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Abstract
Change-vector analysis (CVA) is a valuable technique for land-
use/land-cover change detection. However, how to reasonably
determine thresholds of change magnitude and change di-
rection is a bottleneck to its proper application. In this paper,
a new method is proposed to improve CVA. The method (the
improved CVA) consists of two stages, Double-Window Flexible
Pace Search (DFPS), which aims at determining the threshold
of change magnitude, and direction cosines of change vectors
for determining change direction (category) that combines
single-date image classification with a minimum-distance
categorizing technique. When the improved CVA was applied
to the detection of the land-use/land-cover changes in the
Haidian District, Beijing, China, Kappa coefficients of “change/
no-change” detection and “from-to” types of change detection
were 0.87 and greater than 0.7, respectively, for all kinds of
land-use changes. The experimental results indicate that the
improved CVA has good potential in land-use/land-cover
change detection.

Introduction
Land-use/land-cover change is an important field in global en-
vironmental change research. Inventory and monitoring of
land-use/land-cover changes are indispensable aspects for fur-
ther understanding of change mechanism and modeling the
impact of change on the environment and associated ecosys-
tems at different scales (Turner et al., 1995; William et al.,
1994). Remote sensing is a valuable data source from which
land-use/land-cover change information can be extracted effi-
ciently. In the past two decades, there has been a growing trend
in the development of change detection techniques using re-
mote sensing data. A number of techniques for accomplishing
change detection using satellite imagery have been formu-
lated, applied, and evaluated, which can be broadly grouped
into two general types (Singh, 1989; Jensen, 1996; Coppin and
Bauer, 1996; Ding et al., 1998; Johnson and Kasischke, 1998):
(1) those based on spectral classification of the input data such
as post-classification comparison (e.g., Mas, 1999) and direct
two-date classification (e.g., Li and Yeh, 1998); and (2) those
based on radiometric change between different acquisition 
dates, including (a) image algebra methods such as band differ-
encing (Weismiller et al., 1977), ratioing (Howarth and Wick-
ware, 1981), and vegetation indices (Nelson, 1983); (b) regres-
sion analysis (Singh, 1986); (c) principal component analysis
(Byrne et al., 1980; Gong, 1993); and (d) change-vector analysis

(CVA) (Malila, 1980). Based on a mixture of categorical and ra-
diometric change information, hybrid approaches have also
been proposed and evaluated (Colwell and Weber, 1981). Selec-
tion of an appropriate change-detection technique, in practice,
often depends on the requirement of information, data avail-
ability and quality, time and cost constraints, and analysis skill
and experience (Johnson and Kasischke, 1998). Among those
radiometric change-based approaches, change-vector analysis
is a useful method for land-use/land-cover change detection be-
cause it not only can avoid the shortcomings of those type 1
approaches, such as cumulative error in image classification of
an individual date, but also it can find changed pixels using
more, even all, the bands and provide “from-to” type of change
information. In the past few years, its advantages and potential
have been demonstrated in some case studies (Michalek et al., 
1993; Lambin and Strahler, 1994a; Lambin and Strahler, 1994b;
Sohl, 1999). Thus, it has recently been adopted as the basis 
for the initial 250-meter Land-Cover Change Product using 
MODIS Data (Zhan et al., 2000).

However, like other radiometric change approaches, CVA
also has several drawbacks that limit its use. These include

● A strict requirement for reliable image radiometry. Because CVA
is based on pixel-wise radiometric comparison, the accuracy
of image radiometric correction for alleviating the impacts
caused by disturbing factors such as different atmospheric con-
ditions, solar angle, soil moisture and vegetation phenology,
etc., is more critical for CVA than for spectral classification
approaches. However, there exists no valid radiometric correc-
tion method that can be used to reduce the effects of all dis-
turbing factors efficiently, especially for vegetation phenology.
Similar acquisition dates in different years are therefore chosen
to reduce this type of disturbance in CVA. This strict requirement
for data acquisition limits the broad application of CVA.

● A lack of automatic or semiautomatic methods to effectively
determine the threshold of change magnitude between change
and no-change pixels. Although determination of the optimal
threshold between change and non-change pixels is considered
as the most important task as well as the greatest challenge of
CVA (Ding et al, 1998; Johnson and Kasischke, 1998; Smits and
Annoni, 2000), the threshold in a specific CVA analysis is often
determined according to empirical strategies (Fung and Le-
Drew, 1988) or from manual trial-and-error procedures. This-
usually requires a more experienced image analyst and a long
trial time (Bruzzone and Prieto, 2000).

● Discrimination of different phenomenological types of change
is problematic when the number of bands involved is large.
The methods of discriminating change type in existing literature
can be grouped into three classes: (1) trigonometric functions
of vector angle in two spectral dimensions (Malila, 1980), (2)
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sector coding in more than two spectral dimensions (Virag and is used. Based on the above introduction of CVA and its draw-
Colwell, 1987), and (3) principal component analysis in a multi- backs, an improved CVA for land-use/land-cover change detec-
temporal space (Lambin and Strahler, 1994a). In most CVA ap- tion was developed (Figure 1).
plications, the change category is mainly distinguished and
assigned by a combination of “�” or “�” symbols (� for increase,

Threshold Search for Identifying Change Pixels(� for decrease) of each computational band and image interpre-
Traditionally, the threshold of change magnitude is empiricallytation (Virag and Colwell, 1987; Michalek et al., 1993; Johnson

and Kasischke, 1998; Sohl, 1999). When CVA is applied in this determined. This is subjective and varies from person to per-
manner (called “sector coding”), there exist two problems. son. To overcome this problem, we developed a Double-Win-
First, sector coding can discriminate 2n sectors when the number dow Flexible Pace Search (DFPS) algorithm. This method is
of computational bands is n (Virag and Colwell, 1987). If there based on selecting a threshold from training samples con-
are nine land-cover types found at two different dates, respec- taining all possible kinds of changes. The assumption is thattively, and all kinds of changes between those land covers

the training samples are representative to the entire study area.probably occur in the period, the number of change types is 9
Thus, a threshold leading to the maximum accuracy of change� 8 � 72. This means that one sector code certainly represents
detection within the training samples is considered optimal formore than one change type even if six bands of TM are used (26

the entire study area. The flowchart of DFPS is shown in Figure 2� 64), which may lead to an assignment error of change cate-
gory. Second, it is a strenuous and time-consuming work to and its main steps are described in the following section.
discriminate and interpret change categories represented by
sector codes with the increase of computational bands (n) be- Selection of Typical Sample Areas of Land-Use/Land-Covercause the number of sector codes increases geometrically.

Change
In light of the abovementioned drawbacks, especially the In the process of optimal threshold search, it is important to

second and third ones, this paper presents an improved CVA for make sure that training samples are as representative as possi-
land-use/land-cover change detection, which includes (1) a ble for all change classes. First, the change magnitude (��G�)
semiautomatic method, named Double-Window Flexible Pace image is calculated from the two original images of different
Search (DFPS), which aims at determining efficiently the thresh- dates, following precise image-to-image registration and radio-
old of change magnitude, and (2) a new method of determining metric normalization. Then, some typical change areas are cho-
change direction (change category) which combines a single sen as training samples from the change magnitude image. The
image classification and a minimum-distance categorization two original images can be displayed along with the change
based upon the direction cosines of the change vector. The im- magnitude image to assist in the identification of training sam-
proved CVA approach is applied and validated by a case study ples for land-use changes. The criteria for selecting sample ar-
of land-use change detection in the Haidian district of Beijing, eas are (1) training samples should cover as many as possible
China, using multi-temporal TM data. The rest of this paper change types (note that a change type is identified only by com-
outlines the proposed method and gives a detailed description paring the color and context between the two original images
of a case study applying the improved CVA. The conclusions and because the real change type has not been categorized at this
remarks are summarized. stage), (2) training samples should include only change pixels,

Method
Change-Vector Analysis (CVA)
Malila (1980) gave a general idea of change-vector analysis
(CVA). A change vector can be described by an angle of change
(vector direction) and a magnitude of change from date 1 to date
2 (Jensen, 1996). If a pixel’s gray-level values in two images on
dates t1, t2 are given by G � (g1, g2, ���, gn)T and H � (h1, h2, ...,
hn)T, respectively, and n is the number of bands, a change vec-
tor is defined as

�G � H � G � �
h1 � g1

h2 � g2

���
hn � gn

� (1)

where �G includes all the change information between the two
dates for a given pixel, and the change magnitude ��G� is com-
puted with

��G� � �(h1 � g1)2 � (h2 � g2)2 � ��� � (hn � gn)2. (2)

It represents the total gray-level difference between two dates.
The greater ��G� is, the higher is the possibility of change. A
decision on change is made based on whether the change mag-
nitude exceeds a specific threshold. Once a pixel is identified
as change, the direction of �G can be examined further to deter-
mine the type of change. The type of change is often identified
using the angle of the vector in two spectral dimensions, or sec-

Figure 1. Flowchart of land-use/land-cover change detec-tor codes if more than two spectral dimensions are involved.
tion based on improved change vector analysis.The geometric concept of CVA is applicable to any number of

spectral bands, no matter what measurement scale of radiance
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Figure 3. An example of selecting a training patch in the
change magnitude image by comparing the two original
images.

Figure 2. Flowchart of the Double-windows Flexible Pace
Search method.

and (3) training samples should be encircled by no-change pix-
els as “islands.” Figure 3 shows an example of selecting one
training sample in the change magnitude image by comparing Figure 4. An example showing the relationship between ac-
the two original images. curacy of change detection and threshold decreasing in one

training sample. The shadow area corresponds to an optimalThe threshold for identifying change and no-change pixels
threshold value.can be determined by searching an optimal value of change

magnitude to obtain the maximum accuracy of change detec-
tion within the training samples. Obviously, as the threshold
of change magnitude decreases, the number of change pixels in-
side training samples will increase and the accuracy of change
detection will be improved. However, it should be noted that
the possibility of no-change pixels outside the training sam-
ples identified as change pixels would also increase, leading to
higher commission errors. There exists such a threshold, with
which all the pixels inside the training samples are detected
correctly as change pixels and the highest accuracy is obtained
in the training samples while many no-change pixels outside
the training samples are also identified incorrectly as change
pixels. Figure 4 gives an example illustrating the relationship Figure 5. Example of Double-window.
between accuracy of change detection and threshold decrease
in one training patch. In consideration of this situation, an out-
side boundary is created through buffering in a GIS for each
training patch, forming a double area called a double-window

magnitude in the first search process. The first search pace (in-(Figure 5). The outside boundary (outside window) is used to
crement) P1 may be calculated according to the followingprevent the threshold from being too low.
formula:

Determination of the Search Range and Pace P1 � (b � a)/ m (3)
The threshold search range can be set as a difference between
the minimum value (a) and the maximum value (b) of change where m is a positive integer, which determines the number of
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potential thresholds in a search process and can be set manu- Change Type Discrimination
Discrimination of change types plays an important role inally. The potential thresholds to detect change pixels from the

training samples in the search process are given within the change detection. Problems were noted with the existing CVA
(Cohen and Fiorella, 1998). Cohen and Fiorella (1998) pointedrange of [a, b] as b � P1, b � 2P1, ... . It should be noted that the

size of the manually set m does not affect the search efficiency out the possibility of other angle measurements for the change
vector in three or more spectral dimensions and noticed the im-and the final results. A large m increases the number of poten-

tial thresholds during one search, but it decreases the number portance of a “reference image” in change-type discrimination.
A new method of determining change type (category) is devel-of searches.
oped in this study, which combines single image classification
(as a reference image) with minimum-distance categorizingDefinition and Calculation of Test Parameter
based on direction cosines of change vectors.A success rate of change detection is defined to evaluate the

The direction of a vector can be described by a series of co-performance of each potential threshold during one search
sine functions in a multi-dimensional space. This series isprocess for identifying change/no-change pixels. The success
called direction cosines (Hoffmann, 1975). The direction of therate (Lk) is calculated for a potential threshold of k: i.e.,
change vector containing change type information can also be
defined by the cosine function of angles between the vector and

Lk �
(Ak1 � Ak2) � 100

A
% (4) each spectral axis. The change vector direction of one change

pixel corresponds to one and only one point in a multi-dimen-
sional space constituted by direction cosines. If some typical

where Ak1 is the number of change pixels detected inside all feature points (hereafter called seed points) and their corres-
training patches (in the inner windows), Ak2 is the number of ponding change types in the space of direction cosines are
change pixels which are detected incorrectly in the outside known, the change type of a change pixel can be determined by
boundary of all training patches (in the outside windows), and a supervised classification on the basis of its proximity to those
A is the total number of pixels within all training patches (in the seed points. Obviously, to obtain seed points and their corres-
inner windows). In order to keep Lk from becoming negative, ponding change types becomes the key to change-type dis-
the outside border (outside window) should be set to one or two crimination for all change pixels. For two images acquired on
pixels for each training sample. From this definition, it can be different dates t1 and t2, after rigorous radiometric normaliza-
seen that the double-window concept is useful in controlling tion, we may assume that the spectral feature difference be-
the commission error caused by low thresholds, because low tween any two kinds of land-use/land-cover types on either
thresholds increases Ak2 and reduces Lk . date are similar to their spectral change features from t1 to t2.After all Lk for all m thresholds in one search are obtained, With this assumption, we can first carry out a land-use/land-
the maximum and minimum values of Lk can be found and des- cover classification from the image of a selected date, either t1ignated as Lmax and Lmin during this search process. If the two or t2 (the reference image). This reference image should be the
parameters do not satisfy the conditions described in the next one with more ancillary information available for accurate im-
section, a new search begins, the new search range is set in the age classification. The spectral difference vectors between any
range [kmax � P1, kmax � P1], and a new smaller search pace is two land-use/land-cover types in the reference image can then
set based on the modified search range with Equation 3. Here, be calculated based on the classified land-use/land-cover
kmax is the potential threshold value corresponding to Lmax in types and transplanted into the direction cosine space. These
the search process. points can be considered as the seed points (mean vectors) in a

minimum-distance classification for land-use/land-cover
Condition to Exit the Iteration change-type discrimination because their features are typical
The steps described in the previous two sections represent an and their coordinates and change types are known.
iterating process, which will terminate when the following for-
mula is satisfied: Definition of Direction Cosines of Change Vector

Suppose X(x1, x2, x3, ..., xn) is an n dimensional vector, its mag-
Lmax � Lmin 	 � (5) nitude can be calculated as

where Lmax and Lmin are the maximum and minimum values of �X� � �x1
2 � x2

2 � x3
2 � x4

2 � ��� � xn
2. (6)

the success rate in one search process, and � is an acceptable
error constant. The condition indicates that the change of If the angles between X and each axis are (	1, 	2, 	3, 	4, ���, 	n),
search pace has little influence on the result of change/no- respectively, then its direction can be described by cosine
change pixel detection. The threshold corresponding to Lmax is functions of these angles as (Hoffmann, 1975)
considered as an optimal threshold for change detection.

The method of Double-Window Flexible Pace Search
(DFPS) is a semiautomatic method for determining the optimal cos 	1 �

x1

�X�
, cos 	2 �

x2

�X�
, ..., cos 	n �

xn

�X�
(7)

threshold of change detection that only requires the involve-
ment of the image analyst during the selection of typical train-
ing samples of land-use/land-cover change. The advantages of Using Equation 7, the direction of a change vector can be

represented as one and only one point, defined as a new vectorthis method can be summarized as (1) the optimal threshold
can be obtained automatically after the selection of typical Z(cos	1, cos	2, cos	3, ..., cos	n) in the direction cosine space. All

of the change pixels have their corresponding points in thistraining samples of land-use/land-cover change, (2) the com-
mission error caused by over decreasing the threshold can be space. According to this definition, the determination of

change types is turned into a classification problem of pointscontrolled effectively through the double-window technique,
and (3) search efficiency is improved with the flexible and var- in the direction cosine space. Moreover, using the direction co-

sines instead of angle measurements can avoid the difficulty ofied search pace. Although the new method may perform better
compared with some previous empirical methods, it should be “baseline” establishment for angle measurement such as using

Tasseled-cap transformation to build the Plane of Soil (definednoted that the new method is dependent on training samples,
which to a certain degree relies on the experience and skills of by brightness and wetness axes) and Vegetation (defined by

brightness and greenness axes) (Crist and Cicone, 1984).the image analyst.
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Extraction of all Possible Change Types and Their reference image without strenuous and time-consuming train-
ing work. Thus, the minimum-distance classifier was selectedCorresponding Seed Points

For two images acquired on different dates t1 and t2, after rigor- for this study to identify land-use/land-cover change types
based on its effectiveness and its simple requirement of onlyous radiometric normalization, the spectral feature differences

between any two kinds of land-use/land-cover types on either the estimation of the mean vector of each spectral class (Rich-
ards and Jia, 1999). With this classifier, an unknown pixel isdate are similar to their spectral change features from t1 to t2.

This assumption can be denoted as assigned to a certain class or unclassified class based on a mini-
mum distance to means of all candidate classes when the dis-
tance is within a certain threshold. The minimum-distance�Wij � Pj � Qi ⇔ �Tij � Hj � Gi (8)
classifier was employed in this study to categorize change
types in three steps: (1) calculating direction cosines of thewhere Pj and Qi are gray value vectors of land-use/land-cover
spectral change vector for each change pixel according totypes j and i in either image of date t1 or t2, �Wij is their spectral
Equation 7; (2) calculating Euclidean distances of the changeddifference vector, Gi and Hj are gray-level vectors of land-use/
pixels to seed points corresponding to all possible changeland-cover types i and j at different dates t1 and t2, and �Tij is
types in the direction cosine space, and those seed points arespectral change vector from date t1 to t2 (the same as the change
obtained through land-use/land-cover classification in a refer-vector as described above). Based on the land-use/land-cover
ence image; and (3) determining change types of land-use/land-classification from the reference image, the spectral difference
cover by applying the minimum-distance rule. Like a conven-vectors between any two kinds of land-use/land-cover types in
tional minimum-distance classifier, the unclassified pixels arethe reference image are calculated. Using Equation 8, these
those falling outside the threshold range based on the meanspectral difference vectors can be thought of as equivalents of
and standard deviation of every class. Those pixels may standspectral change vectors of those land-use/land-cover changes
for new change types, which are not included in all possiblefrom date t1 to t2. The mean of spectral difference vectors repre-
change types obtained through land-use/land-cover classifica-sents a typical feature of various changes between any two
tion in the reference image.kinds of land-use/land-cover types, and direction cosine val-

ues of the mean of spectral difference vectors can be specified
Case Study—Land-Use Change Detection in the Haidian District,as seed points in the direction cosine space. Moreover, the

standard deviation of spectral difference vectors that belong to Beijing, China
the same type of land-use/land-cover change can also be used

Study Area and Datato determine the threshold of an unclassified class in a mini-
The Haidian district (one district of the city of Beijing) is lo-mum-distance classifier.
cated in the west and northwest part of Beijing with a popula-The mean of spectral difference vectors and their standard
tion of 1.25 million and an area of 426 km2 (Figure 6). Three-deviations can be calculated based on change samples in a par-
quarters of the district lie in a plain with an elevation of less thanticular “from i to j” change class with an assumption that the
50 meters, while hills cover the remaining quarter of the dis-probability distributions of spectral differences are normal.
trict. It is an educational and cultural center, a vegetable pro-This is usually possible because each spectral class (land-use/
duction area for Beijing, and a famous Information Technologyland-cover class) is usually normally distributed in the spec-
(IT) industrial area of China. With a rapid growth in the econ-tral space (this is the same assumption used in a maximum-
omy during the past 20 years, tremendous land-use/land-coverlikelihood classification; Richards and Jia, 1999). We used EXi ,

DXi , EXj , and DXj to denote the mean and standard deviation
vectors of land-use/land-cover types i and j in multispectral
space (n bands), respectively: i.e.,

EXi � (EXi1, EXi2, ..., EXin)T (9)

DXi � (DXi, DXi2, ..., DXin)T (10)

EXj � (EXj1, EXj2, ..., EXjn)T (11)

DXj � (DXj, DXj2, ..., DXjn)T (12)

Based on stochastic theory, if p and q are mutually inde-
pendent and subject to a normal distribution, then z � p � q is
also subject to a normal distribution. Thus, the mean and the
standard deviation of spectral difference vector of land-use/
land-cover types j and i can be simply deduced from EXi , DXi ,
EXj , and DXj as follows:

EXij � (EXj1 � EXi1, EXj2 � EXi2, ..., EXjn � EXin)T (13)

DXij � (DXj1 � DXi1, DXj2 � DXi2, ..., DXjn � DXin)T (14)

Change-Type Discrimination Based on Minimum-Distance
Classification
Types of change pixels can be discriminated by classifying di-
rection cosines of their change vectors. As described in the pre-

Figure 6. The study area (shadow area) in Beijing.vious section, the mean and the standard deviation vectors of
each land-use/land-cover change type can be obtained from the
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changes have taken place during this period. The area was se- and 2, change magnitudes between 1991 and 1997 were calcu-
lated and shown in Figure 7. The change magnitudes rangelected as a study area to evaluate the performance of the im-

proved CVA approach. In order to eliminate the effects of dis- from 0 to 177 (Figure 7b) and most change magnitudes fall un-
der 100. From Figure 7a, it is obvious that greater values occurturbance factors, especially vegetation phenological

differences, two scenes of Landsat TM image data (path/row: in the north part of the image.
123/32, 06 May 1991 and 16 May 1997) covering the whole
study area with good image quality were collected and used. Threshold Determination Using the Double-Window Flexible
Moreover, some auxiliary data were also collected, including Pace Search Method
1:50,000-scale topographic maps from 1972, a 1:100,000-scale Based on a preliminary comparison of the two images and inter-
land-use map from 1991, GPS survey data from 1999, and a SPOT pretation, typical training samples of changes were selected
panchromatic image from May 1997. with their 1-pixel outer buffer boundaries (some of the bigger

ones shown in Plate 1a). Then the search range was set to [0,
Image Prepreprocessing 180] and the pace as 20 initially. The Double-Window Flexible

Pace Search method was used to determine the threshold of
Geometric Registration change magnitude. The threshold search process iterated until
High precision geometric registration of the multi-temporal im- the success rate difference between the maximum and the min-
age data is a basic requirement for change detection (Gong et imum value was less than 0.1 percent. As a result, the threshold
al., 1992; Dai and Khorram, 1998; Morisette and Khorram, of change magnitude was obtained as 33.4 with a success rate
2000). First, the 1991 TM image was transformed to the UTM of 63.78 percent. The search process was recorded in Table 2,
projection at a 30- by 30-m resolution, using second-order poly- and the search range changed five times with the paces of 20, 5,
nomial and bilinear interpolation. Twenty-one ground control 1, 0.5, and 0.1. The number of thresholds tested totaled 36. The
points were collected from the 1:50,000-scale topographic change pixels in the study area at threshold 33.4 were ex-
maps. The root-mean-square error (RMSE) was less than 1 pixel. tracted and shown in Plate 1b.
Then the 1997 TM image was registered to the 1991 image by
image-to-image registration with an RMSE of registration of less

Change Type Discriminationthan 0.5 pixels using 29 tie points. Finally, the boundary of the
Haidian district, digitized into a GIS database, was used to clip

Land-Use Classification Using the 1991 TM Imagethe study area from the images.
Referring to the land-use map of 1991 and the results of the un-
supervised classification of the 1991 TM image, all land classes

Image Radiometric Normalization in the study area were grouped into nine classes: urban land,
A problem associated with the use of multi-temporal remote barren land (mostly are transitional areas), water, paddy field,
sensing data for change detection is that the multi-temporal wheat land, vegetable land, other agricultural land, shrub and
data are usually acquired under different sun angle, and atmos- grassland, and forest land. Based on this classification system,
pheric and soil moisture conditions. Ideally, such data should a land-use/land-cover classification of the 1991 TM image (ref-
be radiometrically normalized so that the effects of those unde- erence image) was carried out using the maximum-likelihood
sirable conditions can be minimized or eliminated, which is classifier and, after postpreprocessing (Plate 1a), an overall ac-
critical to change detection, especially to those methods based curacy of 89 percent and a Kappa coefficient of 0.82 were
on radiometric change (Hall et al., 1991; Jensen et al., 1995). In reached.
this study, the 1991 image was chosen as a primary reference
image because the detailed ground reference information was

Change-Type Discriminationavailable in that year. Then a Scattergram Controlled Regres-
Based on the results of the land-use/land-cover classification ofsion (SCR) method was used to develop the radiometric nor-
the 1991 TM image, the mean and standard deviation of eachmalization equations ( yk � akxk � bk) (Table 1) (Elvidge et al.,
land-use/land-cover type were first extracted. Then the means1995). Here the independent variable x is the pixel values of
of spectral difference vectors between any two kinds of land-the 1997 TM image while the dependent variable y is the nor-
use/land-cover types and their deviations were also calculated.malized pixel values of the 1997 TM image. The R2 of equations
There were 72 (9 � 8) possible land-use/land-cover changefor most bands were greater than 0.95 except for band 2 with an
types in the study area. The program of change-type discrimi-R2 of 0.88. Such equations were applied to normalize the 1997
nation was performed nine times, respectively, using theimage to assure that the images from 1991 and 1997 were com-
change pixel data belonging to the nine land-use/land-coverparable in terms of radiometric characteristics.
types in 1991, and the change types of all change pixels were
labeled, including a new type of unclassified class. By impos-

Change/No-Change Pixel Detection ing the land-use/land-cover change image, including change
pixels and change types, on the land-use image classified fromChange Magnitude Calculation
the 1991 TM image, the land-use/land-cover image of 1997 wasBands 1, 2, 3, 4, 5, and 7 of the TM 1991 image and TM 1997
obtained and is shown in Plate 1d. Only 4 percent of the changeimage were used in the CVA analysis. According to Equations 1
pixels labeled as unclassified fell outside the threshold range of
mean �2 times the standard deviation for each class. This sug-
gests that a few new change types had occurred during this pe-

TABLE 1. PARAMETERS USED FOR RADIOMETRIC NORMALIZATION FOR 1997 riod, which were not included in all possible change types ob-
TM IMAGE tained through land-use/land-cover classification in 1991.

Comparing the land classification images in 1991 withBand Slope (a) Intercept (b) R2

1997 (Plates 1c and 1d), the changes in the study area during
1 0.780 4.705 0.953 this period may be characterized by two aspects. (1) Land-use
2 0.786 2.380 0.882 changes within agricultural sectors took place notably in the
3 0.759 �1.40 0.959 north and northwest area, especially from other agricultural
4 0.791 2.491 0.959 land changed to water pools, which were used mostly as fish-
5 0.648 11.669 0.981 ponds. These changes resulted from increasing urban popula-7 0.808 �2.325 0.991

tion and the rising living standard of city dwellers. (2) Urban
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Figure 7. Change magnitude between 1991 and 1997 in the Haidian District, Beijing. (a) Change magnitude distribution. (b)
Histogram of change magnitudes.

land expanded quickly in the urban-rural fringe area and the In order to show the superiority of the improved CVA pro-
posed in this paper, it is necessary to compare this methodnorthern study area by encroaching upon agricultural land, es-

pecially paddy field and vegetable land and other agricultural with other change-detection methods. Because the traditional
CVA is computation intensive and is dependent on the user’slands, as a result of economic development.
experiences to a certain extent (to select the threshold and in-
terpret change types), it was not used for comparison in thisAccuracy Assessment

In order to evaluate the performance of the proposed improved study. A comparison between the improved CVA and post-clas-
sification comparison, which is the most widely used methodCVA method, the accuracy of change detection was estimated at

both “change/no-change” detection and “from-to change” de- in change detection, was carried out. The post-classification
comparison was performed based on a supervised classificationtection levels. This is different from a conventional accuracy

assessment method that applies only to change detection errors using the 1991 and 1997 images, respectively, and the 1991
training data. At the “change/no-change” detection level,(Khorram et al., 1998; Biging et al., 1998). At the “change/no-

change” detection level, a random sampling technique was Table 6 gives the error matrix of post-classification comparison
based on the same 2,400 sample pixels together with the auxil-used. Because change pixels only occupy a small proportion of

the image, the number of sampling pixels belonging to no- iary information also used in the improved CVA. It can be seen
that the post-classification comparison causes an overestima-change were much more than that of change pixels. Table 3

shows an error matrix of “change/no-change” detection con- tion of change due to the cumulative errors of classification on
each individual date. For example, 118 unchanged pixelsstructed from 2,400 sample pixels together with the auxiliary

information visually interpreted from the 1997 image and SPOT (only 32 in the improved CVA) have been assigned to change in
post-classification comparison. A comparison of Table 3 andpanchromatic image of May 1997. A Kappa coefficient of 0.87

and an overall accuracy of 96.3 percent were achieved. Table 6 indicates that the improved CVA is better than the con-
ventional method at the “change/no-change” detection levelAt the “from-to change” detection level, the accuracy as-

sessment was carried out based on those change pixels belong- (the kappa coefficient is 0.87 for the improved CVA and 0.69 for
post-classification comparison). Table 7 gives the accuracy as-ing to different land-use/land-cover types in 1991. The sam-

pling pixels used for accuracy assessment were selected using sessment of the “from-to change” detection for all kinds of
change types using the post-classification comparison. Thethe randomly stratified sampling method, in which the de-

tected change pixels (Figure 7b) were used for stratification. same sample pixels in Table 5 were used to construct error ma-
trices and calculate accuracies. It is evident that the post-clas-More than 60 samples were selected for each land-use/land-

cover type in 1991 according to Congalton (1991). The ground sification comparison is more problematic than the improved
CVA in almost every change type because a lot of unlikely land-truth was produced from visual interpretation of the1997 image

and a SPOT panchromatic image acquired in May 1997. Table 4 use conversions and overestimation of change were produced
from cumulative classification errors. The above results sug-shows the change-detection error matrix from wheat land in

1991 to other land-use types in 1997 as an example of all other gest that the improved CVA is effective and applicable for land-
use/land-cover change detection.change-detection error matrixes. Table 5 gives the accuracy as-

sessment of the “from-to change” detection for all kinds of
change types. It indicates that the proposed method is effective Conclusion and Discussion

In this paper, we report some improvements made to the tradi-for change-type discrimination because the kappa coefficients
for all kinds of change types exceeded 0.7. tional change vector analysis in two aspects, determination of

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING Apr i l  2003 375



Plate 1. The selected change sample areas and results of change/no-change detection. (a) Typical change
sample areas (red) with outer no-change buffer boundary (blue). (b) Change pixels detected by the improved
CVA method. Land-use maps of the Haidian District, generated (c) by the maximum-likelihood classifier using the
1991 TM image, and (d) by the improved CVA with the 1997 TM image.
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TABLE 2. RESULTS OF DOUBLE-WINDOW FLEXIBLE PACE SEARCH

Range 160-20 Pace 20 Range 60-20 Pace 5 Range 40-30 Pace 1 Range 35-33 Pace 0.5 Range 34-33 Pace 0.1

Threshold Success Rate Threshold Success Rate Threshold Success Rate Threshold Success Rate Threshold Success Rate

160 0.21 55 51.35 39 62.88 34.5 63.73 33.9 63.76
140 0.65 50 55.6 38 63.14 34 63.75 33.8 63.77
120 1.88 45 59.36 37 63.24 33.5 63.77 33.7 63.77
100 8.13 40 62.25 36 63.43 33.6 63.77
80 22.69 35 63.75 35 63.67 33.5 63.77
60 46.07 30 62.76 34 63.75 33.4 63.78
40 62.25 25 60.4 33 63.68 33.3 63.75
20 55.73 32 63.24 33.2 63.72

31 62.65 33.1 63.69

TABLE 3. ERROR MATRIX FOR “CHANGE/NO-CHANGE” DETECTION USING THE IMPROVED CVA

Reference Change

Change No-Change Commission
Pixels Pixels Sum Error

Classified Change Change Pixels 368 32 400 8%
No-Change Pixels 57 1943 2000 2.85%
Sum 425 1975 2400
Omission Error 13.4% 1.6%
Overall Accuracy � 96.29% Kappa Coefficient � 0.8698

TABLE 4. CHANGE DETECTION ERROR MATRIX FROM WHEAT LAND IN 1991 TO OTHER TYPES IN 1997 USING THE IMPROVED CVA

Reference Change

Wheat Land

Other Shrub
Urban Barren Paddy Agricultural Vegetable and Forest

1991 1997 Land Land Water Field Land Land Grassland Land Sum

Classified Wheat
Change Land Urban Land 13 1 14

Barren Land 2 20 1 23
Water 12 2 14
Paddy Field 3 20 1 24
Other Agricultural Land 0
Vegetable Land 4 11 15
Shrub and Grassland 7 7
Forest Land 1 1
Sum 19 20 15 22 1 12 8 1 98

Overall Accuracy � 85.71% Kappa Coefficient � 0.8264

TABLE 5. THE ACCURACY ASSESSMENT OF “FROM-TO” CHANGE DETECTION USING THE IMPROVED CVA

Land Use in 1991 Land Use in 1997 Sampling Pixels Overall Accuracy Kappa Coefficient

Urban Land Other Land-Use Types 60 84.56 0.7156
Barren Land 90 87.33 0.838
Water 80 92.86 0.8401
Paddy Field 90 81.36 0.7796
Other Agricultural Land 90 86.72 0.8108
Wheat Land 98 85.71 0.8264
Vegetable Land 90 89.04 0.8516
Shrub and Grassland 90 92.05 0.8668
Forest Land 90 85.71 0.7456

the threshold of change magnitude and change type discrimi- 0.7, respectively, for all kinds of change types. The results sug-
gest that the improved CVA is effective and has potential innation. When the improved method was employed for the Hai-

dian District, Beijing with Landsat TM imagery acquired in 1991 land-use/land-cover change detection.
Good data quality (similar acquisition dates in differentand 1997, the Kappa coefficients of “change/no-change” detec-

tion and “from-to change” detection were 0.87 and greater than years and cloud-free) and image radiometric normalization
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TABLE 6. ERROR MATRIX FOR “CHANGE/NO-CHANGE” DETECTION USING POST-CLASSIFICATION COMPARISON

Reference Change

Change Pixels No-Change Pixels Sum Commission Error

Classified Change Change Pixels 321 118 439 26.88
No-Change Pixels 104 1857 1961 5.30
Sum 425 1975 2400
Omission Error 24.47 5.97
Overall Accuracy � 90.75% Kappa Coefficient � 0.6867

TABLE 7. THE ACCURACY ASSESSMENT OF “FROM-TO” CHANGE DETECTION USING POST-CLASSIFICATION COMPARISON

1991 1997 Sample Pixels Overall Accuracy Kappa Coefficient

Urban Land Other Land-Use Types 60 62.15 0.4923
Barren Land 90 76.37 0.6421
Water 80 86.91 0.7902
Paddy Field 90 74.24 0.6332
Other Agricultural Land 90 81.23 0.7216
Wheat Land 98 79.24 0.681
Vegetable Land 90 69.32 0.5637
Shrub and Grassland 90 73.47 0.5718
Forest Land 90 73.25 0.5689

ods and Applications (Ross S. Lunetta and Christopher D. Elvidge,have a strong impact on the final change-detection result be-
editors), Sleeping Bear Press, Inc., New York, N.Y., pp.281–308.cause the proposed method is based on an assumption of radio-

metric similarity among multi-temporal remotely sensed data. Bruzzone, L., and D.F. Prieto, 2000. Automatic analysis of the difference
image for unsupervised change detection, IEEE Transactions onIn addition, the selection of typical change sample areas and
Geoscience and Remote Sensing, 38(3):1171–1182.single-image classification are also critical to the search of an

optimal threshold of change magnitude and identification of Byrne, G.F., P.F. Crapper, and K.K. Mayo, 1980. Monotoring land-cover
by principal component analysis of multitemporal Landsat data,change types. In our study, thanks to the good quality of image
Remote Sensing of Environment, 10:175–184.data, rigorous radiometric and geometric correction, and rich

ancillary materials, relatively satisfactory results were ob- Cohen, W.B., and M. Fiorella, 1998. Comparison of methods for de-
tecting conifer forest change with Thematic Mapper imagery, Re-tained. However, desirable imaging conditions are not always
mote Sensing Change Detection: Environmental Monitoring Meth-guaranteed; therefore, the change-detection accuracy of the im-
ods and Applications (Ross S. Lunetta and Christopher D. Elvidge,proved CVA approach may decrease.
editors), Sleeping Bear Press, Inc,, New York, N.Y., pp. 89–102.In most land-use/land-cover change-detection applica-

Colwell, J., and F. Weber, 1981. Forest change detection, Fifteenthtions, collection of rich ancillary information in all years is usu-
International Symposium on Remote Sensing of Environment, 11-ally difficult. This may lead to error accumulation due to unre-
15 May, Ann Arbor, Michigan, pp. 65–99.liable classification of images from all dates. The new method

Congalton, R.G., 1991. A review of assessing the accuracy of classifica-of determining change type developed in this paper takes ad-
tions of remotely sensed data, Remote Sensing of Environment,vantage of the spectral differences between images acquired in
37:35–46.two dates t1 to t2, and the rich ancillary information from one

Coppin, P.R., and M.E. Bauer, 1996. Digital change detection in forestdate for classification for reference. It is based on two assump-
ecosystems with remote sensing imagery, Remote Sensing Re-tions: (1) the direction cosine of the change vector contains
views, 13:207–234.change type information, and (2) the spectral feature difference

Crist, J.B., and R.C. Cicone, 1984. A physically-based transformationbetween any two kinds of land-use/land-cover types on either
of thematic mapper data - the TM tasseled cap, IEEE Transactionsdate are similar to their spectral change features from t1 to t2. If
on Geoscience and Remote Sensing, 22(3):256–263.these assumptions are reasonable, no ancillary information

Dai, X., and S. Khorram, 1998. The effects of image misregistration onfrom another date is needed to perform change type discrimi-
accuracy of remotely sensed change detection, IEEE Transactionsnation. Although we need some ancillary reference data on
on Geoscience and Remote Sensing, 36(5):1566–1577.change to evaluate the change detection result, in practice, this

requirement is much less than in other change-detection meth- Ding, Y., C.D. Elvidge, and Ross S. Lunetta., 1998. Survey of multispec-
tral methods for land cover change detection analysis, Remoteods. The improved CVA is an effective approach, especially
Sensing Change Detection: Environmental Monitoring Methodswhen ancillary information for classification is only available
and Applications (Ross S. Lunetta and Christopher D. Elvidge,on one date.
editors), Sleeping Bear Press, Inc., New York, N.Y., pp. 21–39.
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