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Abstract 
This study explored a combination of hyperspectral and lidar 
systems for vegetation mapping in the Florida Everglades. 
A framework was designed to integrate two remotely sensed 
datasets and four data processing techniques. Lidar eleva-
tion and intensity features were extracted from the original 
point cloud data to avoid the errors and uncertainties in 
the raster-based lidar methods. Lidar significantly increased 
the classification accuracy compared with the application 
of hyperspectral data alone. Three lidar-derived features 
(elevation, intensity, and topography) had the same con-
tributions in the classification. A synergy of hyperspectral 
imagery with all lidar-derived features achieved the best 
result with an overall accuracy of 86 percent and a Kappa 
value of 0.82 based on an ensemble analysis of three ma-
chine learning classifiers. Ensemble analysis did not signifi-
cantly increase the classification accuracy, but it provided 
a complementary uncertainty map for the final classified 
map. The study shows the promise of the synergy of hyper-
spectral and lidar systems for mapping complex wetlands. 

Introduction
The Importance of Vegetation Information in the Florida Everglades
The Florida Everglades is the largest subtropical wetland in 
the United States. It has been designated as an International 
Biosphere Reserve, a World Heritage Site, and a Wetland 
of International Importance due to its unique combination 
of hydrology and water-based ecology that supports many 
threatened and endangered species (Davis et al., 1994). In 
the past century, human activities have severely modified the 
Everglades ecosystem, resulting in a variety of environmental 
issues in South Florida (McPherson and Halley, 1996). To 
protect this valuable resource the US Congress authorized the 
Comprehensive Everglades Restoration Plan (CERP) in 2000 
to restore the Everglades ecosystem (CERP, 2013). CERP is a 
$10.5 billion USD mission that is expected to take 30 or more 
years to complete. It contains a variety of pilot environmental 
engineering projects, many of which require accurate and 
informative vegetation maps, because the restoration will 
cause dramatic modification of plant communities (Doren et 
al., 1999). Monitoring changes of vegetation communities can 
measure the progress and effects of restoration on environ-
mental health (Doren et al., 1999; Welch et al., 1999).

Vegetation Mapping Using Hyperspectral and Lidar Systems
Vegetation mapping efforts to support CERP have focused on 
manual interpretation of large-scale aerial photographs using 
analytical stereo plotters (Rutchey et al., 2008; Jones, 2011). 
This procedure is time-consuming and labor-intensive. Au-
tomated classification of the digital aerial photograph cannot 

produce the requisite accuracy due to its poor spectral resolu-
tion (Zhang and Xie, 2013b). Two promising remote sensing 
techniques, hyperspectral and the Light Detection And Rang-
ing (lidar) systems, offer significant advantages over manual 
interpretation of aerial photographs. 

Hyperspectral sensors collect data in hundreds of rela-
tively narrow spectral bands throughout the visible and 
infrared portions of the electromagnetic spectrum. Research 
has demonstrated the merit of hyperspectral data in a range of 
applications such as quantifying agricultural crops, classify-
ing vegetation types, and characterizing wetlands (Thenkabail 
et al., 2011). The application of hyperspectral systems has 
become an important area of research for wetland mapping 
in the past decade (Adam et al., 2010). Such research can be 
grouped into two categories. The first is the employment of 
hyperspectral data alone (e.g., Hunter and Power, 2002; Hi-
rano et al., 2003; Schmidt et al., 2004; Artigas and Yang, 2005; 
Harken and Sugumaran, 2005; Li et al., 2005; Rosso et al., 
2005; Pengra et al., 2007; Jollineau and Howarth, 2008; Zhang 
and Xie, 2012; Zhang and Xie, 2013a). The second is the ap-
plication of a synergy of hyperspectral and other remote sens-
ing data for a better characterization of wetlands (e.g., Held et 
al., 2003; Yang and Artigas, 2010; Onojeghuo and Blackburn, 
2011; Zhang and Xie, 2013b). 

Lidar systems were originally designed to facilitate the 
collection of data for digital terrain modeling by using the 
reflections from the ground. Studies have illustrated that lidar 
can be used to characterize vegetation, especially forests, us-
ing non-ground reflections (Hyyppä et al., 2008; van Leeuwen 
and Nieuwenhuis, 2010). Lidar can complement the spectral 
information of optical imagery to improve vegetation classifi-
cation. Encouraging results have been achieved by integrating 
lidar data and hyperspectral imagery (e.g., Hill and Thomson, 
2005; Mundt et al., 2006; Geerling et al., 2007; Jones et al., 
2010; Onojeghuo and Blackburn, 2011; Zhang and Qiu, 2012; 
Cho et al., 2012). Research efforts on vegetation characteriza-
tion using lidar is dominated by high-posting-density (i.e., >4 
pts/m2) lidar data (Ke et al., 2010; Zhang et al., 2013). Appli-
cation of low-posting-density (i.e., <2 pts/m2) lidar focuses on 
terrestrial topographic mapping, and its research in vegeta-
tion mapping is limited (Ke et al., 2010). Little work has been 
conducted to combine low-posting-density lidar data with 
hyperspectral imagery for vegetation mapping in the complex 
wetlands. In addition, most lidar vegetation studies have only 
examined the contribution of elevation information. Few 
studies have explored the combined contribution of all the 
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potential information extracted from lidar, which includes 
elevation, intensity, and topography features, in mapping 
wetlands (Chust et al., 2008).

Classification Algorithms
Most researchers use endmember-based algorithms to classify 
hyperspectral imagery for wetland mapping such as the Spec-
tral Angle Mapper (SAM) and linear spectral unmixing (e.g., 
Hunter and Power, 2002; Held et al., 2003; Hirano et al., 2003; 
Schmidt et al., 2004; Artigas and Yang, 2005; Harken and Sug-
umaran, 2005; Li et al., 2005; Rosso et al., 2005; Belluco et al., 
2006; Jollineau and Howarth, 2008). These classifiers cannot 
produce the expected results in complex wetlands due to the 
difficulties inherent in determining endmembers, a shortage of 
comprehensive spectral libraries for different wetland plants, 
and/or the violation of an assumption in the algorithms that 
only one spectral representative (i.e., the endmember) exists 
for each vegetation type (Zhang and Xie, 2012). Traditional 
classifiers such as maximum likelihood and minimum dis-
tance also cannot generate high accuracies, because they are 
not able to characterize the high degree of spatial and spectral 
heterogeneity of the Everglades even after the dimensionality 
of hyperspectral data is reduced (Zhang and Xie, 2012).

Contemporary machine learning algorithms such as Ran-
dom Forest (RF), Support Vector Machines (SVMs), and k-Near-
est Neighbor (k-NN) show promise in processing hyperspectral 
imagery (Ham et al., 2005; Chan and Paelinckx, 2008; Waske 
et al., 2009; Mountrakis et al., 2010; Zhang and Xie, 2013a 
and 2013b). For this study, the performance of RF, SVM, and 
k-NN was evaluated for classifying a fused dataset from hyper-
spectral imagery and lidar data. The classification results from 
RF, SVM, and k-NN may be different for each class. A combina-
tion of the strengths of each classifier may have the potential 
for a better mapping through ensemble analysis techniques. 
Thus, classifier ensemble techniques were also evaluated.

Mapping Methods
Pixel-based mapping may lead to a “salt-and-pepper” effect at 
heterogeneous landscapes. It has been well documented that 
this issue can be overcome by Object-Based Image Analysis 
(OBIA) techniques which first decompose an image scene 
into relatively homogeneous areas and then classify these 
areas instead of pixels. A review of OBIA for multispectral 
image analysis can be found in Blaschke (2010). Researchers 
commonly conduct the pixel-based wetland mapping when 
hyperspectral imagery was used. Several studies have evalu-
ated OBIA techniques in hyperspectral image analysis and find 
that they are more useful than pixel-based methods due to 
the valuable spatial information derived for each object (e.g., 
Harken and Sugumaran, 2005; Addink et al., 2007; Plaza et 
al., 2009; Kamal and Phinn, 2011; Zhang and Xie, 2012 and 
2013a; Cohen et al., 2013). For this study, the object-based 
mapping methods were used.

Objectives
Hyperspectral, lidar, data fusion, OBIA, machine learning, and 
ensemble analysis are popular techniques in remote sensing. 
However, a combination of them for vegetation characteriza-
tion is limited. Integration of low-posting-density lidar data 
and hyperspectral imagery for object-based vegetation map-
ping in complex wetlands is even scarcer. To this end, the 
main objectives of this study are: (a) to design a framework 
to combine two remotely sensed datasets (hyperspectral and 
lidar data) and four image processing techniques (data fusion, 
OBIA, machine learning, and ensemble analysis) in the map-
ping procedure, and (b) to examine the applicability of hy-
perspectral and lidar systems in mapping complex wetlands 
such as the Florida Everglades.

Study Area and Data
Study Area
The study site is a portion of the Lake Okeechobee water-
shed in the central Everglades (Figure 1). Lake Okeechobee 
is the largest freshwater lake in Florida. It is the heart of the 
Everglades ecosystem by providing water to the surrounding 
communities. The lake’s health has been threatened in recent 
decades by excessive nutrients from agricultural and urban 
activities, harmful high and low water levels, as well as the 
spread of exotic vegetation (CERP, 2013). Restoration of the 
Lake Okeechobee watershed and associated plant communi-
ties is one of the key components in CERP. The study site cov-
ers an area of about 50 km2 with 13 common Everglades veg-
etation communities present: Unimproved Pastures, Upland 
Shrub and Brushland, Mixed Rangeland, Upland Hardwood, 
Brazilian Pepper (exotic species), Live Oak, Upland Mixed 
Coniferous/Hardwood, Mixed Shrub, Freshwater Marshes/
Graminoid Prairie-Marsh, Wet Prairie, Emergent Aquatic Veg-
etation, Sugar Cane, and Herbaceous (Dry Prairie).

Data
Data sources include the hyperspectral imagery, lidar, digital 
aerial photography, and reference data. Hyperspectral imagery 
was collected by Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) on 30 May 2002 with a spatial resolution 
of 12 meters. Data were preprocessed at the Jet Propulsion 
Laboratory Data Facility of National Aeronautics and Space 
Administration (NASA) to remove fundamental geometric and 
radiometric errors before transferring them to users. AVIRIS is 
a premier instrument in the realm of Earth remote sensing. It 
delivers calibrated hyperspectral images in 224 contiguous 
spectral channels with wavelengths between 400 nm to 2500 
nm. The South Florida Water Management District (SFWMD), 
one of the partners in CERP, conducted the AVIRIS survey over 
the Lake Okeechobee watershed to provide the best possible 
data for the restoration project. 

Lidar data were collected by Merrick & Company using a 
Leica ALS-50 system in December 2007 to support the Florida 
Division of Emergency Management. The Leica ALS-50 lidar 
system collects small footprint multiple returns, and intensity 
at 1060 nm wavelength. The vendors reported the positional 
accuracy was 0.015 meters horizontally and 0.06 meters verti-
cally at the 95 percent confidence level. The averaged point 
density for the study area is 1.18 pts/m2. The original lidar 
point cloud data were processed by the vendor to generate the 
Digital Terrain Model (DTM) using Merrick Advanced Remote 
Sensing (MARS) processing software (Merrick & Company, 
Greenwood Village, Colorado). All the lidar point cloud data 
and DTM are available to the public at the International Hur-
ricane Research Center (http://mapping.ihrc.fiu.edu/).

The SFWMD also provided large scale aerial photography 
collected in May 2003 and a digital vegetation database for 
the study site. The vegetation database was built by interpret-
ing the collected aerial photograph in a 3D environment using 
Kork stereo plotters. Vegetation communities were classified 
based on the SFWMD modified Florida Land Use, Land Cover 
Classification System. Note that there is a year gap between 
the acquisition of the AVIRIS data and the aerial photograph; 
changes may have occurred during this year. Fortunately, the 
AVIRIS imagery allows the visual interpretation of vegetation 
communities with assistance from the database and related 
aerial photography. A total of 596 image objects were random-
ly selected and visually interpreted. These objects were used 
as the reference data in this study. A spatially stratified data 
sampling strategy was followed in the reference data selection 
procedure. The number of reference samples for each com-
munity was roughly estimated based on the results of image 
segmentation and the vegetation database. The segmentation 
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process to generate image objects is detailed in the Methodol-
ogy section. The reference objects were split into two halves 
with one for calibration and the other for validation. Non-veg-
etation objects (i.e., water and levees) were masked out since 
the main concern of this study was vegetation. Water was dis-
criminated using near infrared and shortwave infrared, while 
levees were masked out using the digital database. 

Methodology
Data Preprocessing
Spectral channels with a low signal-to-noise ratio and strong 
water absorption were dropped from the AVIRIS imagery, leav-
ing 53 bands (20 visible: 413 nm–692 nm; 24 near-infrared: 
702 nm–1263 nm; and 9 shortwave infrared: 1323 nm–
1692 nm) for further analysis. This step was conducted by 
visually examining each individual band in ENVI 4.7. After the 
noisy band elimination, an image to image registration was 
employed to georeference the AVIRIS data using the aerial pho-
tograph in order to geographically align the AVIRIS data with 
the digital vegetation database. Radiometric calibration is 
frequently conducted for hyperspectral datasets if the remote 
sensing derived spectral reflectance needs to be quantitatively 
compared with in situ spectral reflectance data. It is not gen-
erally necessary to perform atmospheric correction for image 
classification if a single scene is used. As long as the training 
data from the image to be classified have the same relative 
scale (corrected or uncorrected), atmospheric correction has 
little effect on classification (Jensen, 2004). For this study 

atmospheric correction of the AVIRIS imagery was unneces-
sary because firstly no comparison of spectral reflectance from 
AVIRIS data and in-situ data was needed; and secondly only 
one scene was used in the classification.

Hyperspectral data has a high dimensionality and contains 
a tremendous amount of redundant spectral information. 
When the number of spectral channels exceeds a given limit 
of fixed training samples, the classification accuracy will 
decrease. This is known as Hughes Phenomenon (or “the 
curse of high dimensionality”) (Hughes, 1968). To solve this 
problem in hyperspectral data classification, a number of 
methods have been developed to reduce the high dimension-
ality of hyperspectral data. Such methods can be grouped into 
two categories (Webb, 2002). The first one is to identify spec-
tral channels that do not contribute to the classification and 
ignore them (known as feature selection), such as the lambda-
lambda R2 model. The second one is to find a transformation 
from a higher dimensional to a lower dimensional feature 
space to preserve the most desired information content 
(known as feature extraction). Examples include Principal 
Component Analysis (PCA), Independent Component Analysis 
(ICA), Stepwise Discriminant Analysis (SDA), and Minimum 
Noise Fraction (MNF) (Zhang et al., 2007). Thenkabail et 
al. (2004 and 2013) have successfully applied the lambda-
lambda R2 models, PCA, and SDA in hyperspectral vegetation 
analysis. Previous studies have revealed that MNF method not 
only reduces data dimensionality, but also removes the inher-
ent noise in hyperspectral imagery to improve classification 
accuracy (Zhang and Xie, 2012; Zhang and Xie, 2013a). Thus 

Figure 1. Map of Florida Everglades and Study Area Shown as a 3D Data Cube Generated from aviris Data.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 Augus t  2014 	 11



the MNF approach was selected in this study.
The MNF transformation applies two cascaded principal 

component analyses, with the first transformation decorre-
lating and rescaling noise in the data, and the second trans-
formation creating coherent eigenimages that contain useful 
information and generating noise-dominated eigenimages 
(Green et al., 1988). The transformation generates the eigen-
values and corresponding eigenimages, both of which are 
used to determine the true dimensionality of the data. The 
MNF transformation was conducted in ENVI 4.7. The first 10 
MNF eigenimages were proved the most useful and spatially 
coherent and thus selected for further analysis. 

A Framework to Combine Hyperspectral and Lidar Systems for Object-Based 
Vegetation Mapping
For this study a framework was designed to effectively com-
bine two datasets (hyperspectral and lidar) and four data pro-
cessing techniques (data fusion, OBIA, machine learning, and 
ensemble analysis) for vegetation mapping (Figure 2). In the 
framework, after the preprocessing of hyperspectral imagery, 

the MNF transformed data were first segmented to generate im-
age objects and extract spectral/spatial features, and then the 
extracted spectral/spatial features were combined with the 
lidar derived elevation, intensity, and topographic features 
at the object level to generate a fused dataset. Three machine 
learning algorithms (RF, SVM, and k-NN) were used to pre-clas-
sify the fused data. The final outcome was derived through 
ensemble analysis of the three classification results. Conse-
quently, an object-based vegetation map was generated and 
evaluated using common accuracy assessment approaches. 

Image Segmentation
Image segmentation was a major procedure in OBIA tech-
niques. The multiresolution segmentation algorithm in eCog-
nition® Developer 8.64.1 (Trimble, 2011) was used to generate 
image objects from the MNF transformed imagery. The segmen-
tation algorithm starts with one-pixel image segments, and 
merges neighboring segments together until a heterogeneity 
threshold is reached (Benz et al., 2004). The heterogeneity 
threshold is determined by a user-defined scale parameter, as 

Figure 2. The Framework to combine Hyperspectral Imagery and Lidar Data for Vegetation Mapping in the Everglades.
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well as color/shape and smoothness/compactness weights. 
The image segmentation is scale-dependent, and the qual-
ity of segmentation and overall classification depend on 
the segmentation scale. In order to find an optimal scale for 
image segmentation, an unsupervised image segmentation 
evaluation approach (Johnson and Xie, 2011) was used. This 
approach begins with a series of segmentations using differ-
ent scale parameters, and then identifies the optimal image 
segmentation using an unsupervised evaluation method that 
takes into account global intra-segment and inter-segment het-
erogeneity measures. A global score (GS) is calculated by GS 
= Vnorm + MInorm, where Vnorm (normalized weighted variance) 
measures the global intra-segment goodness, and MInorm (nor-
malized Moran’s I) measures the global inter-segment good-
ness. More details in computing Vnorm and MInorm can be found 
in Johnson and Xie (2011). The GSs are used to determine the 
optimal scale for segmentation. For the study area the scale 
parameter of 8 produced the lowest GS value among a series 
of segmentations with different scale parameters and thus was 
used here. The weights of the MNF layers were set based on 
their eigenvalues (66.2, 48.7, 32.4, 17.1, 15.1, 6.4, 4.8, 3.8, 3.7, 
and 3.6). Color and shape weights were set to 0.9 and 1.0 so 
that spectral information would be considered more heav-
ily for segmentation. Smoothness and compactness weights 
were both set to 0.5 so that neither compact nor non-compact 
segments were favored. Following the segmentation spectral/
spatial features (mean and standard deviations) of each object 
were extracted for further analysis. 

Lidar Feature Extraction
Three types of features can be extracted from lidar data: eleva-
tion, intensity, and topography. Most studies only examined 
the contribution of elevation information on vegetation 
discrimination when lidar was combined with hyperspectral 
imagery (e.g., Mundt et al., 2006; Jones et al., 2010; Onoje-
ghuo and Blackburn, 2011; Cho et al., 2012). Evaluation of 
intensity and topography has been limited. Fusion of lidar 
data and optical imagery can occur at two levels: pixel- and 
feature-level. Pixel-level fusion combines raw data from 
multiple sources into single resolution data to improve the 
performance of image processing tasks. Feature-level fusion 
extracts features (e.g., edges, corners, lines, and textures) from 
each individual data source and merges these features into 
one or more feature maps for further processing.

Previous studies have primarily adopted the pixel-level fu-
sion strategy to combine lidar and hyperspectral imagery (e.g., 
Jones et al., 2010; Onojeghuo and Blackburn, 2011; Cho et al., 
2012). The pixel-level fusion methods commonly begin with 
the generation of a related raster layer (e.g., digital canopy 
model) from lidar point cloud data using interpolation tech-
niques, and then combine this raster layer with the co-regis-
tered hyperspectral imagery pixel by pixel. This is referred 
to as the raster-based lidar approach. A major problem using 
lidar in this way is the introduction of errors and uncertain-
ties in the raster layer generation step, which will ultimately 
affect the subsequent vegetation delineation (Zhang and Qiu, 
2012). To overcome this problem lidar elevation and intensity 
information was extracted from the original point cloud data 
rather than the lidar-derived raster layers (Figure 2). This is 
referred to as the vector-based lidar approach. Studies have 
proved that working directly on lidar point cloud data can 
produce higher accuracy by preserving the original lidar val-
ues (Zhang and Qiu, 2012).

To effectively use elevation information, topographic effect 
was eliminated first by subtracting DTM value underneath 
each lidar point from the elevation. Points with an elevation 
less than 0.15 meters were considered as ground points to be 
dropped from further analysis. Non-ground lidar points (veg-
etation points) within an image object were used to derive the 

descriptive statistics (maximum, mean, and standard devia-
tion) of elevation and intensity for this object, respectively. 
Similarly, descriptive statistics of terrain elevation and slope 
for each image object were derived from the DTM using pixels 
within an object (Figure 2). Feature-level fusion strategy was 
employed to merge the lidar-derived features and hyperspec-
tral-derived measures to be used for classification.

Classification Algorithms: RF, SVM, and k-NN
RF, SVM, and k-NN algorithms were employed to pre-classify 
the fused dataset. RF is a decision tree-based ensemble classi-
fier. To understand this algorithm, it is helpful to first know 
the decision tree approach. The decision tree splits training 
samples into smaller subdivisions at “nodes” using decision 
rules. For each node, tests are performed on the training data 
to find the most useful variables and variable values for each 
split. Different algorithms can be used to generate the deci-
sion trees. The RF often adopts the Gini Index to measure the 
best split selection. More descriptions of RF can be found in 
Breiman (2001) and in a remote sensing context by Chan and 
Paelinckx (2008). Two parameters need to be defined in RF: 
the number of decision trees to create (k) and the number of 
randomly selected variables (m) considered for splitting each 
node in a tree. RF is not sensitive to m and it is often blindly 
set to M  (Gislason et al., 2006). The computational complex-
ity of the algorithm can be reduced by selecting a smaller m; k 
is often set based on trial and error.

SVM is a non-parametric supervised machine learning clas-
sifier. The aim of SVM is to find a hyperplane that can separate 
the input dataset into a discrete predefined number of classes 
in a fashion consistent with the training samples (Vapnik, 
1995). SVM research in remote sensing has increased in the 
past decade, as evidenced by a review in Mountrakis et al. 
(2010). Detailed descriptions of SVM algorithms were given by 
Huang et al. (2002) in the context of remote sensing. Kernel-
based SVMs are commonly used in classification, among 
which the radial basis function (RBF), and the polynomial 
kernels are frequently employed. RBF needs to set the kernel 
width (c), and polynomial kernel needs to set the degree (p). 
Both kernels need to define a penalty parameter (C) that con-
trols the degree of acceptable misclassification. The setting of 
these parameters can be determined by a grid search strategy 
which tests possible combinations of them in a user-defined 
range (Hsu et al., 2010). Both kernels were tested to find the 
best model for the fused dataset. 

k-NN is another supervised classifier which identifies 
objects based on the closest training samples in the feature 
space. It searches away from the unknown object to be classi-
fied in all direction until it encounters k user-specified train-
ing objects. It then assigns the object to the class with the ma-
jority vote of the encountered objects. The algorithm requires 
all the training data participate in each classification, thus has 
a slow speed of execution for pixel-based classification (Har-
din, 1994). However, for the object-based classification used 
in this study image objects are minimum classification units, 
i.e., classification primitives, instead of individual pixels. The 
amount of classification primitives is greatly reduced through 
the segmentation process. Therefore computation complexity 
is not a problem for implementing this algorithm.

Ensemble Analysis
The final classification was derived through an ensemble 
analysis of the outputs from RF, SVM, and k-NN. An ensemble 
analysis approach is a multiple classification system that 
combines the outputs of several classifiers. The classifiers 
in the system should generally produce accurate results but 
show some differences in classification accuracy (Du et al., 
2012). A range of strategies has been developed to combine 
the outputs from multiple classifiers, such as the majority 
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vote, Bayesian average method, and fuzzy integral approach. 
Among these strategies, the majority vote (each individual 
classifier votes for an unknown input object) is straight-
forward. A key problem of the majority vote is that all the 
classifiers have equal rights to vote without considering their 
performances on each individual class. A weighting strategy 
may mitigate this problem by weighting the decision from 
each classifier based on their accuracies obtained from the 
reference data (Moreno-Seco et al., 2006). In the framework, 
the majority vote and the weighting strategy is combined to 
analyze the outputs from three classifiers. If three votes are 
different, then the unknown object will be assigned to the 
class which has the highest accuracy among the classifiers. 
That is, the classifier with the best performance among three 
votes will obtain a weight of 1, while weights of the other two 
classifiers will be set at 0. If two or three classifiers vote the 
same class for an input object, then the object will be assigned 
to the same voted class.

Accuracy Assessment
The error matrix and Kappa statistic (Congalton and Green, 
2009) has served as the standard approach in accuracy assess-
ment. An error matrix was constructed for the final classified 
map and the Kappa statistics were calculated. The error matrix 
can be summarized as an overall accuracy and Kappa value. 
The overall accuracy is defined as the ratio of the number of 
validation samples that are classified correctly to the total 
number of validation samples irrespective of the class. The 
Kappa value describes the proportion of correctly classified 

validation samples after random agreement is removed. To 
evaluate the statistical significance of differences in accuracy 
between different classifications, the nonparametric McNemar 
test (Foody, 2004) was adopted. The difference in accuracy of a 
pair of classifications is viewed as being statistically significant 
at a confidence of 95 percent if the z-score is larger than 1.96.

Results
Evaluation of Data Fusion For Vegetation Mapping
Five experiments were designed to evaluate the framework. 
Experiment 1 used the AVIRIS data alone, and Experiments 2, 
3, and 4 combined AVIRIS-derived features with lidar-derived 
elevation, intensity, and topography information, respectively. 
Experiment 5 integrated AVIRIS- and all lidar-derived features. 
The RF classifier was applied first in five experiments. The 
number of randomly selected variables for splitting node (m) 
in RF was set to 4 after several trials. A number of tests using 
different numbers of trees (50 to 300 at an interval of 50) 
revealed that k = 150 resulted in the highest accuracy. The 
overall accuracies and Kappa values from these experiments 
are shown in Table 1.

AVIRIS data (Experiment 1) produced an encouraging result 
with an overall accuracy of 76 percent and a Kappa value of 
0.70. Combining AVIRIS with lidar-derived elevation (Experi-
ment 2), intensity (Experiment 3), and topography information 
(Experiment 4), increased the overall accuracy to 81 percent, 
80 percent, and 83 percent, respectively. Kappa values also 

Table 1. Classification Results from Different Experiments

Classification Accuracies

Experiment # 1 2 3 4 5 6 7 8

Overall Accuracy 76% 81% 80% 83% 86% 85% 83% 86%

Kappa Value 0.70 0.76 0.75 0.79 0.83 0.81 0.79 0.82

McNemar Tests

Z-score Value NA 2.5* (1/2) 2.3* (1/3) 3.3* (1/4) 4.5* (1/5) 0.6 (5/6) 1.8 (5/7) 0.6 (5/8)

NA 0.3 (2/3) 1.0 (2/4) 3.0* (2/5) NA 0.9 (6/7) 0.4 (6/8)

NA 1.3 (3/4) 2.8* (3/5) NA NA 1.9 (7/8)

NA 2.0* (4/5)  NA NA NA

Experiments 1-5 used AVIRIS, AVIRIS and lidar-derived elevation, AVIRIS and lidar-derived intensity, AVIRIS and lidar-derived topographic 
information, and AVIRIS and all lidar-derived features (elevation, intensity, and topographic information), respectively. The Random Forest 
(RF) classifier was applied in the above five experiments. Experiments 6-8 used a combined dataset of AVIRIS and all lidar-derived features as 
experiment 5, but applied Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), and ensemble analysis of three classifiers, respectively. 
For McNemar tests, 1/2, 1/3…7/8 refer to the test between experiments 1 and 2, 1 and 3, … 7 and 8 respectively.
*: significant with 95 percent confidence.

Table 2. Per-class Accuracies Derived from a Combined Dataset of Hyperspectral Imagery and All Lidar-derived Features Using Three Different Classifiers 
(rf, svm, and k-nn); the Highest Accuracy Among Three Classifiers is Highlighted in Bold 

Class

Producer’s Accuracy (%) User’s Accuracy (%)

RF SVM k-NN RF SVM k-NN

1. Unimproved Pasture 72.7 90.9 72.7 80.0 76.9 80.0

2. Upland Shrub and Brushland 72.7 81.8 72.7 66.7 47.4 44.4

3. Mixed Rangeland 82.4 58.8 88.2 60.9 71.4 57.7

4. Upland Hardwood 100.0 100.0 100.0 100.0 100.0 100.0

5. Brazilian Pepper 44.4 44.4 55.6 66.7 66.7 55.6

6. Live Oak 85.7 78.6 71.4 85.7 73.3 83.3

7. Upland Mixed Coniferous/Hardwood 79.2 70.8 58.3 70.4 77.3 66.7

8. Mixed Shrub 82.4 88.2 76.5 93.3 93.8 81.3

9. Freshwater Marshes/Graminoid Prairie-Marsh 98.3 97.4 97.4 94.2 95.7 94.9

10. Wet Prairie 70.0 50.0 30.0 87.5 55.6 100.0

11. Emergent Aquatic Vegetation 91.7 88.9 91.7 94.3 94.1 91.7

12. Sugar Cane 88.9 88.9 88.9 100.0 100.0 100.0

13. Herbaceous (Dry Prairie) 58.3 66.7 66.7 87.5 80.0 88.9
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showed corresponding improvements. McNemar tests showed 
that these improvements were statistically significant. Integra-
tion of AVIRIS-derived measures and all lidar-derived features 
(Experiment 5) generated the best result with an overall 
accuracy of 86 percent and a Kappa value of 0.83. McNemar 
tests showed that Experiment 5 generated significantly better 
outcome than Experiments 1 through 4 (Table 1). Experiments 
2, 3, and 4 showed no significant difference in classification.

Evaluation of Different Classifiers and Ensemble Analysis for Vegetation Mapping
Experiment 5 achieved the best result, thus the SVM and 
k-NN classifiers were applied first to the fully fused dataset 
as Experiment 5 to explore their performances. For the SVM 
algorithms, after a number of trials using polynomial and RBF 
kernels, the polynomial kernel with the degree parameter (p) 
set to 2, and penalty error parameter (C) set to 2.0 generated 
the best result. For the k-NN method, k was specified to 3 after 
several trails. The results are listed in Table 1 as Experiments 
6 (SVM) and 7 (k-NN). SVM produced a comparable accuracy (85 
percent) with the RF classifier, while k-NN generated the lowest 
accuracy (83 percent) among them. The McNemar tests re-
vealed that there was no significant difference in classification 
among three classifiers. The SVM and k-NN approaches were 
also tested to other datasets used in Experiments 1 through 4 
and the results supported the findings here, i.e., no significant 
difference among three classifiers in classifying each dataset. 

The per-class accuracies from Experiments 5, 6, and 7 are 
shown in Table 2. The performances of three classifiers were 
not completely even in identifying each class. For example, 
from the producer’s perspective, RF produced the best result 
in characterizing classes 6, 7, 9, and 10; SVM had the best 
performance in discriminating classes 1, 2, and 8; and k-NN 
showed the highest accuracy in classifying classes 3 and 5. 
From the user’s perspective, RF was the best in discriminating 
classes 2, 6, and 11; SVM was the best in identifying 3, 7, 8, 
and 9; and k-NN produced the highest accuracy for classes 10, 
and 13. This diversity is primarily caused by the discrepan-
cies in concepts of three methods. RF looks for optimal deci-
sion trees to group data, whereas SVM looks for the optimal 

hyperplane to categorize data and k-NN searches for the best 
match to denote inputs. The diversity drives the exploration 
of the ensemble analysis. The difference in outputs from mul-
tiple classifiers is an assumption of classifier ensemble tech-
niques. The ensemble analysis result is displayed as Experi-
ment 8 in Table 1. A total accuracy of 86 percent and a Kappa 
value of 0.82 were obtained, showing no large improvement 
in the classification accuracy. McNemar test also illustrated 
there were no significant differences in classification between 
the ensemble analysis and each individual classifier involved 
in the ensemble. 

Object-based Vegetation Mapping
Landis and Koch (1977) suggested that Kappa values larger 
than 0.81 indicate an almost perfect agreement. The designed 
framework produced an overall accuracy of 86 percent with a 
Kappa value of 0.82 based on the calibration data, indicating 
it is effective for vegetation mapping. An object-based vegeta-
tion map was thus produced using the fused dataset and en-
semble analysis, as shown in Plate 1a. The object-based veg-
etation map is more informative and useful than a traditional 
pixel-based one that may be noisy if the study area has a high 
degree of spatial and spectral heterogeneity. The error matrix 
for the classified map is displayed in Table 3.The producer’s 
accuracies (PA) changed from 40.0 percent (Wet Prairie) to 
100.0 percent (Upland Hardwood) and the user’s accuracies 
(UA) varied from 53.3 percent (Upland Shrub and Brushland) 
to 100.0 percent (Upland Hardwood). Wet Prairie is one of the 
most diverse communities in the Everglades. It is a mixture of 
water, marshes, algal plants, and a variety of vascular plants. 
A low accuracy is expected in identifying this community. 

Although ensemble analysis did not improve the classifica-
tion accuracy, it can make the result more reliable. In addi-
tion, ensemble analysis can provide some complementary 
information to the error matrix of the classified map. An un-
certainty map can be derived based on the ensemble analysis, 
as shown in Plate 1b. If three votes are the same for an input 
image object, a complete agreement will be achieved. Con-
versely, if three votes are completely different, no agreement 

(a) (b)
Plate 1. (a) Classified Vegetation Map Using a Combined Dataset of Hyperspectral Imagery and all lidar-derived Features (Elevation, 
Intensity, and Topographic Information), and Ensemble Analysis of the Outputs from Three Classifiers (Random Forest, Support Vector 
Machine, and k-Nearest Neighbor); and (b) The Uncertainty Map from Ensemble Analysis of Three Classifiers.
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will be obtained. If only two classifiers vote for the same 
class, a partial agreement will be produced. A joint analysis 
of the classified vegetation map and uncertainty map revealed 
that the dominant community (class 9: freshwater marshes/
graminoid prairie-marsh) was mainly voted by two classifiers. 
A further examination showed that this class was mainly vot-
ed by RF and SVM, while k-NN voted it as other communities. 
This type of uncertainty map is useful when there is a desire 
to minimize the omission or commission errors. It also can be 
used to guide the post-classification fieldwork (Foody et al., 
2007). To the best of my knowledge, no such uncertainty map 
has been published based on the classifier ensemble analysis. 
Further research is needed to investigate the potential appli-
cation of this type of map in remote sensing. 

Discussion
Previous studies have demonstrated that multispectral sys-
tems cannot accurately map the diverse vegetation communi-
ties in the Everglades (Zhang and Xie, 2013b; Zhang et al., 
2013). With the emergence of hyperspectral techniques, it is 
anticipated that the manual interpretation of aerial photo-
graph procedure currently used in CERP can be superseded by 
an automated procedure. However, exploration of hyperspec-
tral techniques for plant study in the complex wetlands is not 
simple. Hirano et al. (2003) reported a moderate accuracy for 
mapping vegetation over a portion of the coastal Everglades 
(i.e., 66 percent). This moderate accuracy was mainly caused 
by the inadequate spatial resolution (20 meters) and their lim-
ited examination of hyperspectral data analysis techniques. 
To enhance the application of hyperspectral systems in the 
Florida Everglades, the author’s research group has conducted 
a few studies to investigate what detail level and accuracy can 
be obtained using different types of hyperspectral imagery 
and data fusion techniques (Zhang and Xie, 2012; Zhang and 
Xie, 2013a and 2013b). Two types of hyperspectral imagery 
were available for these studies and collected at different 
regions in the Everglades: very high spatial resolution data 
(i.e., 5 meters or smaller), and high spatial resolution data (10 
to 30 meters). In Zhang and Xie (2012) 4-meter AVIRIS imagery 
was used to map 12 vegetation communities in the central 

Everglades. A neural network based classifier was devel-
oped and spatial information derived from texture analysis 
was examined and proved useful. In Zhang and Xie (2013a), 
3.5-meter HyMap imagery was used to map 14 vegetation 
communities and 55 species using hierarchical segmentation 
techniques in the northern Everglades. These two Studies 
(Zhang and Xie, 2012 and 2013a) have found that very high 
spatial resolution hyperspectral data are able to generate good 
results (>80 percent in accuracy), but collection of this type 
of data is costly. It is impractical to use this type of data for a 
broad area mapping in CERP. 

In contrast, Zhang and Xie (2013b) have evaluated the ap-
plicability of 20-meter hyperspectral imagery for vegetation 
mapping in the Everglades. They have found that this type of 
hyperspectral imagery alone cannot classify spectrally mixed 
objects as well as map communities present as small patches 
or linear/narrow shapes. To mitigate this problem they fused 
20-meter hyperspectral imagery and 1-meter digital aerial 
photography and developed a pixel/feature-level fusion strat-
egy. The fused data were then used to map vegetation in the 
same study area as Hirano et al. (2003). An overall accuracy 
of 90 percent was obtained, suggesting data fusion is an ef-
fective solution. But data should be collected simultaneously 
to avoid the temporal changes. Zhang et al. (2013) examined 
a combination of lidar and digital aerial photography for Ev-
erglades mapping because aerial photographs are frequently 
collected in CERP. Application of 1-meter digital aerial pho-
tography (four bands) alone produced an overall accuracy of 
49 percent in mapping seven forest communities. When lidar 
was fused with the aerial photography, a moderate accuracy 
was obtained (71 percent). 

To improve the application of data fusion techniques in the 
Everglades, in this study 12-meter hyperspectral imagery was 
fused with lidar data at the object level. An encouraging accu-
racy (76 percent) was obtained using 12-meter hyperspectral 
data alone, indicating spectral resolution is more important 
than spatial resolution. This accuracy was increased to 86 
percent when hyperspectral imagery was combined with lidar 
data. Accurate and automated identification of vegetation 
communities in the Everglades is a difficult task because most 
communities are a mixture of trees, shrub/scrub, herbaceous 

Table 3. Error Matrix for the Final Classified Map that was Produced Using a Synergy of Hyperspectral Imagery and All Lidar-derived Features, and En-
semble Analysis of the Outputs from Random Forest (rf), Support Vector Machine (svm), and k-Nearest Neighbor (k-nn) Classifiers (Experiment 8 in Table 

1); The Name of Classes 1 through 13 is Listed in Table 2
Class # 1 2 3 4 5 6 7 8 9 10 11 12 13 Row Total PA (%)

1 16 3 1 1 1 22 72.7

2 1 8 1 1 11 72.7

3 1 15 1 17 88.2

4 2 2 100.0

5 1 4 1 3 9 44.4

6 2 11 1 14 78.6

7 5 2 17 24 70.8

8 1 15 1 17 88.2

9 113 2 115 98.3

10 1 1 1 1 2 4 10 40.0

11 2 34 36 94.4

12 1 8 9 88.9

13 2 2 8 12 66.7

Col. Total 20 15 25 2 6 14 23 16 119 5 36 8 9 Overall accuracy: 86%
Kappa value: 0.82UA (%) 80.0 53.3 60.0 100.0 66.7 78.6 73.9 93.8 95.0 80.0 94.4 100.0 88.9

UA: User’s Accuracy; PA: Producer’s Accuracy; Classification result is displayed in row, and the reference data is displayed in column.
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ground plants, water, and bare soil. This study illustrates that 
a synergy of hyperspectral and lidar systems is effective for 
mapping the diverse vegetation communities in the Ever-
glades. Inclusion of lidar-derived features (elevation, inten-
sity, and topography) significantly increased the classification 
accuracy, showing the promise of modern hyperspectral and 
lidar systems in the Everglades mapping. Note that there was 
a 5.5-year time gap between acquisition of AVIRIS data (May 
2002) and lidar data (December 2007). Topographic features 
might have not changed too much in 5.5 years, but vegeta-
tion structure characterized by lidar might have been severely 
changed. Simultaneous collection of two data sources may be 
able to produce higher accuracy. In addition, increasing the 
lidar point density may help improve the classification accu-
racy by better characterizing the vegetation structure. 

Lidar elevation was believed to be the most useful informa-
tion in vegetation classification, and thus has been commonly 
combined with optical imagery to improve mapping results 
(Jones et al., 2010; Cho et al., 2012). The study confirms the 
gain from lidar elevation in vegetation mapping. Little work 
has been published on the information content of the lidar 
intensity returns for vegetation analysis. There are three 
major factors affecting lidar intensity: the illuminated area, 
bidirectional reflectance distribution function of the illumi-
nated targets, and incidence angles. This means radiometric 
lidar features will exhibit substantial variation due to differ-
ences in the illuminated area (foliage density), reflectance of 
illuminated scatters, and the geometry of leaf scatters (leaf 
orientation) (Korpela et al., 2010). Therefore application of 
lidar intensity needs to be based on the analysis of distribu-
tion characteristics, rather than each single pulse. Moffiet 
et al. (2005) indicated that lidar intensity statistics may be 
useful variables to assist with forest discrimination based on 
their data exploration analysis. But this has not been proven 
in practice or research. Chust et al. (2008) found that a filtered 
lidar intensity image can improve classification accuracy, 
while the raw intensity image contributes nothing for the 
habitat mapping in a coastal wetland. This study illustrates 
the benefit of lidar intensity statistics to vegetation mapping. 
Topographic information also increased the classification 
accuracy, which is consistent with the results reported by 
Chust et al. (2008) in wetland habitat mapping and Ke et al. 
(2010) in forest mapping. Topographic features are usually 
homogeneous within an object, which can help reduce the 
within-class variability among neighboring objects caused by 
shadows or gaps thus increasing the classification accuracy. In 
this study the intensity and topographic features made similar 
contributions as to the elevation information. 

As mentioned in the Methodology Section, various dimen-
sionality reduction algorithms have been developed in hyper-
spectral data preprocessing. It will be interesting to evaluate 
the impacts of different algorithms on the classification ac-
curacy. It is also worth to determine the best hyperspectral nar-
rowbands (HNBs) and/or hyperspectral vegetation indices (HVIs) 
in identifying each community as well as to assess the classifi-
cation accuracies achievable using various combinations of the 
best HNBs and HVIs. Combining more data sources in the map-
ping procedure is also attractive. Note that several parameters 
need to be specified for each classifier used in this study. The 
setting of these parameters may be site specific and training/
testing data sensitive. So far most researchers set these param-
eters based on empirical tests. Automated searching within a 
user-defined range as Hsu et al. (2010) proposed for the SVM 
algorithm may be a good solution to other classifiers. These 
will be major dedications in the future work. It is anticipated 
that this study can enhance the application of hyperspectral 
and lidar systems in complex wetland mapping. 

Summary and Conclusions
In this study an integration of hyperspectral and lidar systems 
for vegetation mapping in the Florida Everglades was exam-
ined. To effectively apply two data sources in the mapping 
procedure, a framework was designed to integrate Object-
Based Image Analysis (OBIA), machine learning algorithms, 
and ensemble analysis techniques. The following conclusions 
were drawn from this study:
	 1.	 Hyperspectral systems are promising for vegetation 

mapping in the Florida Everglades. Application of high 
spatial resolution hyperspectral imagery (12 meters) 
produced an overall accuracy of 76 percent and a 
Kappa value of 0.70 in discriminating 13 vegetation 
communities.

	 2.	 Low-posting-density lidar data are useful in the Florida 
Everglades. An integration of all lidar-derived features 
(elevation, intensity, and topographic information) and 
hyperspectral data achieved an overall accuracy of 86 
percent with a Kappa value of 0.82. Lidar elevation, 
intensity, and topography made the same contribution 
to the classification.

	 3.	 Three machine learning algorithms (Random Forest 
(RF), Support Vector Machine (SVM), and k-Nearest 
Neighbor (k-NN)) are valuable in processing the fused 
hyperspectral and lidar data. All of them performed 
well in the classification. An ensemble analysis of the 
outputs from three classifiers did not improve the clas-
sification accuracy, but it provided a supplementary 
uncertainty map to assist with the traditional error 
matrix in accuracy assessment.

	 4.	 An integration of hyperspectral and lidar data shows 
potential to map diverse vegetation communities in 
complex wetlands. The designed framework can be 
used as an alternative to the current manual interpreta-
tion procedure for updating and building vegetation 
databases in the Florida Everglades. With the increas-
ing availability of two types of data it is anticipated 
that this study can benefit the global wetland mapping 
in general, and the Florida Everglades in particular.
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