
TM

TomcatCon
Securing Tomcat For Your Environment

Mark Thomas

TM

Introduction

TM

Agenda

● Background
● Threats
● Keeping up to date
● Operating system
● Tomcat

● Passwords and configuration
files

● Web applications
● Policy and process
● Questions

TM

Background

● There is no one right security configuration
● Security always requires trade-offs
● Don't assess systems in isolation
● Remember:

– Confidentiality

– Availability

– Integrity

● Tomcat is reasonably secure by default
● Tomcat can't protect against a fundamentally insecure web application

TM

Threats

● Rarely receive reports of threats / attacks in the wild
● 2014-06 malicious files created in bin directory

– No further details provided

● 2011-11 malicious path parameters
– Unable to reproduce

● 2010-11 response mix-up
– Some follow-up but went silent before details were provided

● 2008-06
– Brute force attacks against the Manager app

TM

Threats

● Bugs with security implications are more likely
– Send file CVE-2017-5647, CVE-2017-5651, CVE-2016-8745

● Slow trickle of vulnerabilities reported by security researchers
– 2016: 16 2015: 5 2014: 11 2013: 6

● Vulnerabilities in dependencies
– OpenSSL
– NSIS
– JRE

TM

Threats

● Far more likely to see availability issues
– Tomcat bugs

– Application bugs

– Downtime

– Performance issues

– Impact is typically lower than for an exploited vulnerability

TM

Keeping up to date

● Tomcat Announcements mailing list
– announce-subscribe@tomcat.apache.org

– Very low traffic (15 messages in three months)

– Every release

– Every security vulnerability

● Other sources of information
– ASF announcements list, Twitter

– oss-security@lists.openwall.com, bugtraq@securityfocus.com

TM

Operating system

● Standard advice applies

– Do not run Tomcat as root

– Use a user with the minimum necessary permissions
● Listening on privileged ports

– JSVC from Commons Daemon

– Front using Apache httpd

– Use iptables to map ports

TM

Operating system (cont.)

● Does the tomcat user need to be able to anything more than read
files?

– Modify start-up scripts?

– Modify configuration files?

– Add new web applications?
● OS level firewall

– Block everything by default and then allow the bare minimum

– Outgoing http requests (often used by malicious software)

TM

Tomcat: Deployment

● Host settings

– autoDeploy

– deployOnStartup

– deployXML
● How much do you trust your web applications?
● If you don’t, you should be using a security manager

TM

Tomcat: SecurityManager

● Runs all web applications in a sandbox
● catalina.policy file controls what each web application is permitted to do e.g.:

– File & network access

– Calling System.exit()
● Not widely used
● Not tested as thoroughly
● Occasionally find bugs – security exceptions in Tomcat code
● Likely to break your web application

TM

Tomcat: Logging

● Use the AccessLogValve (enabled by default)
● If using Tomcat behind a reverse proxy (httpd, IIS, etc) enable

access logging there too
● Useful diagnostics tool, not just for security breaches
● Usually configured per Host but can be configured at Engine or

Context level if preferred

TM

Tomcat: Manager application

● If you don't need it, don't deploy it
● If you do need it:

– Limit access to known IP addresses (default is localhost only from 8.5.x)

– Use strong passwords

– Don't browse untrusted sites whilst logged in to the manager application

– Log off (close your browser) when you are done

– Use a lock-out realm (enabled by default)
● The same guidelines apply for any administrative application

TM

Tomcat: Realms

● Tomcat provides a number of Realm implementations
● Don't use:

– MemoryRealm

– JDBCRealm
● Be careful with the JAASRealm
● That leaves:

– UserDatabaseRealm

– JNDIRealm

– DataSourceRealm

– JASPIC

TM

Tomcat: Realms (cont.)

● UserDatabaseRealm

– Replacement for MemoryRealm

– Based on tomcat-users.xml

– Convoluted to update user database (via JMX)

– Good for small numbers of fairly static users
● DataSourceRealm

– Multi-threaded replacement for the JDBCRealm
● JNDIRealm

– Effectively single threaded

TM

Tomcat: Realms (cont.)

● Issues with all of the Realms

– Allow unlimited authentication attempts

– You could only have one Realm per Engine, Host or Context
● Unlimited authentication attempts permit brute force attacks

– Made attacks in June 2008 easier
● Introduced LockOut realm to address this

– Additional benefit was the creation of the CombinedRealm that
allows multiple Realms to be used together

TM

Tomcat: System properties

● org.apache.catalina.STRICT_SERVLET_COMPLIANCE

– Will add a character encoding header when calling
getWriter() - reduces exposure to UTF-7 XSS

● org.apache.coyote.
USE_CUSTOM_STATUS_MSG_IN_HEADER
– Removed in 9.0.x onwards (status messages removed)

– Ensure ISO-8859-1 encoding

TM

Tomcat: Miscellaneous

● Disable shutdown port

– <Server port=”-1” … />
● Do connectors have to listen on all interfaces?

– <Connector address=”…” … />
● Pros and cons of advertising server version

– <Connector server=”Apache-Coyote/1.1” />

– Not sent by default from Tomcat 8.5 onwards

TM

Tomcat: Passwords

● server.xml or context.xml
● Why is the password in plain text?

– Tomcat needs the plain text password to connect to the external resource

– Encrypting the password means Tomcat would need a decryption key – back to
the original problem

● Consider the risks

– Remote information disclosure
● Is the password usable remotely? If yes, why?

– Local information disclosure
● There are likely to be bigger issues to worry about

TM

Tomcat: Passwords (cont.)

● There are potential solutions

– Enter password at Tomcat start

– Requires custom code

– Password still in memory

– Tomcat restart requires manual intervention
● Encode the password

– Requires custom code (IntrospectionUtils.PropertySource)

– Encoding is not encryption

– May prevent some accidental disclosures

TM

Webapps: Authentication

● BASIC & FORM

– Must use SSL
● DIGEST

– SSL not required
● CLIENT-CERT

– Already using SSL
● Session identifier (Cookie or URL parameter also needs protection)
● Don't switch back to HTTP from HTTPS once user has been authenticated

TM

Webapps: SSL

● Be careful when moving from http to https
● When using a transport guarantee:

– HTTP request (inc body) sent in clear to Tomcat

– HTTP request headers parsed

– Request mapped to context

– Transport guarantee identified

– HTTP redirect (302) issued to https

– HTTP request resent over https

– HTTP response sent over https
● The request is sent in the clear

TM

Webapps: context.xml

● Permitting cross-context request dispatching

– <Context crossContext=”true” … />
● Permitting symlinks has security side-effects

– <Context allowLinking=”true” … />
● Allow access to Tomcat internals

– <Context privileged=”true” … />

– Some features (e.g. CGI) require this

TM

Webapps: Miscellaneous

● Invoker Servlet

– Hopefully seen the last of this

– Bypasses security constraints
● XSS, SQL injection etc.

– Don't trust user input

– Protection needs to be in the application
● Java Deserialization

– Must filter the allowed classes with a white list

TM

Policy & Process

● Review your logs

– Access logs

– Application logs

– Tomcat logs

– System (eg firewall) logs
● What do you do if you find an attempted attack?
● What do you do if you find a successful attack?
● What do you do if a Tomcat vulnerability is announced?

TM

Resources

● https://tomcat.apache.org
● users@tomcat.apache.org
● http://tomcat.apache.org/tomcat-9.0-doc/security-howto.html

– and earlier versions

TM

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

