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Abstract

This paper proposes a technique to extract urban built-up
land features from Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) imagery taking two
cities in southeastern China as examples. The study selected
three indices, Normalized Difference Built-up Index (NDBI),
Modified Normalized Difference Water Index (MNDWI), and
Soil Adjusted Vegetation Index (SAVI) to represent three
major urban land-use classes, built-up land, open water
body, and vegetation, respectively. Consequently, the seven
bands of an original Landsat image were reduced into three
thematic-oriented bands derived from above indices. The
three new bands were then combined to compose a new
image. This considerably reduced data correlation and
redundancy between original multispectral bands, and thus
significantly avoided the spectral confusion of the above
three land-use classes. As a result, the spectral signatures of
the three urban land-use classes are more distinguishable in
the new composite image than in the original seven-band
image as the spectral clusters of the classes are well sepa-
rated. Through a supervised classification, a principal
components analysis, or a logic calculation on the new
image, the urban built-up lands were finally extracted with
overall accuracy ranging from 91.5 to 98.5 percent. There-
fore, the technique is effective and reliable. In addition, the
advantages of SAVI over NDVI and MNDWI over NDWI in the
urban study are also discussed in this paper.

Introduction

Urban spatial areas have expanded in an accelerated speed
during the last five decades, and rates of urban population
growth are higher than the overall growth in most countries
because urban areas are the locus of economic activity and
transportation nodes (Masek et al., 2000). Expanded urban-
ized areas encroached on surrounding valuable natural lands
such as paddy fields, forestlands, or wetlands (Xu et al.,
2000). Urban areas are dominated by built-up lands with
impervious surfaces, and therefore the conversion of the
nature lands into these impervious built-up lands may have
significant impacts on the ecosystem, hydrologic system,
biodiversity, and local climate which can result in the nega-
tive aspects such as the urban heat island phenomenon.

The study of urban spatial expansion and the resultant urban
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heat island phenomenon always needs accurate data on urban
built-up areas such as the size, shape, and spatial context.
Therefore, a technique is required to quickly reveal the data.
Timely availability of the data is of great importance for
urban planners and decision makers. Fortunately, satellite
remote sensing technology offers considerable promise to
meet this requirement. With different spatial and spectral
resolutions, the satellite observations can provide globally
consistent and repetitive measurements of the Earth’s surface
conditions. The objective of this study is to develop a new
technique to extract urban built-up land features from Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus
(eT™M+) imagery. This would allow urban planner and decision
makers to timely understand and evaluate urban growth with
related land-cover changes and be aware of the sustainable
usage of the invaluable nature lands.

Many researchers have made use of remote sensing
imagery to discriminate urban lands from non-urban lands.
A popular method for the definitions of urban areas started
with conventional multispectral classification. However, this
may not produce satisfactory accuracy, normally less than
80 percent, due to spectral confusion of the heterogeneous
urban built-up land class. Therefore, many studies have not
only used a single classification method to extract the urban
built-up lands but also combined different methods to
improve the extraction. Masek et al. (2000) identified urban
built-up areas of the Washington D.C. metropolitan area from
multi-date Landsat images based on an NDvVI-differencing
approach with the assistance of an unsupervised classifica-
tion and achieved overall accuracy of 85 percent. Xu (2002)
extracted urban built-up lands of Fuqing City in southeastern
China by a combination of signature analysis and supervised
classification. Based on the analysis of spectral response
differences between built land and various non-built classes
within multispectral bands, urban land information was
extracted and then integrated with a classification layer to
generate a final product with improved accuracy. Zhang et al.
(2002) integrated a road density layer with spectral bands for
the post-classification change detection of Beijing, China.
This greatly reduced spectral confusion and increased accu-
racy of the change detection. Zha et al. (2003) proposed the
Normalized Difference Built-up Index using T™M4 and ™5 and
applied it in extracting urban areas of Najing City of China

Photogrammetric Engineering & Remote Sensing
Vol. 73, No. 12, December 2007, pp. 1381-1391.

0099-1112/07/7312-1381/$3.00/0
© 2007 American Society for Photogrammetry
and Remote Sensing

December 2007 1381



Figure 1. Landsat TM image of Quanzhou area (a) with its derived savi
(b), MNDWI (c), and NDBI (d) images, and ETM+ image of Fuzhou area

(e) with its derived savi (f), MNDWI (g), and NDBI (h) images (North to
the top; sizes of Quanzhou and Fuzhou images is 7.71 km X 7.71 km
and 16.7 km X 16.7 km, respectively). A color version of this figure

is available at the ASPRS website: www.asprs.org.
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from a Landsat T™M image. The index-derived map was
further filtered using the NDVI to remove the vegetation
noise, as the vegetation information was mixed with the
extracted built-up lands. Guindon et al. (2004) mapped
urban land with a combination of spectral and spatial infor-
mation. This started with an unsupervised classification and
a segment-based classification, respectively. The two classifi-
cations were then merged using rules to generate a final
product with enhanced land-use classes and accuracy. More
recently, Xian and Crane (2005) measured urban land expan-
sion of the Tampa Bay watershed of Florida by using a
regression tree algorithm to map urban impervious surfaces
and an unsupervised classification to reveal related land-
cover classes which achieved an accuracy greater than

85 percent.

A new technique is proposed in this paper for the
extraction of urban build-up land information. The extrac-
tion is mainly based on a new image derived from three
thematic indices, Soil Adjusted Vegetation Index (SAVI),
Modified Normalized Difference Water Index (MNDwWI), and
Normalized Difference Built-up Index (NDBI). The technique
is demonstrated through the extraction of urban built-up
lands of Quanzhou and Fuzhou Cities in southeastern China
from Landsat TM/ETM+ images.

Methods

Study Area and Remote Sensing Data Source

The remotely sensed data used in this test are a Landsat ™
image (path 119, row 43, covering Quanzhou City) acquired
on 17 May 1996 and an ETM+ image (path 119, row 42,
covering Fuzhou City) acquired on 29 May 2003. The images
are cloud-free and have excellent quality. Sub-scenes cover-
ing the test cities were further extracted from the two images
(Figure 1a and 1e). No preprocessing of the images was
carried out except a simple atmospheric scattering correction
procedure using the Dark Object Subtraction (DOS) method.
However, to maintain data objectivity and avoid introducing
uncertainty, the data provided in following Tables 1 through
5 are based on the original raw images. Nevertheless, the
extracted results from both raw and DOS-corrected images
were provided in Table 6 to examine whether there are any
differences between them. Also, the means mentioned in
following tables and figures are all calculated based on
related classified images.

Two cities are all located in Fujian Province. Fuzhou
City is the capital of the province, geographically ranging
from 119°13' to 119°25" East and 25°59’ to 26°08’ North,
and had a total urban area of approximately 119 km? in the
study year of 2003. While Quanzhou City, about 200 km
south to the Fuzhou, ranges from 118°32’ to 118°37’ East
and 24°52’ to 24°58' North and had a total urban area of
approximately 24 km? in the study year of 1996.

Production of Index-derived Images

An urban area is a complex ecosystem composed of heteroge-
neous materials. Nevertheless, there are still some generalizing
components among these materials. Ridd (1995) divided the
urban ecosystem into three components, i.e., impervious
surface material, green vegetation, and exposed soil while
ignoring water surfaces. However, the open water is an impor-
tant component of the urban surface and has to be taken into
consideration in this study. Accordingly, the urban land-use
was grouped into the other three generalized categories, i.e.,
built-up land, vegetation, and open water (Figure 2). Based on
these three elements, three indices, NDBI, SAVI, and MNDWI,
were selected in this study to represent above three major
land-use classes, respectively.
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Figure 2. Scattergrams of Red (x-axis)-NIR
(y-axis) spectral space with three major
urban land-use classes located at the three
angles of the near-triangular space:

(a) Quanzhou image, and (b) Fuzhou image.

SAVI-derived Vegetation Image
There are various vegetation indices to enhance vegetation
information in remote sensing imagery usually by ratioing a
near-infrared (NIR) band to a red band. This takes advantage
of the high vegetation reflectance in NIR spectral range such
as T™ band 4 and high pigment absorption of red light, such
as ™ band 3 (Jensen, 2000). Although nearly everyone
working with the remote sensing of vegetation knows the
Normalized Difference Index (NDVI), this study employed
SAVI to highlight vegetation features due to its advantage
over NDVI when applied in an area with low plant cover
such as the urban areas. SAVI can work in the area with
plant cover as low as 15 percent, while NDVI can only work
effectively in the area with plant cover above 30 percent
(Ray, 1994).

The sAVI is calculated using the following equation
(Huete, 1988):

(NIR — Red)(1 + 1)

SAVI= "R+ Red + I W
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where I is a correction factor ranging from 0 for very high
densities to 1 for very low densities. A value of 0.5 was
used in this study to produce enhanced vegetation image
as the study region has an intermediate vegetation density
(Figure 1b and 1f).

It is noted in this test that SAVI is really more sensitive
than NDVI in detecting vegetation in the low plant-covered
areas due largely to the increased data dynamic ranges of the
images (Table 1). The increased dynamic range is 85 when
the difference is rescaled between 0 and 255 to provide
output as unsigned 8-bit data. The increase in the range can
make the discrimination of vegetation from built-up land or
water easier. For example, the NDVI difference between
vegetation and built-up land in Quanzhou image is 0.61,
whereas the sAvI difference between them is 0.92 (Table 2).
A 0.31 or 50 percent contrast increase would greatly help in
the separation of these two classes.

MNDWI-derived Water Image

McFeeters (1996) proposed the Normalized Difference Water
Index (NDWI) to delineate open water features, which is
expressed as follows:

NDWI = GREEN — NIR )
GREEN + NIR
where GREEN is a green band such as T™2, and NIR is a
near infrared band such as T™4.

This index maximizes reflectance of water by using green
light wavelengths and minimizes low reflectance of NIR by
water features while taking advantage of the high reflectance of
NIR by vegetation and soil features. As a result, water features
are enhanced owing to having positive values and vegetation
and soil are suppressed due to having zero or negative values.

However, the applications of the NDWI in the water
regions with built-up land background like the cases of
Quanzhou and Fuzhou cities were not as successful as
expectation. The extracted water information in these regions
was often mixed up with built-up land noise because many
built-up lands also have positive values in the NDwI-derived
image. The signature features of built-up land in green band
(T™M2) and NIR band (T™M4) shown in Figure 3 are similar with
those of water, i.e., they both reflect green light more than
reflect near infrared light. Consequently, the computation of
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Figure 3. Spectral signatures represented by the mean of
three urban land-use classes taking the Quanzhou image
as an example.

the NDWI also produces a positive value for built-up land just
as for water. Table 3 shows that the built-up land class in
both Quanzhou and Fuzhou images has positive mean
values. To remedy this problem, Xu (2005) modified the
NDWI by using a middle infrared (MIR) band such as T™M5 to
substitute the NIR band in the NDWI. The modified NDWI
(MNDWI) is expressed as follows:
GREEN — MIR
MNDWI GREEN + MIR . (5]

Figure 3 shows that the mean of T™M5 is much greater
than that of T™2. Therefore, if a MIR band is used instead of a
NIR band, the built-up land should have negative values while
keeping the water values positive. Accordingly, the enhanced
water features will no longer have built-up land noise in a
MNDWI image. This substitution has no impact on vegetation,
as vegetation still has negative value when calculated using
Equation 3 (Figure 3). Therefore, this test employed MNDWI
instead of NDWI to enhance water features in the built-up
land-dominated urban area (Figure 1c and 1g).

TaBLE 1. DyNAMIC RANGES oF NDVI AND SAVI oF THE TEST IMAGES

Quanzhou image

Fuzhou image

Minimum Maximum Dynamic range Minimum Maximum Dynamic range
SAVI —0.902 0.979 1.881 —0.911 0.633 1.544
NDVI —0.606 0.654 1.260 —0.609 0.423 1.032
Dynamic range difference 0.621 0.512
Difference rescaled 85 85
TaBLE 2. THE MEAN oF NDVI AND SAVI oF THE THREE LAND-USE CLASSES WITH THEIR DIFFERENCES IN THE STUDY AREAS
Mean Difference
NDVI SAVI NDVI SAVI Increase
Quanzhou Vegetation 0.51 0.77 Vegetation versus Built-up 0.61 0.92 0.31
Built-up -0.10 —0.15 Built-up versus Water 0.32 0.51 0.19
Water —0.42 —0.66 Water versus Vegetation 0.93 1.43 0.50
Fuzhou Vegetation 0.29 0.42 Vegetation versus Built-up 0.59 0.87 0.28
Built-up —-0.30 —0.45 Built-up versus Water 0.21 0.31 0.10
Water —0.51 —0.76 Water versus Vegetation 0.80 1.18 0.38
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TaBLE 3. THE MEAN oF NDWI AND MNDWI AND DIFFERENCE BETWEEN BUILT-UP LAND AND WATER

Mean Difference
NDWI MNDWI NDWI MNDWI Increase
Quanzhou Built-up land 0.07 -0.35 Built-up land versus Water 0.35 0.95 0.60
Water 0.42 0.60
Fuzhou Built-up land 0.19 —0.02 Built-up land versus Water 0.34 0.67 0.33
Water 0.53 0.65

Moreover, MNDWI can enhance the contrast between
built-up land and water much more than NDWI because
built-up lands reflect MIR radiation much higher than NIR
radiation (Figure 3). The increase in difference between
them would help the delineation of these two classes
(Table 3).

NDBI-derived Built-up Land Image
The built-up land image (Figure 1d and 1h) was produced
using the NDBI of Zha et al. (2003) with the following
equation:
NDBI = M (4)
MIR + NIR

The development of the index was based on the unique
spectral response of built-up lands that have higher reflec-
tance in MIR wavelength range than in NIR wavelength range.
However, this is not always the case. Some studies showed
that the reflectance for certain types of vegetation over the
band pass of T™5 increased as leaf water content decreased
(Cibula et al., 1992; Gao, 1996). The drier vegetation can
even have higher reflectance in MIR wavelength range than
in NIR range (Gao, 1996), resulting in positive values in NDBI
imagery for these plants. This study also found that the
many vegetated areas have positive NDBI values, especially
in Fuzhou’s NDBI image where the mean of vegetation is
0.01. Furthermore, in some circumstances, water with high
suspended matter concentration (SMC) can also reflect MIR
stronger than NIR because the reflectance peak shift to longer
wavelength regions as the suspended matter increase.
Therefore, the drier vegetation and water with high smc will
have positive NDBI values when computed using Equation 4
and present as noise in a NDBI image. Consequently, the
contrast of the NDBI image is not so good as SAVI and MNDWI
images (Figure 1), because many pixels of vegetation and
water areas having positive NDBI values show medium gray
tones and present as noise mixed with built-up features.
Wu et al. (2005) employed NDBI to extract urban built-up
lands of Xi’an City of China and obtained a low accuracy of
78.7 percent. A similar situation was also encountered in
this study (see discussion later). These suggest that the
urban built-up land features could not be extracted merely
based on a NDBI image. This is why this study combines the
NDBI with SAVI and MNDWI to extract urban built-up land
features. This combination can remove the vegetation and
water noise, and hence improve the extraction accuracy.

Extraction of Urban Built-up Land Features

After producing SAVI, MNDWI, and NDBI images, a new
image dataset was created, which used these three new
images as three bands. The further extraction of urban
built-up land was carried out based on this new dataset.
The change from an original seven-multispectral-band
image into the three-thematic-band image largely reduces
correlation among three bands (Table 4). Consequently,
three major urban land-use classes, vegetation, water, and
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TABLE 4. CORRELATION VALUES OF THE Two NEw IMAGES COMPOSED
OF SAVI-, NDBI-, AND MNDWI-DERIVED BANDS

Quanzhou image Fuzhou image

SAVI NDBI MNDWI SAVI NDBI MNDWI
SAVI 1.000 —0.107 —0.558 1.000 —0.378 —0.638
NDBI —0.107 1.000 —0.756 —0.378 1.000 —0.461
MNDWI —0.558 —0.756 1.000 —0.638 —0.461 1.000

built-up land are well separated (Figure 4). Compared with
the original image, moreover, spectral signature analysis
was also greatly simplified owing to the reducing of band-
dimensions (Figure 3 and Figure 5).

Three methods were used to extract built-up land features
from the new images composed of the three thematic-oriented
bands, which are principal components analysis (PCA), logic
calculation, and supervised classification methods.

PCA is a method that examines principal components
eigenvector loadings to decide which of the PC images will
concentrate information related directly to the theoretical
spectral signatures of specific target materials. The technique
is able to predict whether the target material is represented
by bright or dark pixels in the relevant PC image according
to the magnitude and sign of the eigenvectors. Table 5
describes the pC transformation on the new images based on
the covariance matrix and is the base for identifying which
PC has the greatest loadings (values) for NDBI band (repre-
senting the built-up land class), but that also has opposite
signs (+ or —) with sAvi and MNDWI bands. It is obvious that
the built-up lands cannot be identified from PC3 as all three
input bands have positive loadings in the two images, and is
also difficult to be separated from vegetation in PC1 of the
two images because both NDBI and SAVI bands in Quanzhou
image have close positive loadings, and the NDBI band of
Fuzhou image only has a small loading (0.014). Therefore,
the built-up lands can only be mapped by Pc2 based on a
strong positive or negative loading with an opposite sign
from sAvI and MNDWI bands. The negative sign of the loading
for NDBI-band in Quanzhou image indicates that the built-up
lands will be present by dark pixels. Accordingly, by negating
(i.e., multiplying by —1) PC2 image, built-up lands of the
image were mapped as bright pixels. Finally, a threshold
value (Table 6) was used to extract built-up features from the
PC2 image to form a binary-image with the built-up land class
assigned a value of 1 and all non-built-up land classes a
value of 0 (Figure 6a and 6f).

The second method is an “if-then-else” logic calculation
through a band spectral signature analysis. A simple rule-
based logic tree is used to segment urban built-up lands
from non-urban built-up lands. Figure 5 illustrates the
signatures of the three new bands in the two index-derived
images. A distinct feature is that the mean values of band 2
(NDBI-band) of both new images are all greater than those of
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Figure 4. Scattergrams of spectral feature space of the two new three-band images derived from their
original seven-band images showing well-separated water, urban and vegetation classes: (a) SAvI
(x-axis)-NDBI (y-axis), (b) NDBI (x-axis)-MNDWI (y-axis), (C) SAVI (x-axis)-MNDWI (y-axis) spaces of the
Quanzhou image, (d) NDBI (x-axis)-SAVI (y-axis), (e) NDBI (x-axis)-MNDWVI (y-axis), and (f) SAvI (x-axis)-
MNDWI (y-axis) spaces of the Fuzhou image.

Figure 5. Simplified spectral signatures represented by the mean of three major land-use
classes of (a) Quanzhou, and (b) Fuzhou new images.
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TABLE 5. PRINCIPAL COMPONENTS ANALYSIS ON THE Two NEW THREE-BAND IMAGES

Quanzhou image Fuzhou image

PC1 PC2 PC3 PC1 PC2 PC3
Eigenvectors sAvI-band 0.571 0.72 0.394 —0.894 —0.311 0.322
NDBI-band 0.461 —0.679 0.571 0.014 0.700 0.714
MNDWI-band —0.679 0.144 0.72 0.447 —0.011 0.621
TABLE 6. SUMMARY OF ACCURACY VALIDATION RESULTS
Quanzhou image Fuzhou image
No. Extraction method built non-built total Overall Kappa built non-built total Overall ~ Kappa
accuracy accuracy
1 Logic calculation built 131 12 143 93.0% 0.836 120 0 120 98.5% 0.969
raw image non-built 2 55 57 3 77 80
total 133 67 200 123 77 200
2 Logic calculation built 131 10 141 93.9% 0.861 120 8 128 94.5% 0.882
Dos-corrected image non-built 2 57 59 3 69 72
total 133 67 200 123 77 200
3 PC2 built 131 4 135 97.0%  0.932 122 16 138 91.5%  0.813
raw image, non-built 2 63 65 1 61 62
thresholded at total 133 67 200 123 77 200
0.231 for Quanzhou,
0.139 for Fuzhou
4 rc2 built 129 9 138 93.5%  0.851 118 3 121 96.0%  0.9159
DOs-corrected image, non-built 4 58 62 5 74 79
thresholded at total 133 67 200 123 77 200
0.409 for Quanzhou,
0.3 for Fuzhou
5 Supervised built 132 15 147 92.0% 0.811 119 2 121 97.0% 0.937
classification non-built 1 52 53 4 75 79
raw image total 133 67 200 123 77 200
6 Supervised built 133 15 148 92.5%  0.822 119 0 119 98.0%  0.958
classification non-built 0 52 52 4 77 81
Dos-corrected image total 133 67 200 123 77 200
7 Supervised built 123 27 150  81.5%  0.557 123 47 170 76.5%  0.439
classification*® non-built 10 40 50 0 30 30
original image total 133 67 200 123 77 200
8 NDBI built 131 30 161  84.0% 0599 123 40 163 80.0%  0.532
raw image, non-built 2 37 39 0 37 37
thresholded at 0.0 total 133 67 200 123 77 200
9 NDBI built 131 33 164  82.5% 0556 123 75 198  62.5%  0.032
DOS corrected image, non-built 2 34 36 0 2 2
thresholded at 0.0 total 133 67 200 123 77 200

*The accuracies obtained from the raw and DOs-corrected images are identical.

band 1 (sAvi-band) and band 3 (MNDwWI-band). Therefore, a
simple logic statement can easily extracted urban built-up
lands from the image owing to its much simpler signatures
than those of original image (Figure 3). The logic calculation
can be expressed in ER Mapper™as follows:

If Band 2 > Band 1 and Band 2 > Band 3 then 1 Else 0.

The pixels of built-up lands had a value of 1 after the
logic calculation and resultant image was also a binary-image.
The urban built-up lands of Quanzhou were so extracted
(Figure 6b). However, Figure 5b shows that the difference
between means of built-up land class and vegetation class in
NDBI-band of Fuzhou image is not as large as that of Quanzhou
image (Figure 5a). This might cause confusion between built-
up land and vegetation classes in Fuzhou image if only above
logic statement is used for the extraction, and the result would
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not be as good as that of Quanzhou image. Therefore, one
more condition was added in the statement as follows to assist
the extraction:

If Band 1 < —0.344 and Band 2 > Band 3 then 1 Else 0.

The maximum of built-up land class in band1 (sAvI-
band) of Fuzhou image is —0.343, whereas the minimum of
vegetation class in that band is —0.182. Therefore, using
—0.344 as a threshold value can help avoid the confusion
between vegetation and built-up land classes and greatly
increase the extraction accuracy (see sections below).

The supervised classification was performed using
a maximum likelihood algorithm based on the signatures
of training regions (Figure 4). The built-up lands were
extracted directly from the classified image to form a
binary-image with the built-up land class assigned a value

December 2007 1387



Figure 6. Urban built-up land extraction results from Quanzhou (a through e) and Fuzhou
(f through j) using (a) pc2 method, (b) logic calculation method on Dos-corrected image,
(c) supervised classification method, (d) supervised classification on the original image,
(e) NDBI method, (f) Pc2 method on Dos-corrected image,
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higher accuracy image of each method is shown.

Figure 6. (Continued) (g) logic calculation method, (h) supervised classification on DOs-
corrected image, (i) supervised classification on the original image, and (j) NDBI method. Only

of 1 and all non-built-up land classes to a value of 0
(Figure 6¢ and 6h).

Finally, non-urban areas of the two cities were masked
out using a vector polygon representing each city’s outline,
and only the built-up lands within the urban region were
left as urban built-up lands (Figure 6).

Accuracy Assessment

To compare the extraction accuracy, the original seven-band
Landsat TM image was classified using a supervised maxi-
mum likelihood classification method with the same training
regions as those used in previous classification (Figure 4). In
addition, extraction based only on a NDBI image was also
carried out for the comparison. The urban built-up lands
were extracted from the NDBI image when the digital num-
bers of pixels were greater than a default threshold value of
0. The extracted results from the supervised classification
and the NDBI image were also made into binary images
(Figure 6d, 6e, 6i, and 6j).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Two SPOT images with finer spatial resolution were used
as reference datasets from which the extraction results were
compared. One used for Fuzhou area is a 10 m SPOT-5 multi-
spectral image and acquired on 13 December 2003. The other
for Quanzhou area is a PAN image with 10 m resolution and
was acquired on 18 May 1996, one day after the Landsat T™M
image collected. The Quanzhou’s SPOT PAN and TM images
were fused together using the Brovey algorithm to produce a
10 m multispectral image. The extracted binary-images were
overlaid on the RGB-colored SPOT image, and then visually
inspected pixel by pixel. A random sampling method was
used, and a total of 200 pixels were sampled. All resultant
binary-images were assessed using the same samples. The
extraction results from both raw images and DOS-corrected
images were all evaluated to see whether there is any differ-
ence between them. Table 6 summarizes the accuracy assess-
ment results and clearly shows that the overall extraction
accuracy of urban built-up land features based on the three-
thematic-band image are higher than those based on the
original image or on the NDBI image. The accuracy from the
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new images ranges from 91.5 to 98.5 percent with Kappa
coefficients from 0.813 to 0.969, while overall accuracy of
the NDBI-extracted results or original image are all less than
85 percent with Kappa coefficients less than 0.6. This indi-
cates that the thematic-oriented band compression technique
can achieve much better extraction results.

Discussion

Table 6 shows that all three methods described earlier can
extract urban built-up lands from the new three-thematic-band
images with high overall accuracy (on an average close

to 95 percent in the 12 tests). The best overall accuracy,

98.5 percent, was achieved through the logic calculation
method, which is the fastest, easiest, and most objective one
among the three methods. One simple logic statement can
generally achieve a quite good extraction result like in
Quanzhou case. Nevertheless, one more condition added can
considerably increase extraction accuracy such as in the
Fuzhou case, as it well discriminate vegetation from built-up
land. Consequently, no confusion was found between them in
the sampling procedure of accuracy assessment (Table 6). The
threshold value used in the conditional statement was just
simply taken from the maximum of the built-up land class in
SAvI-band and did not need to bother to find it. The method
also has the highest average overall accuracy (94.98 percent)
among the three considered.

The PC2 can also get high accuracy up to 97 percent.
This is probably owing to the fact that the contrast between
built-up land and vegetation or water in the PC2 image is
further enlarged as indicated by their contributions to pc2
and by opposite signs of the loadings (Table 5). Therefore,
the method can effectively enhance built-up land features
while depressing water and vegetation information in the
PC2 image.

The conventional supervised classification on the new
three-band image can produce very high accuracy up to 98
percent, while the same classification method performed on
the original image can only have maximum accuracy of 81.5
percent. The good separation of the spectral clusters of the
three urban categories in the new three-band image (Figure
4) greatly reduced the confusion between them, and thus
considerably improves the classification accuracy. The
supervised classification on the raw and DOS-corrected
original seven-band images got the identical results because
the DOs method is only shift the origin of the dataset as
indicated by Song et al. (2001).

The accuracy based only on the NDBI image using a
default threshold value of 0 is lower than 85 percent, the
minimum acceptable overall accuracy proposed by Anderson
et al. (1976). Step-by-step adjusting the threshold value can

reach higher overall accuracy but never exceeds 88.5 percent.

The confusion matrix in Table 6 shows that the error is
obviously caused by high overestimation of the non-built-up
lands. Visual inspection of extraction result (Figure 6e and
6i) can find that the confusion mainly lies between built-up
land and vegetation classes. As discussed earlier, besides
built-up lands many vegetation areas also have positive
values in NDBI imagery, and thus made the confusion with
the built-up land areas. This directly resulted in the low
accuracy of the extraction.

It seems no significant different between the extraction
results from raw and DOS-corrected imagery and no rule can
be found within them. In Quanzhou’s case, the average
accuracy of raw image is slightly greater than that of DOs-
corrected image (94.0 percent versus 93.3 percent). While
the situation is changed in Fuzhou case, and the average
accuracy of DOs-corrected image is 0.5 percent higher than
that of raw image (96.17 percent versus 95.67 percent).
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Conclusions
The original seven bands of a Landsat TM/ETM+ image can be
reduced into three thematic-oriented bands to produce a new
image. The reducing was not carried out through the conven-
tional Principal Components Analysis method. Instead, the
three new bands were generated directly from three thematic
indexes, SAVI, MNDWI, and NDBI. This dramatically reduced
data correlations and redundancy between multispectral
bands, significantly avoided the spectral confusion between
the land-use classes, and thus largely improved the extraction
accuracy. Besides, using savi and MNDWI instead of NDvI and
NDWI also contribute to the improvement because this can
significantly increase the spectral contrast between different
land-use classes. Consequently, the high accuracy of extrac-
tion of urban built-up land features was achieved through
a simplified band spectral signature analysis, a PCA, or a
maximum likelihood supervised classification. Among the
three methods, the logic calculation method can generally
achieve higher accuracy. Moreover, the method is fast and
objective, as it does not need to manually test a threshold
value repeatedly. The PcA and supervised classification
methods can also have high extraction accuracy, but are more
subjective and time-consuming due to the attempt on select-
ing a suitable threshold value or defining training regions.
There appears to be no need to do DOS-correction for the
image to be used for extraction, as it still cannot be proved
that the DOS-corrected imagery can get much better extraction
results.
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