
TM

TomcatCon
Tomcat Load-balancing

Mark Thomas

TM

Introduction

TM

Terminology

TM

Terminology: Reverse Proxy

bz.apache.org

/bugzilla

/ooo

/SpamAssassin

TM

Terminology: Reverse Proxy

● Looks like a single host to the clients
● Usually multiple hosts
● Different services on different hosts

– May also be geographically distributed

● Can be used to add features
– e.g. Use httpd as a reverse proxy for Tomcat to add Windows

authentication (no longer necessary)

TM

Terminology: Load-balancing

www.apache.org

www.eu.apache.org

www.us.apache.org

TM

Terminology: Load-balancing

● Looks like a single host to clients
● Multiple hosts
● Each host is the same
● Each host is independent

– No shared state between hosts

– May share common services (authentication, database, etc.)

● Node failure may be visible to users

TM

Implementation Options

● Hardware
● Software
● DNS

TM

Request Distribution

● DNS Round robin
● DNS GeoIP
● Number of requests
● Number of bytes returned
● Number of in-flight requests
● Number of sessions
● Client IP
● Account number
● Customer type

TM

Managing State

● Stateless applications are the simple solution
● Authentication implies state

– HTTP session

– Database

– Request parameters

● Load-balancing is impacted by HTTP state

TM

Terminology: Sticky sessions

● Assume no clustering
● Session is created on node that handled request
● Load-balancer might send next request to a different node

– Session won’t exist

– Application will break

● Sticky sessions is a mechanism that ensures the subsequent
requests are handled by the node the created the request

TM

Managing State

● Sticky sessions are used for HTTP State
● Session ID

– Something in the session ID identifies the correct node

– Users could change this

● Dedicated cookie
– Users could change this

● Property of client such as IP
– Beware of ISP that use forward proxies

TM

Managing State

● Application property
– Account number

– Account type

● Often overlaps with load-balancing algorithm

TM

Failover

● Load-balancer needs to know the state of the nodes
● Nodes need to taken off-line for maintenance

– Known in advance

– Several options

● Nodes will fail
– Not (usually) predictable

– Need to be able to detect dynamically

● What is the impact on users?

TM

Failover: Maintenance

● More transparent to users means
– More complex configuration

– Process takes longer

● Need to drain node of users
– How long can an HTTP session last?

– At what point do you stop the node anyway?

● Can Tomcat’s parallel deployment feature help?

TM

Failover: Unexpected

● Typically there is no separate management channel between
Tomcat instances and load-balancer
– There is with mod_cluster from JBoss

● Need to detect failed nodes so failover can happen as early as
possible

TM

Failover: Unexpected

● Can use a ‘failed’ request to detect a failed node
● Is a 500 response because the server crashed or because of an

application bug?
● Is a timeout because the server crashed or because it is just a

long running request?
● Applications that can have long running requests take at least

that long to detect failures.

TM

Failover: Unexpected

● Monitoring user initiated requests to detect node failure is fragile
● Load-balancer triggered request to known, working, ‘simple’

page
– More reliable

– Still an HTTP request with the associated overhead

● Protocol pings are even faster

TM

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

