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Terminology: Reverse Proxy

bz.apache.org

/bugzilla

/ooo

/SpamAssassin
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Terminology: Reverse Proxy

● Looks like a single host to the clients
● Usually multiple hosts
● Different services on different hosts

– May also be geographically distributed

● Can be used to add features
– e.g. Use httpd as a reverse proxy for Tomcat to add Windows 

authentication (no longer necessary)
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Terminology: Load-balancing

www.apache.org

www.eu.apache.org

www.us.apache.org
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Terminology: Load-balancing

● Looks like a single host to clients
● Multiple hosts
● Each host is the same
● Each host is independent

– No shared state between hosts

– May share common services (authentication, database, etc.)

● Node failure may be visible to users
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Implementation Options

● Hardware
● Software
● DNS
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Request Distribution

● DNS Round robin
● DNS GeoIP
● Number of requests
● Number of bytes returned
● Number of in-flight requests
● Number of sessions
● Client IP
● Account number
● Customer type



TM

  

Managing State

● Stateless applications are the simple solution
● Authentication implies state

– HTTP session

– Database

– Request parameters

● Load-balancing is impacted by HTTP state
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Terminology: Sticky sessions

● Assume no clustering
● Session is created on node that handled request
● Load-balancer might send next request to a different node

– Session won’t exist

– Application will break

● Sticky sessions is a mechanism that ensures the subsequent 
requests are handled by the node the created the request
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Managing State

● Sticky sessions are used for HTTP State
● Session ID

– Something in the session ID identifies the correct node

– Users could change this

● Dedicated cookie
– Users could change this

● Property of client such as IP
– Beware of ISP that use forward proxies
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Managing State

● Application property
– Account number

– Account type

● Often overlaps with load-balancing algorithm
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Failover

● Load-balancer needs to know the state of the nodes
● Nodes need to taken off-line for maintenance

– Known in advance

– Several options

● Nodes will fail
– Not (usually) predictable

– Need to be able to detect dynamically

● What is the impact on users?
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Failover: Maintenance

● More transparent to users means
– More complex configuration

– Process takes longer

● Need to drain node of users
– How long can an HTTP session last?

– At what point do you stop the node anyway?

● Can Tomcat’s parallel deployment feature help?
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Failover: Unexpected

● Typically there is no separate management channel between 
Tomcat instances and load-balancer
– There is with mod_cluster from JBoss

● Need to detect failed nodes so failover can happen as early as 
possible
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Failover: Unexpected

● Can use a ‘failed’ request to detect a failed node
● Is a 500 response because the server crashed or because of an 

application bug?
● Is a timeout because the server crashed or because it is just a 

long running request?
● Applications that can have long running requests take at least 

that long to detect failures.
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Failover: Unexpected

● Monitoring user initiated requests to detect node failure is fragile
● Load-balancer triggered request to known, working, ‘simple’ 

page
– More reliable

– Still an HTTP request with the associated overhead

● Protocol pings are even faster



TM

  

Questions
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