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Background

● There is no one right security configuration
● Security always requires trade-offs
● Don't assess systems in isolation
● Remember:

– Confidentiality

– Availability

– Integrity

● Tomcat is reasonably secure by default
● Tomcat can't protect against a fundamentally insecure web application
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Threats

● Rarely receive reports of threats / attacks in the wild
● 2014-06 malicious files created in bin directory

– No further details provided

● 2011-11 malicious path parameters
– Unable to reproduce

● 2010-11 response mix-up
– Some follow-up but went silent before details were provided

● 2008-06
– Brute force attacks against the Manager app
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Threats

● Bugs with security implications are more likely
– Send file CVE-2017-5647, CVE-2017-5651, CVE-2016-8745

● Slow trickle of vulnerabilities reported by security researchers
– 2016: 16 2015: 5 2014: 11 2013: 6

● Vulnerabilities in dependencies
– OpenSSL
– NSIS
– JRE
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Threats

● Far more likely to see availability issues
– Tomcat bugs

– Application bugs

– Downtime

– Performance issues

– Impact is typically lower than for an exploited vulnerability
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Keeping up to date

● Tomcat Announcements mailing list
– announce-subscribe@tomcat.apache.org

– Very low traffic (15 messages in three months)

– Every release

– Every security vulnerability

● Other sources of information
– ASF announcements list, Twitter

– oss-security@lists.openwall.com, bugtraq@securityfocus.com
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Operating system

● Standard advice applies

– Do not run Tomcat as root

– Use a user with the minimum necessary permissions
● Listening on privileged ports

– JSVC from Commons Daemon

– Front using Apache httpd

– Use iptables to map ports
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Operating system (cont.)

● Does the tomcat user need to be able to anything more than read 
files?

– Modify start-up scripts?

– Modify configuration files?

– Add new web applications?
● OS level firewall

– Block everything by default and then allow the bare minimum

– Outgoing http requests (often used by malicious software)
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Tomcat: Deployment

● Host settings

– autoDeploy

– deployOnStartup

– deployXML
● How much do you trust your web applications?
● If you don’t, you should be using a security manager
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Tomcat: SecurityManager

● Runs all web applications in a sandbox
● catalina.policy file controls what each web application is permitted to do e.g.:

– File & network access

– Calling System.exit()
● Not widely used
● Not tested as thoroughly
● Occasionally find bugs – security exceptions in Tomcat code
● Likely to break your web application
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Tomcat: Logging

● Use the AccessLogValve (enabled by default)
● If using Tomcat behind a reverse proxy (httpd, IIS, etc) enable 

access logging there too
● Useful diagnostics tool, not just for security breaches
● Usually configured per Host but can be configured at Engine or 

Context level if preferred
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Tomcat: Manager application

● If you don't need it, don't deploy it
● If you do need it:

– Limit access to known IP addresses (default is localhost only from 8.5.x)

– Use strong passwords

– Don't browse untrusted sites whilst logged in to the manager application

– Log off (close your browser) when you are done

– Use a lock-out realm (enabled by default)
● The same guidelines apply for any administrative application
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Tomcat: Realms

● Tomcat provides a number of Realm implementations
● Don't use:

– MemoryRealm

– JDBCRealm
● Be careful with the JAASRealm
● That leaves:

– UserDatabaseRealm

– JNDIRealm

– DataSourceRealm

– JASPIC
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Tomcat: Realms (cont.)

● UserDatabaseRealm

– Replacement for MemoryRealm

– Based on tomcat-users.xml

– Convoluted to update user database (via JMX)

– Good for small numbers of fairly static users
● DataSourceRealm

– Multi-threaded replacement for the JDBCRealm
● JNDIRealm

– Effectively single threaded
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Tomcat: Realms (cont.)

● Issues with all of the Realms

– Allow unlimited authentication attempts

– You could only have one Realm per Engine, Host or Context
● Unlimited authentication attempts permit brute force attacks

– Made attacks in June 2008 easier
● Introduced LockOut realm to address this

– Additional benefit was the creation of the CombinedRealm that 
allows multiple Realms to be used together
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Tomcat: System properties

● org.apache.catalina.STRICT_SERVLET_COMPLIANCE

– Will add a character encoding header when calling 
getWriter() - reduces exposure to UTF-7 XSS

● org.apache.coyote.
USE_CUSTOM_STATUS_MSG_IN_HEADER
– Removed in 9.0.x onwards (status messages removed)

– Ensure ISO-8859-1 encoding
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Tomcat: Miscellaneous

● Disable shutdown port

– <Server port=”-1” … />
● Do connectors have to listen on all interfaces?

– <Connector address=”…” … />
● Pros and cons of advertising server version

– <Connector server=”Apache-Coyote/1.1” />

– Not sent by default from Tomcat 8.5 onwards
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Tomcat: Passwords

● server.xml or context.xml
● Why is the password in plain text?

– Tomcat needs the plain text password to connect to the external resource

– Encrypting the password means Tomcat would need a decryption key – back to 
the original problem

● Consider the risks

– Remote information disclosure
● Is the password usable remotely? If yes, why?

– Local information disclosure
● There are likely to be bigger issues to worry about
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Tomcat: Passwords (cont.)

● There are potential solutions

– Enter password at Tomcat start

– Requires custom code

– Password still in memory

– Tomcat restart requires manual intervention
● Encode the password

– Requires custom code (IntrospectionUtils.PropertySource)

– Encoding is not encryption

– May prevent some accidental disclosures
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Webapps: Authentication

● BASIC & FORM

– Must use SSL
● DIGEST

– SSL not required
● CLIENT-CERT

– Already using SSL
● Session identifier (Cookie or URL parameter also needs protection)
● Don't switch back to HTTP from HTTPS once user has been authenticated
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Webapps: SSL

● Be careful when moving from http to https
● When using a transport guarantee:

– HTTP request (inc body) sent in clear to Tomcat

– HTTP request headers parsed

– Request mapped to context

– Transport guarantee identified

– HTTP redirect (302) issued to https

– HTTP request resent over https

– HTTP response sent over https
● The request is sent in the clear
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Webapps: context.xml

● Permitting cross-context request dispatching

– <Context crossContext=”true” … />
● Permitting symlinks has security side-effects

– <Context allowLinking=”true” … />
● Allow access to Tomcat internals

– <Context privileged=”true” … />

– Some features (e.g. CGI) require this
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Webapps: Miscellaneous

● Invoker Servlet

– Hopefully seen the last of this

– Bypasses security constraints
● XSS, SQL injection etc.

– Don't trust user input

– Protection needs to be in the application
● Java Deserialization

– Must filter the allowed classes with a white list
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Policy & Process

● Review your logs

– Access logs

– Application logs

– Tomcat logs

– System (eg firewall) logs
● What do you do if you find an attempted attack?
● What do you do if you find a successful attack?
● What do you do if a Tomcat vulnerability is announced?
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Resources

● https://tomcat.apache.org
● users@tomcat.apache.org
● http://tomcat.apache.org/tomcat-9.0-doc/security-howto.html

– and earlier versions
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Questions
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