

3.1 Data preparation

The performance of a predictor relies heavily on the
comprehensiveness of the knowledge base. As for TSA, the
uncertainties that have impacts on post-fault stability are a pre-fault
operating condition (OC), fault location and fault clearing time. A
database of OC should be first produced by historical or forecasted
OC data. To enrich this database, more stochastic OCs can be
generated by random variation of loads and generations. On each
OC, an arbitrary transmission line is selected as the faulted device
according to its average failure rate and the fault clearing time is
sampled by its probability distribution. For each fault contingency,
TDS is performed to compute the post-fault responses, the severity
indicators and the CCT-based stability margin. Each instance of
fault contingency is then represented by a row vector of severity
indicators and the corresponding stability margin as is shown in the
equation below:

s=[{p} - {oids - o) i 7] )

where

max diff _mean std]

{pi} = o™, pi™, pliprean, pid], 1<i<14

Simulation and recording of fault contingencies are repeated until a
knowledge base of a given scale is generated.
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3.2 Feature reduction by two-stage non-parametric analytics

During the stage of offline learning, feature reduction and predictor
training are two major issues. Feature reduction is to screen out
some weakly correlated severity indicators as they may not have a
significant contribution on the performance improvement of the
trained TSA predictor, but instead leads to the increased
computation burden of predictor training. On the other hand,
predictor training is to learn the marginal correlation structure and
the relating parameter.

There is little prior knowledge that indicates the correlation
takes a linear form or belongs to any other finite-dimensional
parametric family. To address this difficulty, the non-parametric
additive model, as is shown in (10), can be used for better
flexibility and approximation accuracy

N
n=MX)+e=p+ Y fix)+e (10)

i=1
where

X; eX= [{pl}’ LR {p14}]

For simplicity, the severity indicators p are rewritten as x and the
saying of ‘feature x’ is invariably referred to the severity indicators
in the rest of this paper. M(.) denotes the correlation between the
stability margin # and the severity indicators X. u is the intercept,
fi(.) is the non-parametric component relating to the ith indicator x;
and ¢ is an unobserved regression error.

For feature reduction in the high-dimensional non-parametric
additive model, a two-stage feature selection technique is proposed
by combining the non-parametric independence screening (NIS)
and the group Lasso penalised regression.

3.2.1 Feature reduction based on NIS: The principle of NIS
[27] is to identify and screen out the weakly correlated features by
fitting the univariate correlations and thresholding the regression
error of the fitting functions.

Supposing there is a correlation between the stability margin #
and the severity indicator x;, this correlation can be estimated by a

fitting function as is shown in the equation below:
n=fix)+é& (11)

where f;(x;) denotes the fitting function and ¢; is the regression error
that obeys normal distribution.

The goodness of each fitting function can be evaluated by the
root mean square error (RMSE) as is shown in the equation below:

1 < 2
RMSE = ?k; [ = fixi)] (12)

where k denotes the serial number of instances and K is the number
of instances.

Without any prior knowledge of the parametric model for
correlation fitting, basis-spline function, namely B-spline function,
is often used for non-parametric regression because of its ability to
fit both linear or non-linear correlations. The B-spline function can
be represented by a linear combination of basis functions as is
shown in the equation below:

d
Fi00) =Y Bidhy (x0) (13)

J=1

where basis function ¢, (x;) is a piecewise polynomial function of y
order, d denotes the degree of freedom and f; represents the
contribution coefficient of the basis functions ¢; ,(x;). Three-order
B-spline is used in this paper, thus order y is chosen as 3. To fit
non-linear correlations smoothly, the marginal degree of freedom
has to be searched by repeatedly performing univariate regression
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1: Input: Data matrix S = {X;, X>, ..
Selection threshold 7,
fori=1toN
Extract the ith column X; and the last column Y from

*o Xna Y}

Fit Y against X; with (6) of d degree of freedom
Evaluate the regression error RMSE; 4 by (5)
end d Loop
8:  Determine the marginal function by smallest RMSE; 4
9: end i Loop
10: Rank all the features by RMSE; marginal
11: Eliminated features with RMSE; yarginai > Ts
12: end algorithm

2:
3
S
4: ford=3to 13
5
6
7

Fig. 1 Algorithm 1: Feature selection based on NIS

under a different degree of freedom. In this paper, the degree of
freedom takes a value within the set of {d|3 <d<5 and deZ}.

All the severity indicators are ranked by RMSE and features
with RMSE higher than a given threshold are then screened out.
The procedure of feature reduction based on NIS is summarised by
Algorithm 1 (see Fig. 1). Each row of data matrix s represents an
instance. The last column of s is the stability margin # while the
rest denote the severity indicators.

3.2.2 Feature reduction based on group Lasso: Group Lasso
[28] is an enhanced penalised method for feature selection and
non-parametric regression. For traditional Lasso, components f; in
the additive model is considered to take the universal form of linear
parameters, which makes it incapable of accurate estimation of
non-linear correlations. In contrast, feature reduction based on
group Lasso is achieved by penalising the non-parametric
components in the additive model. Assuming that the non-
parametric components share the same structures as the marginal
B-spline univariate functions that are determined in the stage of
NIS, the non-parametric additive model can be rewritten as is
shown in the equation below:

N

n=p+ Y fil)+e
i=1

. (14)

d;
=pu+ i; JZ} Pijif(x;) + €

The estimation of (14) by group Lasso can be expressed by an
optimisation problem as shown in the equation below: (see (15))
where

B=1B, B s B Bi= B P o Bral
A is the penalty factor and w; is the weighting factor for the ith
severity indicator. As 1 increases, coefficients f; of some features
may decrease to 0. This characteristic of group Lasso ensures that
ineffective indicators can be removed from the non-parametric
additive model.

Usually, the weighting factors cannot be determined in advance.
To avoid the extra computation burden of tuning weighting factors,
the adaptive group Lasso is proposed. The procedure of the
adaptive group Lasso is demonstrated as follows:

(1) Initialise all the weighting factors such as such as 1 and set the
iterator / as 0.

(2) Compute the x4 and S by solving (15).

(3) Assign the new value to the weighting factors w by the equation
below:

1LY it [ B> 0

_ AL ! Il 6i 1l (16)
oo, ifflgill,=0

(4) Compute the maximum difference A of the weighting factors at

the current stage and the previous stage by the equation below:

i

A = max |w,l—w,l’l

, 1<i<N 17)
(5) If the maximum difference A is less than a given threshold, stop
the loop and the values of w, u and § at the current stage are then
the final result of predictor training; otherwise, return to step (2) to

proceed the computation.

In summary, the two-stage feature reduction is fulfilled by
successively performing the NIS and the group Lasso. NIS helps
determine the marginal structure of the non-parametric components
and screen out weakly correlated features in the high-dimensional
non-parametric additive model. Unlike that the NIS evaluates the
features independently, the group Lasso realises feature reduction
in a joint multi-variate space, providing a comprehensive
evaluation of multiple features.

3.3 Predictor training

After two-stage feature reduction, the indicators that are preserved
in the non-parametric addictive model are selected to form a
reduced multi-feature space. With this reduced input space, TSA
predictor can be trained by the component-wise least-squares
regression. The non-parametric additive model is rewritten as is
shown in the equation below:

Nr
n=p+ Y fil)+e

i=1

Ng

i=1j=

(18)

d;
aijij(x;) + €
|

In (18), the coefficients are represented by a for the purpose of
distinguishing them from those solved by group Lasso. Ny denotes
the number of reduced severity indicators.

Given the reduced data matrix Sg

Sg = [X0, Xo, .., Xy, i 11 (19)
B-spline basis matrix ¥ can be formed by basis functions ¢
¥Y=[L®, D, .. Dy Y] (20)
where
D; = [Py(X), DX, ..., hia(X))]

Then the coefficients a can be solved by the equation below:

u

= (') ¥'Y Q1)
a

. [ & N di 2 N
min L(4, f) = min ?k; (e = = Z JZ] B0l +2 3 wil B

K d;
s.t. Z Zﬁij¢ij(xik) =0
=3
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where
T T
a=la, &, ....ay], a=I[a ap, ..., ¢ 4]

Once the coefficients are solved, the non-parametric additive
model in (14) can be used for fast prediction of transient stability
margin.

3.4 Online application

Although the predictor for TSA is trained, online application
cannot be realised unless the severity indicators can be computed
with real-time measurements. Provided that PMUs are installed at
the HV buses of power plants, the power angle ¢ and the rotor
speed w of generators can be approximated by the phase angle and
angular frequency of these buses. The electrical power output of
generators P, can be approximated by the active power flow of
step-up transformer. Considering the delay of speed governors to
adjust the mechanical power input, Py, is assumed to be to the same
as its pre-fault value, thus Py, ~ P) = P.. Moreover, the voltage
magnitude of generators’ terminal buses J can be directly
measured by PMUs. On the basis of the assumption, severity
indicators can be computed with real-time PMU measurements.

With the above-mentioned assumption, once a fault is detected
in real-time operation, post-fault PMU measurements within the
observation window are used to compute all the severity indicators.
After that, post-fault stability margin can be estimated by feeding
the severity indicators to the predictor.

4 lllustrative case study

The proposed scheme is first illustrated by a case study on a
modified New England 39-bus system with centralised wind power
integration. The synchronous generator at Bus #37 is replaced by
200 x 3.6 MW double-fed induction generators (DFIGs). All the
DFIGs operate at constant power factor mode and the power factor
is set to be 1.0.

4.1 Data generation

Operating conditions of nine different loading scenarios (varying
from 80 to 120% of base condition with the increment of 5%) are
used to form the database of OCs. To simulate the uncertainty of
real-time operation and enrich the knowledge base, stochastic OCs
are also generated by random sampling. Wind power generation at
Bus #37 is sampled according to the Weibull distribution while the
active power outputs of synchronous generators vary from 50 to
150% of their base condition. The unbalanced power consumption
is met by the synchronous generator at Bus #39.

Fault location is randomly chosen at 0, 50 and 100% of the
length of an arbitrary transmission line. The fault clearing time is
modelled as a normal distribution with a mean value of 0.2 s and a
standard deviation of 0.02s. TDS is performed to simulate the
post-fault responses, where the simulation time is 10 s.

About 2000 instances are generated. About 80% of them are
randomly chosen to form the training set while the others serve as
testing data. With PMU installed at synchronous generator buses,
severity indicators are computed with the relevant post-fault
trajectories and the observation window is set to be 0.1 s after fault
clearing. The CCT-based stability margin index is searched by
recursive simulations.

4.2 NIS

After data generation, NIS is performed to determine the structure
of the addictive model and identify the severity indicators that are
weakly correlated to the stability margin. The goodness of the
univariate fitting functions is evaluated by RMSE and the results
are shown in Fig. 2.

As can be seen from Fig. 2, the 7th and the 14th severity
indicators, which are the coherency indices of generator rotor
speeds (p7) and the dot-product index of generator power angle and
rotor speed (p;4), are ranked as the top two, making them the most
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correlated features to the stability margin #. Besides, generally for
all the severity indicators, the minimum index is less correlated
when compared with the other four indexes.

4.3 Tuning of the parameters

The threshold for NIS and the penalty factor for group Lasso are
two key parameters to be tuned. The marginal threshold for NIS is
first studied while the penalty factor is set to be 0.5. The goodness
of the non-parametric predictor and the number of input features in
this predictor are shown in Fig. 3. For both simplicity and accuracy
of the TSA predictor, the threshold for NIS is chosen as 0.333 so
the first 50 indicators are selected.

After determining the threshold for NIS, the marginal penalty
factor for group Lasso regression is then studied. The goodness of
the non-parametric predictor and the number of input features in
this predictor are shown in Fig. 4. As can be seen from Fig. 4, the
number of severity indicators in the trained predictors decreases
with the increase of penalty factor, meanwhile resulting in the
decrease of the predicting accuracy.

4.4 Testing data validation

With the NIS threshold and the penalty factor set to be 0.333 and
0.5, a non-parametric predictor is trained under the reduced set of
severity indicators. The TSA predictor takes the non-parametric
additive form as (17). To demonstrate the non-parametric
components of this functional predictor, the B-spline component
relating to the 68th input feature (p{iM), is shown in (22) as an
example. To understand the non-linear correlation between pdiff
and the stability margin 7, this B-spline component is also plotted

in Fig. 5
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fss(xés) =
14.64x3 — 13.98x% + 5.614x5 — 0.116, x5 < 0.3027;
0.211x% — 0.875x% + 1.646x5 + 0.284,  0.3027 < x5 < 0.6833;
—0.043x% — 0.354x% + 1.290x + 0.365, x5 > 0.6833.

(22)

After predictor training, the testing data is used to assess the
goodness of the trained predictor. The stability margin is estimated
by feeding the selected severity indicators into the non-parametric
predictor. The regression between the stability margin # and the
estimated value 7 is plotted in Fig. 6. Each scatter in Fig. 6
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represents an instance in the testing set. As can be seen from Fig. 6,
all the scatters locate close to the line of 77 =, indicating the
predictor has fitted the correlation between the stability margin and
the severity indicators properly.

Statistical analysis is performed to investigate the probability
distribution of predicting error. The histogram of predicting error is
shown in Fig. 7. The probability distribution of predicting error
follows a normal distribution. The mean u of predicting error is 0
while its standard deviation ¢ is 0.0496. According to the
characteristics of normal distribution, the x«+ 20 interval includes
95% of all the instances. Therefore, when applying the predictor to
unseen instances, the predicting error is expected to be <£0.0992 at
the confidence level of 95%.

4.5 Impact of measurement length

Either the 7th or the 14th severity indicator relies on the length of
the observation window, so the impact of measurement length on
predictor performance cannot be ignored. Predictors of different
measurement lengths are trained under an identical set of input
features. The performance of these predictors is evaluated by
RMSE and the comparative result is shown in Fig. 8. With the
observation window lengthened, the predicting error decreases and
the performances of predictors are enhanced. For fast evaluation of
stability margin, while maintaining the expected maximum
predicting error should be <0.1, the measurement length is chosen
as five cycles. Notably, the measurement length in the existing
literature varies from four cycles to ten cycles [16, 17, 19, 20].
Therefore, the observation window of the proposed TSA predictor
is comparative with the existing predictors of other data-mining
techniques.
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4.6 Impact of measurement error

According to the ‘/EEE Standard for Synchrophasors for Power
Systems’, PMUs with level 1 compliance should have a total vector
error <1% [29]. To study the impact of measurement error on
predictor performance, a random error between —1 and 1% is added
to the simulated post-fault trajectories in the testing data. With the
observation window to be five cycles, the indicators are then re-
computed by these noisy trajectories. The histogram of the
predicting error for the noisy testing data is shown in Fig. 9. The
probability distribution of the predicting error follows a normal
distribution. The mean and the standard deviation of the predicting
error is —0.0138 and 0.1843, respectively. Clearly, the predicting
performance on the noisy testing data is worst than that on the
noise-free testing data.
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Table 2 Comparison of the RMSE between different TSA
predictors
Methods

The proposed method MLR BPNN RT SVR

training data 0.0495 0.0693 0.0396 0.0272 0.1076
testing data 0.0499 0.0715 0.0480 0.0721 0.0824
overall 0.0496 0.0702 0.0431 0.0603 0.1060

However, if the TSA predictor is re-trained by using the noisy
training data, the predicting performance is improved. In this case,
the mean and the standard deviation of the predicting error are
0.0035 and 0.0584, respectively. The histogram of the predicting
error, in this case, is shown in Fig. 10. A similar conclusion about
the impact of measurement errors can be found in [30].

4.7 Impact of topology change

Topology change has a significant impact on the post-fault stability
of power systems. Therefore, the robustness of TSA predictors
should be tested under the scenarios of topology change. For this
propose, 1000 instances are generated under stochastic N— 1 pre-
fault OCs. The predictions of these instances and distribution of the
prediction error are shown, respectively, in Figs. 11 and 12. The
RMSE of these instances is 0.0498, thus it can be concluded that
the predictor has shown a consistent performance in N—1
condition.

4.8 Comparison of different predictors

The comparison is performed among the proposed method, multi-
linear regression (MLR), NN, regression tree (RT) and support
vector regression (SVR). An identical set of instances is utilised for
predictor training with the rest to be tested. The predicting error of
these techniques is provided by Table 2. The NN-based predictor
has the best overall performance among all the techniques. The RT-
based predictor is an unpruned tree with 1471 children nodes and
thus suffers from overfitting badly. There is a trade-off between the
accuracy and the transparency of data-mining technologies [11].
The proposed non-parametric predictor has an explicit formulation
rather than a ‘black-box’ projection, which provides better
interpretation while maintaining comparative evaluation accuracy
with NN.

5 Application in a practical system

The proposed scheme is also applied to a practical 756-bus
transmission system in China [14]. The 500 kV backbone network
is demonstrated in Fig. 13. The detailed dynamic models for
synchronous generators, turbines, speed governors, excitation
systems and power system stabilisers are used for simulation.
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5.1 Data generation

Following the proposed TSA scheme and the previous New
England 39-bus system case, a database of OCs is first generated
by the OCs of different loading scenarios and the stochastic OCs.
Fault location is randomly selected among 500 kV transmission
lines while the fault clearing time is also modelled as a normal
distribution with a mean value of 0.2 s and a standard deviation of
0.02's. The length of the observation window is set to be five
cycles. TDS is performed to simulate the post-fault responses and
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compute the severity indicators and the transient stability margin.
About 2500 TSA instances under normal OCs and 500 TSA
instances under N—1 OCs are generated.

5.2 Feature selection

About 2000 instances of normal OCs are used for predictor training
while the others including the rest instances of normal OCs, and all
the instances of N—1 OCs serve as testing data. On the training
data, NIS is performed to determine the structure of the addictive
model and identify the severity indicators that are weakly
correlated to the stability margin. The result of correlation
evaluation is shown in Fig. 14.

The threshold for NIS and the penalty factor for group Lasso
are tuned to be 0.25 and 0.5, respectively. Group Lasso algorithm is
employed to carry out the second stage of feature selection.
Eventually, 27 indicators are selected to form the input space for
predictor training.

5.3 Predictor training and application results

A TSA predictor is then trained with the selected severity
indicators. The stability margin of all the testing instances are
estimated by the trained predictor and the RMSE of these instances
is 0.0437. The regression between the stability margin and the
estimation for testing instances is shown in Fig. 15 and the
distributions of the predicting error are given by Fig. 16. It can be
concluded that the proposed non-parametric statistics based scheme
can also provide a promising assessment of post-fault stability
margin in the larger-scale practical transmission system.

6 Conclusion

A non-parametric statistics based scheme is proposed for response-
based online TSA in power systems. To train a TSA predictor, the
CCT-based transient stability margin and 14 kinds of severity
indicators are defined as the predictive response and the input
features, respectively. To address the problem of lack of prior
knowledge of correlation structure, the non-parametric additive
model is used as the basis of the TSA predictor. To screen out the
indicators that do not significantly help improve the performance
of the predictor, two-stage feature selection is fulfilled by
successively NIS and group Lasso penalised regression. After that,
the predictor is learnt by component-wise least-squares regression
in the reduced multi-feature space. With PMU measurements at
generator buses, severity indicators can be computed in the real-
time and fast evaluation of post-fault stability margin can be made
by the offline-trained predictor.

Case studies on the modified New England 39-bus system and
the practical 756-bus transmission system in China are provided to
illustrate the effectiveness of the proposed scheme. Numerical
results demonstrate that:
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(1) with the observation window to be five cycles, the RMSEs for
the well-trained predictors in these test systems are 0.0496 and
0.0437, which indicates the expected maximum error to be <0.1
and satisfies the need of accurate estimation of post-fault stability
margin;

(2) the proposed two-stage non-parametric statistics based feature
selection scheme can identify the weakly correlated indicators and
thus reduce the dimension of input features; and

(3) the proposed non-parametric TSA predictor has the ability to
adapt to normal and possible N — 1 pre-fault OCs.

Future research emphasis lies in two aspects. First, PMU
measurements at all the generator buses are assumed to be
available in this paper. For practical application, no PMU
measurements at some generator buses or data missing problem
should be addressed. So, the robustness of the TSA predictor under
incomplete observation should be studied and improved. Second,
remedial control schemes should be taken when the post-fault
system is about to lose synchronism. Hence a data-mining-based
scheme for response-based control should be studied to incorporate
with the proposed TSA predictor.
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