
Brief Announcement: Local Independent Set Approximation
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Abstract

We show that the first phase of the Linial-Saks network decomposition algorithm gives a randomized
distributed O(nε)-approximation algorithm for the maximum independent set problem that operates in
O( 1

ε
) rounds, and we give a matching lower bound that holds even for bipartite graphs.

1 Local Independent Set Computation

Local Algorithms. A central question in distributed computing is what can be computed locally, i.e., in
O(1) communication rounds. Local algorithms have many desirable properties, e.g., they can recover quickly
from failures, changes in the topology, or changes in the input [11].

Linial [7] showed that computing a maximal independent set on the ring requires Ω(log∗ n) communication
rounds, where n is the number of nodes in the network, thus dashing the hope for local maximal independent
set algorithms. In this work, we drop the maximality requirement of independent sets and aim at maximizing
their sizes instead. Since the maximum independent set problem is NP-hard and is hard to approximate
within a factor n1−ε, for any ε > 0 [5], we cannot expect to obtain polynomial-time local algorithms.

Our Results. We give a O(nε)-approximation, O( 1
ε ) round distributed algorithm for the maximum inde-

pendent set problem in general graphs. In general graphs, exponential time computations are unavoidable
due to the hardness of the problem, but in graph classes that allow the computation of a maximum inde-
pendent set (or a good approximate thereof) efficiently such as bipartite graph, polynomial time suffices.
Furthermore, we show that our algorithm is best possible, even for bipartite graphs.

Our algorithm employs the first phase of the Linial-Saks network decomposition algorithm [8]. A network
decomposition is a partition of the vertex set V of a graph G = (V,E) into connected subsets of vertices
(Vi)i, denoted clusters, each of bounded diameter, and a coloring of the clusters using a limited number
of colors, such that adjacent clusters have different colors. Various network decomposition methods with
different characteristics are known [1, 8, 10, 2, 3] and are employed as building blocks in a multitude of
distributed algorithms.

Related Work. The work of Barenboim [2] and the follow-up work by Barenboim et al. [3] are closest to our
work: They give local distributed algorithms for the minimum vertex coloring problem with approximation
factors Õ(

√
n) (in [2]) and Õ(nε) (in [3]), where nodes run exponential time algorithms. While our work

makes use of the network decomposition of Linial and Saks [8], new network decomposition methods better
suited to coloring problems are designed in [2] and [3].

Lower bounds for local algorithms are usually proved by pointing out pairs of graphs that are locally
indistinguishable, but their global properties are quite different. In the context of independent sets/colorings,
this technique has previously been applied for example for computing maximal independent sets [6] and
coloring trees [7].
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2 Algorithm

In each iteration of the Linial-Saks [8] network decomposition algorithm, a partial assignment of vertices
into clusters is computed. The algorithm requires an integer parameter B and a probability p. Parameter
B determines the maximum cluster diameter and thus the number of rounds required by the algorithm.
Parameter p influences the average cluster diameter, which in turn influences the number of nodes that join
a cluster (cf. Lemma 1). Each cluster consists of a cluster leader l and a subset of vertices Cl ⊆ ΓBG[l], where
ΓrG[l] denotes the set of nodes in G at distance at most r from l including l (i.e., the inclusive r-neighborhood).
Importantly, vertices of different clusters are not adjacent. Each iteration requires 2B rounds.

The key property that ensures the approximation factor of our algorithm is as follows:

Lemma 1 (Linial, Saks [8]). For every v, the probability that v joins some cluster is at least p(1− pB)n.

Our maximum independent set algorithm proceeds as follows: We set B = d 1
ε e and p = n−

1
B , for the

given ε > 0, and run the first iteration of the Linial-Saks decomposition in 2B = 2d 1
ε e rounds, obtaining

a set L of cluster leaders. At the same time, nodes collect the topologies of their B-neighborhoods. Each
cluster leader l ∈ L computes a maximum independent set Il in the subgraph induced by Cl (in exponential
time in general graphs). Finally, cluster leaders notify nodes of Cl in at most B rounds whether they are
included in the independent set.

Theorem 1. For every ε > 0, there is a randomized distributed algorithm for the maximum independent set
problem with expected approximation ratio (2e · n 1

ε ) that runs in 3d 1
ε e rounds.

Proof. First, recall that clusters are disconnected in the input graph, and thus the output I = ∪l∈LIl is an
independent set, establishing correctness of the algorithm.

Let I∗ ⊆ V denote a maximum independent set in the input graph, and let C = ∪l∈LCl denote the set
of nodes that are contained in some cluster. Then:

E|I∗ ∩ C| =
∑
i∈I∗

P [i ∈ C] ≥
∑
i∈I∗

n−B
−1

(1− n−B
−1·B)n

≥
∑
i∈I∗

1

nε
(1− 1

n
)n ≥ |I∗| 1

nε
1

2e
, (1)

applying Lemma 1. Then, due to the local optimality of Il,

|I| =
∑
l∈L

|Il| ≥
∑
l∈L

|I∗ ∩ Cl| = |I∗ ∩ C|.

Taking expectations and applying Inequality 1 yields the approximation factor.
Running the first iteration of Linial-Saks and collecting the topology of local B-neighborhoods requires 2B

rounds, and notifying nodes whether they are part of the independent set requires additional B rounds.

Our algorithm can also give a (1 + ε)-approximation that runs in O(log(nε )/ε) rounds by employing
parameters B = c log(nε )/ε, for a small enough constant c, and p = 1− ε

2 ,

3 Lower Bound

Let H1 = (V1, E1), H2 = (V2, E2) be d-regular graphs with girths at least g, and suppose that H1 is bipartite.
Let ni = |Vi|, for i ∈ {1, 2}. Furthermore, for i ∈ {1, 2}, we label the vertices of Hi such that each vertex
v ∈ Vi receives a unique label (or ID) Li(v), where the labeling function Li is chosen uniformly at random
from the set of injections from Vi to {1, . . . ,max{n1, n2}}.

In the following, we denote the size of a maximum independent set in a graph F by α(F ).
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Lemma 2. Let H1 and H2 be as defined above. Every possibly randomized dg/2e − 1 rounds distributed
algorithm for the bipartite maximum independent set problem computes an independent set of expected size
at most α(H2)n1

n2
on H1, where the expectation is taken over the labelings of H1 and the random coin flips.

Proof. Let A be a randomized distributed algorithm for the bipartite maximum independent set problem,
and denote by I the independent set computed by A on graph H1. For a vertex v ∈ V1, let pv = P [v ∈ I] ,
where the probability is taken over the random coin flips of the algorithm and the labelings.

Let g′ = dg/2e − 1. Since algorithm A runs in g′ rounds, the outcome of A when executed on vertex v

depends on the structure and labels of the inclusive g′-neighborhood Γg
′

H1
[v], and on the random bits used by

nodes of Γg
′

H1
[v]. Since the girth of H1 is g, each local neighborhood Γg

′

H1
[u] is isomorphic to a d-ary tree of

depth g′ rooted at u. Further, since labels are assigned uniformly at random, and random bits are uniform,
the values pu and pv are identical, for every u, v ∈ V1. Denote this value by p (i.e., p = pv for an arbitrary
v ∈ V1). Then, E|I| =

∑
v∈V1

pv = n1p.

We consider now the performance of A on graph H2. Similar as in H1, every local neighborhood Γg
′

H2
[u]

is isomorphic to a d-ary tree of depth g′ rooted at u. Furthermore, it can easily be seen that the output I ′

of A on H2 constitutes an independent set. Similar considerations as before show that the expected size of
I ′ computed by A on graph H2 is E|I ′| = n2p, which is in turn is bounded from above by α(H2). Thus,
p ≤ α(H2)/n2, and hence E|I| ≤ α(H2)n1

n2
.

Next, in order to obtain our lower bound result, we employ the Ramanujan graphs of Lubotzky, Phillips,
and Sarnak [9]. For p, q distinct primes congruent to 1 mod 4, there are (p + 1)-regular graphs Xp,q on n

vertices with girth Ω(logp(q)) that satisfy: If the Legendre symbol
(
p
q

)
= −1 then Xp,q is bipartite and

n = q(q2 − 1), while if
(
p
q

)
= 1 then α(Xp,q) = O( n√

p ) and n = q(q2 − 1)/2. Equipped with these graphs,

we are ready to prove our lower bound result.

Theorem 2. For every ε > 0, there is an infinite family of bipartite graphs G such that every possibly
randomized 1

ε -rounds distributed algorithm for the bipartite maximum independent set problem has approxi-

mation factor nΩ(ε) on every graph G ∈ G, where n is the number of vertices of G.

Proof. Let p, q1, q2 be distinct primes congruent to 1 mod 4 such that
(
p
q1

)
= −1,

(
p
q2

)
= 1, and q1, q2 ∈

pΘ( 1
ε ). Let H1 = Xp,q1 , H2 = Xp,q2 , and for i ∈ {1, 2}, let ni be the number of vertices of graph Hi. Then,

n1, n2 ∈ pΘ( 1
ε ). H1 and H2 have girths Ω(1

ε ) and are (p + 1)-regular. Furthermore, H1 is bipartite and

α(H2) = O(n
1−Θ(ε)
2 ).

By Lemma 2, for a small enough C, every possibly randomized C 1
ε -round distributed bipartite maximum

independent set algorithm computes an independent set of size at most α(H2)n1

n2
= n1/n

Θ(ε)
2 = n

1−Θ(ε)
1 on

H1. Since H1 is bipartite, it contains an independent set of size at least n1/2, implying approximation ratio

of Ω(n
Θ(ε)
1 ).

4 Conclusion

Since our results provide tight bounds (even for bipartite graphs), an interesting question is to determine
graph classes for which local algorithms with sub-polynomial approximations can be obtained. Progress
has been made for example for polynomially bounded-independence graphs such as unit disc graphs, where
poly-logarithmic approximation ratios can be achieved in a single communication round [4]. The same paper
[4] implies a constant factor approximation for planar graphs, and, more generally, an O(d)-approximation
for graphs with average degree d.
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