

Seamless Upgrades for Credential
Security in Apache Tomcat

Christopher Schultz
Chief Technology Officer
Total Child Health, Inc.

* Slides available on the Linux Foundation / ApacheCon2016 web site and at
http://people.apache.org/~schultz/ApacheCon NA 2016/Seamless Upgrades for Credential
Security in Apache Tomcat.odp

Password Security Failures

● Lifeboat (Minecraft) (MD5)

● Ashley Madison (bcrypt.... but also MD5)[1]

● VTech (MD5)[2]

● LinkedIn (SHA-1)

● Pre-NT Microsoft Windows passwords (awful
DES-based algorithm, 14 chars max, case-
insensitive)[3,4]

● Microsoft Outlook (CRC32) [3]
1. http://arstechnica.com/security/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-
cracked/
2. https://www.theguardian.com/technology/2015/nov/30/vtech-toys-hack-private-data-parents-children
3. https://www.trustedsec.com/may-2015/passwordstorage/
4. https://en.wikipedia.org/wiki/LM_hash

Password Security Failures

● No credential security (plaintext/cleartext)

● Rolling your own security
– Existing tools are inconvenient

– NIH syndrome

● Using known poor or outdated algorithms
– MD5, SHA1

● Using inappropriate algorithms
– Simple hashes (e.g. MD[0-9], SHA-[1-9]+)

Password Security Failures

● Bad credential security means that users at
risk, even when they aren't using your
application

● Note that this is different than application
security, where the service itself is at risk, not
necessarily the users

What Exactly Are We Protecting?

● Only really protects the user database
– Container protects the application from users

– Application protects the data from users

● Mitigates an attack where the user database is stolen
– Might have bigger problems on your hands

● User database is still important
– May allow lateral attacks against other services

● email, finance, medical records

– Even admins shouldn't have users' passwords

What Exactly Are We Protecting?

● Think your user database won't be stolen?

● Just ask LinkedIn, eHarmony, and Last.fm
– All hacked within a week in 2012

– All had their user databases published

User Database Attacks

● User database contents
– Username

– Email address

– Credentials (password)

● Username and/or email address may be valid
elsewhere
– Password might be valid elsewhere, too

● Compromise of one user database may allow access
to other services

User Database Attacks

● Many users aren't very creative when it comes to
setting passwords
– 5up3rsecre7!

– firstname2016

● Many users “know” that re-using passwords isn't a
good idea
– They use a “high-security” password only for high-security

sites (e.g. bank)

– What happens when your bank's user database gets
hacked?

Attacking User Databases

● Cleartext
– Trivial: password is right there

● Simple hashing algorithms (MD5, SHA1, SHA2)
– Rainbow tables

– Online services with massive hash databases

● Salted hashes
– More difficult, often requires brute-force

● Key-derivation algorithms (PBKDF2, bcrypt)
– Very difficult, usually requires brute-force

Determined Adversaries

● A quick note about a determined adversary
– Well-funded and state-level adversaries have the

computing resources to brute-force many algorithms

– If your user database has been compromised, any
individual user should be considered compromised

– Which user? Who knows...

● Best strategy is to use the highest security
available to you in all cases
– Use a password-hashing algorithm

Key-Derivation Algorithms

● Difficult by design
– Slow – many dependent operations

– High memory requirements

● Compare to message-digest hashing
algorithms
– Very fast

– Often implemented directly in hardware

Key-Derivation Algorithms

● PBKDF2 (1991)
– NIST standard

– FIPS-140 compatible

– No known weaknesses

● bcrypt
– Open-source origin (1999)

– Non-standard, based upon Blowfish cipher

– Can be tuned to be arbitrarily expensive (iterations)

– No known weaknesses

Historical Tomcat Support

● Tomcat has supported simple message-digest-
based algorithms since at least Tomcat 3.x
– Anything java.security.MessageDigest supported

– No salting

– No iterations

– No 3rd-party plug-ins

● Using custom credential-manipulation code
required a custom Realm
– Realms must support lots of unrelated stuff

Historical Tomcat Support

Modern Tomcat Support

● Still supports message-digest-based algorithms
– java.security.MessageDigest

– Backward-compatible

– Adds salting and iterations if desired

● New pluggable CredentialHandler interface
– Sky is the limit

● Included CredentialHandler implementation
– PBKDF2 (if supported by JVM)

– Good example for custom implementations

Modern Tomcat Support

Modern Tomcat Support

● Does not support other algorithms like bcrypt,
etc.
– Possible licensing issues, need to pick a vendor

– Did not want compile-time dependency on 3rd-party
library

– Easy enough to plug-in, not a high-priority to include
in Tomcat's distribution

Modern Tomcat Support

● Includes NestedCredentialHandler
– Allows more than one CredentialHandler to be used

– This allows for seamless upgrades between
algorithms

CredentialHandlers

● Simple Java interface
public interface CredentialHandler {
 boolean matches(String inputCredentials,
 String storedCredentials);
 String mutate(String inputCredentials);
}

● Easy to implement anything you want

● Interface can be used to mutate as well as
validate
– Can use directly in your applications

Using CredentialHandlers

● Easy to configure
<Realm
className="org.apache.catalina.realm.DataSourceRealm"...>
 <CredentialHandler
className="org.apache.catalina.realm.MessageDigestCredentia
lHandler" algorithm="MD5" />
</Realm>

● Above configuration is NOT RECOMMENDED
– Uses insecure MD5 hashing algorithm

Using CredentialHandlers

● Easy to improve security
<Realm
className="org.apache.catalina.realm.DataSourceRealm"...>
 <CredentialHandler
className="org.apache.catalina.realm.MessageDigestCredentia
lHandler" algorithm="MD5" saltLength=”16”
iterations=”10000” />
</Realm>

● Above configuration is more secure than pure
MD5
– Uses salted passwords

– Uses many MD5 iterations

Aside: Salted Hashes

● A “salt” is a nonce used to add randomness to something
that is not random at all (i.e. passwords aren't random). A
nonce is one-time use “word”.

● Stored salted passwords look different from each other even
when the password is the same, since the nonce is different

● Example: password=tiger, salt=982736549
salted password=982736549tiger

● System stores both the salt and the hashed salt+password
as the credential

● This (usually) defeats rainbow table attacks

Using CredentialHandlers

● Easy to significantly improve security by using a
key-derivation algorithm
<Realm
className="org.apache.catalina.realm.DataSourceRealm"...>
 <CredentialHandler
className="org.apache.catalina.realm.SecretKeyCredentialHan
dler" />
</Realm>

● Above configuration is very secure
– Uses PBKDF2 algorithm (default)

Using CredentialHandlers

● Looks like great stuff

● But all my users have MD5-based passwords

● How is this relevant for me?

Upgrading CredentialHandlers

● Easy to migrate from one strategy to another
<Realm className="org.apache.catalina.realm.DataSourceRealm"...>
 <CredentialHandler
className="org.apache.catalina.realm.NestedCredentialHandler">
 <CredentialHandler
 className="org.apache.catalina.realm.SecretKeyCredentialHandler" />
 <CredentialHandler
 className="org.apache.catalina.realm.MessageDigestCredentialHandler"
 algorithm="MD5" />
 </CredentialHandler>
</Realm>

● Above configuration will support both systems
– First tries PBKDF2

– Falls-back to MD5

Upgrading CredentialHandlers

● Easy to migrate from one strategy to another
<Realm className="org.apache.catalina.realm.DataSourceRealm"...>
 <CredentialHandler
className="org.apache.catalina.realm.NestedCredentialHandler">
 <CredentialHandler
 className="org.apache.catalina.realm.SecretKeyCredentialHandler" />
 <CredentialHandler
 className="org.apache.catalina.realm.MessageDigestCredentialHandler"
 algorithm="MD5" />
 </CredentialHandler>
</Realm>

● Above configuration will support both systems
– First tries PBKDF2

– Falls-back to MD5
It is vitally important not to configure plaintext as a fall-back!

Using CredentialHandlers

● Looks like great stuff

● But all my users have MD5-based passwords

● How can I get my users to change to something
better?

CredentialHandlers in Webapps

● Tomcat makes the CredentialHandler available
to applications through the application context*

CredentialHandler ch = (CredentialHandler)application
 .getAttribute(Globals.CREDENTIAL_HANDLER);

String stored = ch.mutate(plaintext);

// update stored credentials in user database

● Applications can use Tomcat's API directly

* Since Tomcat 9.0/8.5, 8.0.34, and 7.0.70

CredentialHandlers in Webapps

● Use reflection if you don't want Tomcat as a
build-time dependency
– Avoid build-time dependencies via reflection
Class<?> globals = Class.forName("org.apache.catalina.Globals");
String attrName = (String)globals
 .getDeclaredField("CREDENTIAL_HANDLER").get(null);
Object ch = context.getAttribute(attrName);
Class<?> ich =
Class.forName("org.apache.catalina.CredentialHandler");
Method mutateMethod = ich.getMethod("mutate", new Class[]
{ String.class});

String stored = (String)mutateMethod.invoke(plaintext);

● Same effect with simpler dependencies

CredentialHandlers in Webapps

● Can also check existing credentials
– Verify current password before update

– Check password history
CredentialHandler ch = (CredentialHandler)application
 .getAttribute(Globals.CREDENTIAL_HANDLER);

if(ch.matches(old_password, stored)) {
 // Allow update
} else {
 // Invalid current password! Veto profile update!
}

Custom CredentialHandlers

● Support currently-unsupported algorithms

● Don't roll your own security

● CredentialHandler should be plumbing code,
not an algorithm implementation

Custom CredentialHandlers

● Support currently-unsupported algorithms

● Don't roll your own security

● CredentialHandler should be plumbing code,
not an algorithm implementation

● Don't roll your own security

Custom CredentialHandler

● Let's implement bcrypt

Custom CredentialHandler: bcrypt

● Let's implement bcrypt

● Choose a Java implementation
– http://www.mindrot.org/projects/jBCrypt/ (Ant fans)

– https://github.com/jeremyh/jBCrypt (Maven fans)

● Understand the existing API

● Wire-into a simple CredentialHandler class

Custom CredentialHandler: bcrypt

● Implementation is trivial
public class BCryptCredentialHandler {

 public boolean matches(String inputCredentials, String storedCredentials)
{

 return BCrypt.checkpw(inputCredentials, storedCredentials);

 }

 public String mutate(String inputCredentials) {

 return Bcrypt.hashpw(inputCredentials,

 Bcrypt.gensalt(getLogRounds(), getRandom()));

 }

}

I've left out some support details like get/setLogRounds, and a SecureRandom member.
Full implementation is available along with these slides online.

Custom CredentialHandler: bcrypt

● Configuration is trivial
<Realm className="org.apache.catalina.realm.DataSourceRealm"...>
 <CredentialHandler
 className="my.package.BCryptCredentialHandler"
 logRounds=”12” />
</Realm>

● Tomcat handles calling our setLogRounds method

● Make sure your stored-password field can support
the format (60 ASCII characters in this case)

Custom CredentialHandler: bcrypt

● Passwords are now stored in bcrypt format
– $2a$12$SGvTib1z7PiNihnOu7zJyuiq214MyQF/JdJEOgwuoziOOwUgDeqIi

● Compare to MD5
– 84da2a74e610e8029431a6540c07d66b

● Compare to plaintext
– Tomcat is the best

Tomcat Authentication

● Historically, Tomcat only supported
MessageDigest-based credential security, and
building a custom solution was cumbersome

● Recent Tomcat versions (since late 2014)
support pluggable CredentialHandlers which
significantly simplifies this process; support for
better algorithms is now included with Tomcat

Tomcat Authentication

● Plugging-in new algorithms (e.g. bcrypt) is
trivial

● Applications can access the CredentialHandlers
directly if necessary

● Users' existing passwords can be migrated to
higher-security storage schemes

Questions

Slides available on the Linux Foundation / ApacheCon2016 web site and at
http://people.apache.org/~schultz/ApacheCon NA 2016/Seamless Upgrades for Credential
Security in Apache Tomcat.odp
Sample code available in the same directory.

