
Approximating the Caro-Wei Bound for Independent
Sets in Graph Streams?

Graham Cormode, Jacques Dark, and Christian Konrad

Department of Computer Science, Centre for Discrete Mathematics and its Applications
(DIMAP), University of Warwick, Coventry, UK

{g.cormode,j.dark,c.konrad}@warwick.ac.uk

Abstract. The Caro-Wei bound states that every graph G = (V,E) contains
an independent set of size at least β(G) :=

∑
v∈V

1
degG(v)+1

, where degG(v)
denotes the degree of vertex v. Halldórsson et al. [1] gave a randomized one-pass
streaming algorithm that computes an independent set of expected size β(G)
using O(n logn) space. In this paper, we give streaming algorithms and a lower
bound for approximating the Caro-Wei bound itself.
In the edge arrival model, we present a one-pass c-approximation streaming al-
gorithm that uses O(d log(n)/c2) space, where d is the average degree of G.
We further prove that space Ω(d/c2) is necessary, rendering our algorithm al-
most optimal. This lower bound holds even in the vertex arrival model, where
vertices arrive one by one together with their incident edges that connect to ver-
tices that have previously arrived. In order to obtain a poly-logarithmic space
algorithm even for graphs with arbitrarily large average degree, we employ an al-
ternative notion of approximation: We give a one-pass streaming algorithm with
space O(log3 n) in the vertex arrival model that outputs a value that is at most
a logarithmic factor below the true value of β and no more than the maximum
independent set size.

1 Introduction

For very large graphs, the model of streaming graph analysis, where edges are observed
one by one, is a useful lens. Here, we assume that the graph of interest is too large to
store in full, but some representative summary is maintained incrementally. We seek
to understand how well different problems can be solved in this model, in terms of
the size of the summary, the time taken to process each edge and answer a query, and
the accuracy of any approximation obtained. Variants arise in the model depending on
whether edges can be removed as well as added, and whether edges arrive grouped in
some order, and so on.

Independent Sets and the Caro-Wei Bound. We study questions pertaining to inde-
pendent sets within graphs. Independent sets play a fundamental role in graph theory,

? The work of GC is supported in part by European Research Council grant ERC-2014-CoG
647557, The Alan Turing Institute under EPSRC grant EP/N510129/1 the Yahoo Faculty Re-
search and Engagement Program and a Royal Society Wolfson Research Merit Award; JD is
supported by a Microsoft Research Studentship; and CK by EPSRC grant EP/N011163/1.

and have many applications in optimization and scheduling problems. Given a graph,
an independent set is a set of nodes such that there is no edge between any pair. One
important objective is to find a maximum independent set, i.e., an independent set of
maximum cardinality. This is a challenging task even in the offline setting: Comput-
ing a maximum independent set is NP-hard on general graphs [2], and remains hard to
approximate within a factor of n1−ε for any ε > 0 [3,4].

Despite this strong intractability result, there is substantial interest in computing in-
dependent sets of non-trivial sizes. The best polynomial time algorithm for maximum
independent set was given by Feige and has an approximation factor of O(n log2(logn)

log3 n
) [5].

Since no substantial improvements on this bound are possible, many works give approx-
imation guarantees or absolute bounds on the size of an independent set in terms of the
degrees of the vertices of the input graph. For example, it is known that the Greedy
algorithm, which iteratively picks a node of minimum degree and then removes all
neighbors from consideration, has an approximation factor of (∆ + 2)/3, where ∆ is
the maximum degree of the input graph [6]. The Greedy algorithm also achieves the
Caro-Wei bound [7,8], which is the focus of this paper: Caro [9] and Wei [7] indepen-
dently proved that every graph G contains an independent set of size

β(G) :=
∑
v∈V

1

degG(v) + 1
. (1)

The quantity β(G) is an attractive bound. It is known that it gives polylogarithmic ap-
proximation guarantees on graphs that are of polynomially bounded-independence [10],
which means (informally) that the size of a maximum independent set in an r-neighborhood
around a node is bounded in size by a polynomial in r. For example, on unit disc graphs,
which are of polynomially bounded-independence, β(G) is a O

(
(logn
log logn)

2
)

approxi-
mation to the size of a maximum independent set. In distributed computing, the Caro-
Wei bound is particularly interesting, since an independent set of size β(G) can be
computed in a single communication round [10]. Very relevant to the present work is
a result by Halldórsson et al. [1], who showed that an independent set of expected size
β(G) can be computed space efficiently in the data streaming model.

Independent Sets in the Streaming Model. Due to the aforementioned computational
hardness of the maximum independent set problem, every streaming algorithm that ap-
proximates a maximum independent set within a polynomial factor nδ , for any con-
stant δ < 1, requires exponential time, unless P = NP. By sampling a subset of
vertices V ′ ⊆ V , storing all edges between vertices V ′ while processing the stream,
and outputting a maximum independent set in the subgraph induced by V ′ (using
an exponential time computation), it is possible to obtain a randomized one-pass c-
approximation streaming algorithm for maximum independent set with Õ(n

2

c2) space1.
Halldórsson et al. [11] showed that this is best possible: They proved that even for the
seemingly simpler task of approximating the size of a maximum independent set, ev-
ery c-approximation streaming algorithm requires Ω̃(n

2

c2) space. In order to circumvent

1 We use the notation Õ(.), Θ̃(.) and Ω̃(.), which correspond to O(.), Θ(.) and Ω(.), respec-
tively, where all polylogarithmic factors are ignored.

2

both the large space lower bound and the exponential time computations required, in
a different work, Halldórsson et al. [1] relaxed the desired quality guarantee and gave
one-pass streaming algorithms for computing independent sets with expected sizes that
match the Caro-Wei bound. These algorithms use O(n log n) space and have constant
update times.

Approximating the Solution Size. In this paper, we ask whether we can reduce the
space requirements of O(n log n) even further, if, instead of computing an independent
set whose size is bounded by the Caro-Wei bound, we approximate the size of such an
independent set, i.e., the Caro-Wei bound itself. This objective ties in with a recent trend
in graph streaming algorithms: Since many combinatorial objects such as matchings or
independent sets may be of size Ω(n), streaming algorithms that output such objects
require at least this amount of space. Consequently, many recent papers ask whether the
task of approximating the output size is easier than outputting the object itself. As previ-
ously mentioned, this is not the case for the maximum independent set problem, where
the space complexity of both computing a c-approximate independent set and finding
a c-approximation to the size of a maximum independent set is Θ̃(n

2

c2) [11]. For the
maximum matching problem, it is known that space Ω(n/c) is needed for computing a
c-approximation, but space Õ(n/c2) is sufficient for outputting a c-approximation to the
maximum matching size [12]. However, for graphs with arboricity c, the size of a max-
imum matching can even be approximated within a factor of O(c) using O(c log2 n)
space [13]. Another example is a work by Cabello and Pérez-Lantero [14], which gives
a polylogarithmic space streaming algorithm that approximates the maximum size of
an independent set of intervals within a constant factor, while storing such a set would
require Ω(n) space.

Starting Point: Frequency Moments. Approximating β(G) is essentially the same as
approximating the −1 (negative) frequency moment (or the harmonic mean) of a fre-
quency vector derived from the graph stream. The pth frequency moment of a stream of
n different items where item i appears fi times is defined by Fp =

∑
i |fi|p. Approxi-

mating the frequency moments is one of the most studied problems in the data streaming
literature, starting in 1996 with the seminal work of Alon, Matias and Szegedy [15]. It
is known that all finite positive frequency moments can be approximated with sublin-
ear space (see Woodruff’s article [16] for an overview of the problem). Braverman and
Chestnut [17] studied the problem of approximating the negative frequency moments,
which turn out to be much harder to approximate: Computing a (1+ ε)-aproximation to
the harmonic mean in one pass requires Ω(n) space if the length of the input sequence
is Ω(n2). While this lower bound is designed for arbitrary frequency vectors, it can
be embedded into a graph with Θ(n2) edges so that frequencies correspond to vertex
degrees. This implies we cannot find an algorithm to approximate the Caro-Wei bound
within a factor of 1 + ε which guarantees that the space used will always be sublinear.

Our Results. Despite these lower bounds, we are able to provide upper and lower
bounds that improve on those stated above. The key advance is that they incorporate
a dependence on the target quantity, β(G). This means when this quantity is suitably
big (as is the case in many graphs of interest), we can in fact guarantee sublinear space.
In more detail, we proceed as follows. Since in our setting the frequency vector is de-
rived from the degrees of the vertices of the input graph, we can exploit the properties

3

of the underlying graph. In our first result, we relate the space complexity of our al-
gorithm to a given lower bound γ on β(G). A meaningful lower bound γ is easy to
obtain: It is easy to see that the Turán bound [18] for independent sets, which shows
that n/(d+ 1) is a lower bound on the size of a maximum independent set, is also a
lower bound on β(G), where d is the average degree of the input graph. Our first result
is then a one-pass randomized streaming algorithm with space O(n logn

γc2) that approx-
imates β(G) within a factor of c with high probability (Theorem 1). Using γ = n

d+1
,

the space becomes O(d lognc2), which is polylogarithmic for graphs of constant average
degree such as planar graphs or bounded arboricity graphs. The algorithm can also give
a (1 + ε)-approximation using O(n logn

γε2) space.
We prove that our algorithm is best possible (up to poly-log factors). Via a reduc-

tion from a hard problem in communication complexity, we show that every p-pass
streaming algorithm for computing a c-approximation to β(G) requires Ω(n

β(G)c2p)

space (Theorem 4). This lower bound also holds in the vertex arrival order, where
vertices arrive one by one together with those incident edges that connect to vertices
that have previously arrived (see Section 2 for a more precise definition). Our lower
bound is more general than the lower bound from Braverman and Chestnut [17], since
their lower bound only holds for (1 + ε)-approximation algorithms and does not es-
tablish a dependency on the output quantity, i.e., the −1-negative frequency moment.
Furthermore, their bound was not developed in the graphical setting where frequencies
are derived from the vertex degrees.

Our lower bound shows that the promise that the input stream is in vertex arrival
order is not helpful for approximating β(G). However, if we regard the task of approx-
imating β(G) as obtaining a (hopefully large) lower bound on the size of a maximum
independent set of the input graph, then any value sandwiched between β(G) and the
maximum independent set size would be equally suitable (or even superior). In the
vertex arrival setting, we give a randomized one-pass streaming algorithm with space
O(log3 n), which outputs a value β′ with β′ = Ω(β(G)/ log n) and β′ is at most the
maximum independent set size (Theorem 2). Since the Caro-Wei bound is a polyloga-
rithmic approximation to the maximum independent set size in polynomially bounded-
independence graphs, a corollary of our result is that the maximum independent set size
can be approximated within a polylogarithmic factor in polylogarithmic space in poly-
nomially bounded-independence graphs (e.g., the approximation factor obtained on unit
disc graphs is O(log3 n

(log logn)2)) .
Our focus is on streaming models where edges only arrive. We briefly comment on

when our results generalize to models which allow deletions following each algorithm.

Further Related Work. There has been substantial interest in the topic of streaming
algorithms for graphs in the last two decades. Indeed, the introduction of the streaming
model focused on graph problems [19]. McGregor provides a survey that outlines key
results on well-studied problems such as finding sparsifiers, identifying connectivity
structure, and building spanning trees and matchings [20].

Our work is the first to consider the graph frequency moments (or degree moments)
in the data streaming model. They have previously been considered in the property
testing literature [21,22,23], where the input graph can only be queried a sublinear

4

number of times. There are important connections between the degree moments and
network science and various other disciplines. For details we refer the reader to [22].

2 Preliminaries

The Independent Set problem is most naturally modeled as a problem over graphs G =
(V,E). A setU ⊆ V is an independent set if for all pairs u,w ∈ U we have {u,w} 6∈ E,
i.e. there is no edge between u and w. Let α(G) be the independence number of graph
G, i.e., the size of a maximum independent set in G.

We consider graphs defined by streams of edges. That is, we observe a sequence of
unordered pairs {u,w} which collectively define the (current) edge set E. We do not
require V to be given explicitly, but take it to be defined implicitly as the union of all
nodes observed in the stream. In the (arbitrary, possibly adversarial) edge arrival model,
no further constraints are placed on the order in which the edges arrive. In the vertex
arrival model, there is a total ordering on the vertices≺which is revealed incrementally.
Given the final graph G, node v “arrives” so that all edges {u, v} ∈ E such that u ≺ v
are presented sequentially before the next vertex arrives. We do not assume that there is
any further ordering among this group of edges.

3 Algorithm in the Edge-arrival Model

In this section, we suppose that a lower bound γ ≤ β(G) is known. For example,
γ = n

d+1
is a suitable bound, where d is the average degree of the input graph. If no

such bound is known, then the algorithm can be used with the trivial lower bound γ = 1.
We give an algorithm that computes an estimateB which approximates β(G) within

a factor of 1 + ε with probability at least 2/3. By running Θ(log n) copies of our algo-
rithm and returning the median of the computed estimates, the success probability can
be increased to 1− 1

nc , for any constant c.
The estimator B is computed as follows: First, take a uniform random sample S ⊆

V such that every vertex v ∈ V is included in S with probability p = 3
ε2γ . Then, while

processing the stream, compute degG(v), for every vertex v ∈ S. Let xv ∈ {0, 1} be
the indicator variable of the event v ∈ S. Then B is computed by B = 1

p

∑
v∈V avxv ,

where av := 1
degG(v)+1 .

We first show that B is an unbiased estimator and we bound the variance of B.

Lemma 1. Let B be the estimate computed as above. Then:

E [B] = β(G) , and V[B] <
1

p

∑
v∈V

a2v ≤
1

p
β(G) .

The proof is a fairly straightforward calculation of expectations, and is deferred to
the appendix.

Theorem 1. Let γ ≤ β(G) be a given lower bound on β(G). Then, there is a random-
ized one-pass approximation streaming algorithm in the edge arrival model with space
O
(
n logn
γε2

)
that approximates β(G) within a factor of 1 + ε, with high probability.

5

Algorithm 1 Algorithm DEGTEST(d, ε)

Require: Degree bound d, ε for a 1 + ε approximation
1: p← 1, S ← ∅, m← 0, ε′ ← ε/2, c← 28

ε′2

2: while stream not empty do {The current subgraph is Gi}
3: v ← next vertex in stream
4: if COIN(p) then
5: S ← S ∪ {v} {Sample vertex with probability p}
6: Update degrees of vertices in S, i.e., for every u ∈ S adjacent to v, increment its degree

{This ensures that for every u ∈ S degGi
(u) is known}

7: Remove every vertex u ∈ S from S if degGi
(u) > d

8: if p = 1 then
9: m← max{m, |S|}

10: if |S| = c log(n) then
11: m← c log(n)/p
12: Remove each element from S with probability 1

1+ε′

13: p← p/(1 + ε′)
14: return m

Proof. By Chebyshev’s inequality, the error probability of our estimate is at most 1/3,
since (recall that p = 3

ε2γ)

P [|B − β(G)| ≥ εβ(G)] ≤ V[B]

ε2β(G)2
<

1

pε2β(G)
≤ 1

3
.

By a standard Chernoff bounds argument, runningΘ(log n) copies of our algorithm and
returning the median of the computed estimates allows us to obtain an error probability
of O(n−c), for any constant c. ut

Remarks: Observe that the previous theorem also holds for large values of ε (e.g.
ε = nδ , for some δ > 0). The core of our algorithm is to sample nodes with a fixed prob-
ability and to count their degree. This can easily be achieved in the model where edges
are also deleted (the turnstile streaming model) without any further data structures, so
our results hold in that stream model also.

4 Algorithm in the Vertex-arrival Model

Let v1, . . . , vn be the order in which the vertices appear in the stream. Let Gi =
G[{v1, . . . , vi}] be the subgraph induced by the first i vertices. Let nd,i := |{v ∈
V (Gi) : degGi

(v) ≤ d}| be the number of vertices of degree at most d in Gi, and let
nd = maxi nd,i.

We first give an algorithm, DEGTEST(d, ε), which with high probability returns a
(1 + ε)-approximation of nd using O(1

ε2 log
2 n) bits of space. In the description of the

algorithm, we suppose that we have a random function COIN: [0, 1]→ {false,true}
such that COIN(p) = true with probability p and COIN(p) = false with probability
1− p. Furthermore, the outputs of repeated invocations of COIN are independent.

6

Algorithm DEGTEST(d, ε) maintains a sample S of at most c log n vertices. It en-
sures that all vertices v ∈ S have degree at most d in the current graph Gi (notice that
degGi

(v) ≤ degGj
(v), for every j ≥ i). Initially, p = 1, and all vertices of degree at

most d are stored in S. Whenever S reaches the limiting size of c log n, we downsample
S by removing every element of S with probability 1

1+ε′ and update p ← p/(1 + ε′).
This guarantees that throughout the algorithm S constitutes a uniform random sample
of all vertices of degree at most d in Gi.

The algorithm outputsm← c log(n)/p as the estimate for nd, where p is the small-
est value of p that occurs during the course of the algorithm. It is updated whenever S
reaches the size c log n, since S is large enough at this moment to be used as an accurate
predictor for nd,i, and hence also for nd.

Lemma 2. Let 0 < ε ≤ 1. DEGTEST(d, ε) (Algorithm 1) approximates nd within a
factor 1 + ε with high probability, i.e.,

nd
1 + ε

≤ DEGTEST(d, ε) ≤ (1 + ε)nd ,

and uses O(1
ε2 log

2 n) bits of space.

For space reasons, we defer the proof of this Lemma to the appendix and only give
a brief outline here. We say that the algorithm is in phase i if the current value of p is
p = 1/(1+ ε′)i. We focus on the key moments (ji)i≥0 in the algorithm, where ji is the
smallest index j such that nd,j ≥ c log n(1 + ε′)i(1 + ε′/2). The core of our proof is to
show that after iteration ji, the algorithm is in phase i+ 1 with high probability. For an
intuitive justification of this claim, suppose that this is not true and the algorithm was in
phase at most i after iteration ji. Then, since S is a uniform sample, we expect the size of
S to be at least nd,ji/(1+ε

′)i ≥ c log n(1+ε′/2), which however would have triggered
the downsampling step in Line 10 of the algorithm and would have transitioned the
algorithm into the next phase. On the other hand, suppose that the algorithm was in
phase at least i+ 2 after iteration ji. In iteration k when the algorithm transitioned into
phase i+2, the number of nodes nd,k of degree at most dwas bounded by nd,k ≤ nd,ji .
The transition from phase i+1 to i+2 would thus not have occurred, since the expected
size of S in iteration k was at most nd,ji/(1 + ε′)i+1 ≤ c log n(1 + ε′/2)/(1 + ε′). In
our proof, we make this intuition formal and conduct an induction over the phases. Let
jĩ be the largest occurring value of ji. Then nd,jĩ is a good approximation of nd and,
as argued above, the algorithm is in phase ĩ + 1 after iteration jĩ. Using the largest
occurring value of p, we can thus estimate nd.

Next, we run multiple copies of DEGTEST in order to obtain our main algorithm,
Algorithm 2. This consists of making multiple parallel guesses of the parameter d as
powers of 2, and taking the guess which provides the maximum bound.

Theorem 2. Let γ be the output of Algorithm 2. Then, with high probability:

1. γ = Ω(β(G)
logn), and

2. γ ≤ α(G).

Furthermore, the algorithm uses space O(log3 n) bits.

7

Algorithm 2 Algorithm in the Vertex-arrival Order
for every i ∈ {0, 1, . . . , dlogne}, run in parallel:
ñ2i = DEGTEST(2i, 1/2)

end for
return max

{
ñ2i

2(2i + 1)
: i ∈ {0, 1, . . . , dlogne}

}

Proof. For 0 ≤ i < dlog(n)e, let Vi ⊆ V be the subset of vertices with degG(v) ∈
{2i, 2i+1 − 1}. Then,

β(G) =
∑
v∈V

1

degG(v) + 1
=
∑
i

∑
v∈Vi

1

degG(v) + 1
≤
∑
i

|Vi|
2i + 1

.

Let imax := argmaxi
|Vi|
2i+1 . Then, we further simplify the previous inequality:

β(G) ≤ · · · ≤
∑
i

|Vi|
2i + 1

≤ dlog(n)e · |Vimax |
2imax + 1

≤ dlog(n)e · |V≤imax |
2imax + 1

. (2)

where V≤i = ∪j≤iVj . Let dmax = 2imax . Since |Vimax | ≤ ndmax and ñdmax = DEGTEST(dmax,
1
2)

is a 1.5-approximation to ndmax , we obtain γ = Ω(β(G)
logn), which proves Item 1.

Concerning Item 2, notice that for every i and d, it holds

α(G) ≥ α(Gi) ≥ β(Gi) =
∑

v∈V (Gi)

1

degGi
(v) + 1

≥
∑

v∈V (Gi):degGi
(v)≤d

1

degGi
(v) + 1

≥ ni,d
d+ 1

,

and, in particular, the inequality holds for ndmax = nimax,dmax . Since the algorithm returns
a value bounded by ñdmax

2·(dmax+1) , and ñdmax constitutes a 1.5-approximation of ndmax , Item 2
follows.

Concerning the space requirements, the algorithm runs O(log n) copies of Algo-
rithm 1 which itself requires O(log2 n) bits of space. ut
Remark: On first glance, it may appear that our algorithm would translate to the turnstile
model where edges can be deleted: the central step of sampling vertices at varying
probabilities is reminiscent of steps from L0 sampling algorithms [24]. However, there
are a number of obstacles to achieving this. First, the algorithm computes a maximum
over the estimate β(Gi) for intermediate graphs Gi. This is correct when nodes and
edges only arrive, but is not correct when a graph may be subject to deletions. We
therefore leave the question of giving comparable bounds under the turnstile stream
model as an open problem.

5 Space Lower Bound

Our lower bound follows from a reduction using a well-known hard problem from com-
munication complexity. Let DISJn refer to the two-party set disjointness problem for

8

inputs of size n. In this problem we have two parties, Alice and Bob. Alice knows
X ⊂ [n], while Bob knows Y ⊂ [n]. Alice and Bob must exchange messages until they
both know whether X ∩ Y = ∅ or X ∩ Y 6= ∅.

Using R(DISJn) to refer to the randomised (bounded error probability) communi-
cation complexity of DISJn, the following theorem is known.

Theorem 3 (Kalyanasundaram and Schnitger [25]). R(DISJn) ∈ Ω(n) .

To get our lower bound, we will show a reduction from randomised set disjointness
to randomised c-approximation of β(G).

Theorem 4. Every randomized constant error p-pass streaming algorithm that approx-
imates β(G) within a factor of c uses space Ω

(
n

β(G)c2p

)
, even if the input stream is in

vertex arrival order.

Proof. Let ALGc,n be any streaming algorithm that performs p passes over a vertex
arrival stream of an n-vertex graph G and returns a c-approximation of β(G) with
probability 2

3 . Suppose we are given an instance of DISJk. We will construct a graph
G from X and Y which we can use to tell whether X ∩ Y = ∅ by checking a c-
approximation of β(G).

Let z ≥ 2 be an arbitrary integer. Set q = 2zc2 and a = kq. Let G = (V,E), where
V is partitioned into disjoint subsets A, B, C, and Ui for i ∈ [k]. These are of size
|A| = |B| = a, |C| = z, and |Ui| = q. So n := |V | = kq + 2a + z = 3kq + z =
z(6kc2 + 1). Thus, k ∈ Θ(n

zc2) holds.
First consider the set of edges E0 consisting of all {u, v} with u, v ∈ A∪B, u 6= v.

Setting E = E0 makes A ∪B a clique, while all other vertices remain isolated.
Figure 1a shows this initial configuration. For clarity, we represent the structure

using super-nodes and super-edges. A super-node is a subset of V (in this case we use
A, B, C, and each Ui). Between the super-nodes, we have super-edges representing the
existence of all possible edges between constituent vertices. So a super-edge between
super-nodes Z1 and Z2 represents that {z1, z2} ∈ E for every z1 ∈ Z1 and z2 ∈ Z2.
The lack of a super-edge between Z1 and Z2 indicates that none of these {z1, z2} are
in E.

Next we add dependence on X and Y . Let

EX =
⋃

i∈[n]\X

 ⋃
u∈Ui,v∈A

{{u, v}}

 and EY =
⋃

i∈[n]\Y

 ⋃
u∈Ui,v∈B

{{u, v}}

 .

So EX contains all edges from vertices in Ui to vertices in A exactly when index i is
not in the set X . EY similarly contains all edges from Ui to B when i 6∈ Y .

Now letE = E0∪EX ∪EY . Adding these edge sets corresponds to adding a super-
edge to Figure 1a between Ui and A (or B) whenever i is not in X (or Y). Figures 1b
and 1c illustrate this. In Figure 1b, the intersection is non-empty, which creates a set of
isolated nodes that push up the value of β(G). Meanwhile, there is no intersection in
Figure 1c, so the only isolated nodes are those in C.

9

U1

U2

...

Uk−1

Uk

A

B

C

(a) Initial configuration.

U1

U2

U3

U4

U5

A

B

C

(b) Example with X = {2, 4}
and Y = {1, 2, 3}.

U1

U2

U3

U4

U5

A

B

C

(c) Example with X = {2, 4}
and Y = {1, 3}.

Fig. 1: Lower bound construction

Now, consider β(G). In the case where X ∩ Y = ∅, we will have a super-edge
connecting each Ui to at least one ofA andB, so the degree of each vertex in each Ui is
either a or 2a. Similarly, A ∪B is a clique, so each vertex has degree at least (2a− 1).
There are 2a such vertices, so they contribute at most 2a

(2a−1)+1 = 1 to β. Vertices in C

are isolated and contribute exactly z to β. Therefore, z ≤ β(G) ≤ kq
a +1+ z = z +2.

Now consider the case whereX∩Y 6= ∅. This means that there exists some i ∈ X∩
Y , and so Ui will have no super-edges. So each vertex in Ui is isolated, and contributes
exactly 1 to β. There are q such vertices, and also accounting for the contribution of
vertices C, we obtain β(G) ≥ q + z = z(2c2 + 1).

Since the minimum possible ratio of the β-values between graphs in the two cases
is at least z(2c

2+1)
z+2 > c2 (using z ≥ 2), a c-approximation algorithm for β(G) would

allow us to distinguish between the two cases.
Now, return to our instance of DISJk. We can have Alice initialise an instance

of ALGc,n and have all vertices in A, C, and each Ui arrive in any order. This only
requires knowledge of X because only edges in E0 and EX are between these vertices
and these are the only edges that will be added so far in the vertex arrival model. Alice
then communicates the state of ALGc,n to Bob. Bob can now have all vertices in B
arrive in any order. This only requires knowledge of Y because only edges in E0 and
EY are still to be added. Bob then communicates the state of ALGc,n back to Alice (if
p ≥ 2). This process continues until the p passes of the algorithm have been executed.
Bob can then compute a c-approximation of β(G) with probability at least 2

3 from the
final state of the algorithm, determining which case we are in and solving DISJk.

From Theorem 3, we know that Alice and Bob must have communicated at least
Ω(k) bits. However, all they communicated was the state of ALGc,n. Therefore,Ω(k/p) =

10

Ω(n
zc2p) bits was being used by ALGc,n at the time, since the algorithm runs in p

passes.
Consider again the graph G. The above argument shows that in order to compute

a c-approximation to β(G), space Ω(n
zc2p) is needed. Since β(G) ≥ z in both cases,

we obtain the space bound Ω(n
β(G)c2p). Last, recall that z and thus β(G) can be chosen

arbitrarily. The theorem hence holds for any value of β(G). ut

Remark: The vertices of set C of the construction employed in the previous proof are
isolated. This property may be considered undesirable – for example, it may be rela-
tively easy to identify and separately count isolated vertices. However, this structure in
the hard instances can be entirely circumvented by, for example, replacing each of these
vertices u ∈ C with a pair of nodes u1, u2, which are connected by an edge. We also
note that, of course, the problem is no easier when deletions are allowed, and so the
lower bound also holds for such models.

6 Conclusion

In this paper, we gave an optimal one-pass c-approximation streaming algorithm with
space O(n polylogn

c2γ) for approximating the Caro-Wei bound β(G) in graph streams,
where γ ≤ β(G) is a given lower bound. If the input stream is in vertex arrival order,
then we showed that a quantity β′ can be computed, which is at most a logarithmic
factor below β(G) and at most α(G), the maximum independent set size of the input
graph.

From a technical perspective, we leverage this problem to advance the study of the
degree moments in the streaming model. The fact that the frequencies are derived from
the degrees of the input graph adds an additional dimension to the frequency moments
problem, since, as illustrated by our two algorithms, the arrival order of edges can now
be exploited. Furthermore, it seems plausible that exploiting additional graph structure
could reduce the space complexity even further. For example, it is known that in claw-
free graphs, it holds

∑
u∈Γ (v)

1
deg(u) = O(1), for every vertex v [10]. It remains to

be investigated whether such properties can give additional space improvements. Last,
one of the objectives of this work was the popularization of the Caro-Wei bound, and
we thus only addressed the−1-negative frequency moment. Our algorithm for the edge
arrival model can in fact also be used for approximating any other negative degree
moment

∑
v∈V (

1
degG(v))

p, for every p < 0, since the analysis only requires that the
contribution of a vertex to the degree moment is at most 1, which is the case for all
negative moments (it holds (1

degG(v))
p ≤ 1, for every v ∈ V and p < 0). Generalizing

our approach to positive frequency moments is left for future work.

Acknowledgements. We thank an anonymous reviewer whose comments helped us
simplify Theorem 1. The work of GC is supported in part by European Research Coun-
cil grant ERC-2014-CoG 647557; JD is supported by a Microsoft EMEA scholarship
and the Alan Turing Institute under the EPSRC grant EP/N510129/1; CK is supported
by EPSRC grant EP/N011163/1.

11

References

1. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming algorithms
for independent sets in sparse hypergraphs. Algorithmica 76(2) (2016) 490–501

2. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher, J.W.,
eds.: Complexity of Computer Computations. Plenum Press (1972) 85–103

3. Håstad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182(1) (1999)
105–142

4. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing 3(1) (2007) 103–128

5. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discret. Math.
18(2) (February 2005) 219–225

6. Halldórsson, M., Radhakrishnan, J.: Greed is good: Approximating independent sets in
sparse and bounded-degree graphs. In: STOC. (1994) 439–448

7. Wei, V.: A lower bound on the stability number of a simple graph. Technical report, Bell
Labs (1981)

8. Griggs, J.R.: Lower bounds on the independence number in terms of the degrees. Journal of
Combinatorial Theory, Series B 34(1) (1983) 22 – 39

9. Caro, Y.: New results on the independence number. Technical report, Tel Aviv University
(1979)

10. Halldórsson, M.M., Konrad, C.: Distributed large independent sets in one round on bounded-
independence graphs. In: Distributed Computing. (2015) 559–572

11. Halldórsson, M.M., Sun, X., Szegedy, M., Wang, C.: Streaming and communication com-
plexity of clique approximation. In: International Colloquium on Automata, Languages, and
Programming. (2012) 449–460

12. Assadi, S., Khanna, S., Li, Y.: On estimating maximum matching size in graph streams. In:
ACM-SIAM Symposium on Discrete Algorithms. (2017) 1723–1742

13. Cormode, G., Jowhari, H., Monemizadeh, M., Muthukrishnan, S.: The sparse awakens:
Streaming algorithms for matching size estimation in sparse graphs. In: ESA. (2017)

14. Cabello, S., Pérez-Lantero, P. In: Interval Selection in the Streaming Model. Springer Inter-
national Publishing, Cham (2015) 127–139

15. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency
moments. Journal of Computer and System Sciences 58(1) (1999) 137 – 147

16. Woodruff, D.P.: Frequency moments. In: Encyclopedia of Database Systems. Springer
(2009) 1169–1170

17. Braverman, V., Chestnut, S.R.: Universal sketches for the frequency negative moments and
other decreasing streaming sums. In: APPROX/RANDOM. (2015) 591–605

18. Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48(436-452) (1941) 137
19. Henzinger, M., Raghavan, P., Rajagopalan, S.: Computing on data streams. Technical Report

SRC 1998-011, DEC Systems Research Centre (1998)
20. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Record 43(1) (2014) 9–20
21. Gonen, M., Ron, D., Shavitt, Y.: Counting stars and other small subgraphs in sublinear-time.

SIAM J. Discrete Math. 25(3) (2011) 1365–1411
22. Eden, T., Ron, D., Seshadhri, C.: Sublinear time estimation of degree distribution moments:

The arboricity connection. CoRR abs/1604.03661 (2016)
23. Aliakbarpour, M., Biswas, A.S., Gouleakis, T., Peebles, J., Rubinfeld, R., Yodpinyanee, A.:

Sublinear-time algorithms for counting star subgraphs with applications to join selectivity
estimation. CoRR abs/1601.04233 (2016)

24. Jowhari, H., Sağlam, M., Tardos, G.: Tight bounds for lp samplers, finding duplicates in
streams, and related problems. In: ACM Principles of Database Systems. (2011)

12

25. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set
intersection. SIAM Journal on Discrete Mathematics 5(4) (1992) 545–557

13

A Deferred Proofs

Proof (Proof of Lemma 1). Concerning the expected value, we have:

E [B] = E

[
1

p

∑
v∈V

avxv

]
=

1

p

∑
v∈V

avE [xv] =
∑
v∈V

av = β(G) .

To bound the variance, we use the equality V[B] = E
[
B2
]
− E [B]

2 and bound both
terms separately. We have

B2 =

(
1

p

∑
v∈V

avxv

)2

=
1

p2

 ∑
u,v∈V,u 6=v

auavxuxv +
∑
v∈V

a2vx
2
v

 ,

and since xu and xv are independent if u 6= v, we obtain:

E
[
B2
]
=

1

p2

 ∑
u,v∈V,u6=v

auavp
2 +

∑
v∈V

a2vp

 =
∑

u,v∈V,u 6=v

auav +
1

p

∑
v∈V

a2v . (3)

Next, we bound E [B]
2 as follows:

E [B]
2
= β(G)2 = (

∑
v∈V

av)
2 =

∑
u,v∈V

auav >
∑

u,v∈V,u6=v

auav . (4)

Combining Equality 3 and Inequality 4 gives V[B] < 1
p

∑
v∈V a

2
v . Since av ≤ 1, we

further have 1
p

∑
v∈V a

2
v ≤ 1

pβ(G), which completes the proof. ut

Proof (Proof of Lemma 2). First, suppose that nd < c log n. Then the algorithm never
downsamples the set S and computes nd exactly (and makes no error).

Assume now that nd ≥ c log n. For i ≥ 0, let ji be the smallest index j such that
nd,j ≥ c log n(1 + ε′)i(1 + ε′/2). We say that the algorithm is in phase i, if p =
1/(1 + ε′)i.

First, for any i, we argue that in iteration k ≤ ji, the algorithm is in a phase at most
i+ 1 w.h.p. Let Ek,i be the event that the transition from phase i+ 1 to i+ 2 occurs in
iteration k ≤ ji, and let E be the event that at least one of the events Ek,i, for every k
and i, occurs. For Ek,i to happen, it is necessary that the algorithm is in phase i+ 1 in
iteration k. Assume that this is the case. Then, since nd,k ≤ nd,ji , the expected size of
S in iteration k is

E [S] =
nd,k
p
≤ c log(n)(1 + ε′)i(1 + ε′/2)

(1 + ε′)i+1
=
c log(n)(1 + ε′/2)

1 + ε′
,

and thus, by a Chernoff bound,

P [|S| ≥ c log n] ≤ exp

(
−

(1+ε′

1+ε′/2)
2

2 + 1+ε′

1+ε′/2

· c log(n)(1 + ε′/2)

1 + ε′

)
= exp

(
−

1+ε′

1+ε′/2c log(n)

2 + 1+ε′

1+ε′/2

)

14

= exp

(
− (1 + ε′)c log(n)

3 + 2ε′

)
≤ exp

(
−c log(n)

3

)
≤ n−3,

for c ≥ 21. Thus, by the union bound, the probability that E occurs is at most n−2.
We assume from now on thatE does not occur. Let Fi be the event that at the end of

iteration ji, the algorithm is in phase i+1. We prove now by induction that all Fi occur
with high probability. Consider first F0. Conditioned on ¬E, the algorithm is in phase
0 or 1 after iteration j0. We argue that with high probability, the algorithm is in phase 1
after iteration j0. Suppose that the algorithm is in phase 0 in the beginning of iteration
j0. Then, E [S] =

nd,j0

p = nd,j0 = c log n(1 + ε′/2). Thus, by a Chernoff bound,

P [|S| ≤ c log n] ≤ exp

(
−c log n(1 + ε′/2)

(
ε′

2 + ε′

)2
)

= exp

(
−c log n ε′2

4 + 2ε′

)
≤ n−2,

for c ≥ 28
ε′2 , and hence, if the algorithm was in phase 0 at the beginning of iteration j0,

then, with high probability, the transition to phase 1 would occur.
Assume now that both ¬E and Fi hold. Then, the algorithm is in phase i+1 or i+2

at the end of iteration ji+1. Suppose we are in phase i+ 1 at the beginning of iteration
ji+1. Then, E [S] =

nj0,d

p = nj0,d = c log n(1+ε′/2), and by the same Chernoff bound
as above, the transition to phase i + 2 would take place with high probability, which
implies that Fi+1 holds.

Let jmax be the largest j such that c log n(1 + ε′/2)(1 + ε′)j ≤ nd. As proved
above, when the algorithm terminates, then the output m is either c log n(1 + ε′)jmax

or c log n(1 + ε′)jmax+1 with high probability. Suppose first that the output is m =
c log n(1 + ε′)jmax . Since m(1 + ε′/2)(1 + ε′) ≥ nd, the algorithm computes a (1 +
ε′/2)(1+ε′) ≤ (1+2ε′)-approximation. Suppose now that the output ism = c log n(1+
ε′)jmax+1. Sincem(1+ε′/2)/(1+ε′) ≤ nd, we equally obtain a (1+2ε′)-approximation.
Since ε = 2ε′, the algorithm returns a (1 + ε)-approximation.

Concerning the space requirements of the algorithm, at most c log n vertex degrees
are stored, which requires O(1

ε2 log
2 n) bits of space. ut

15

	Approximating the Caro-Wei Bound for Independent Sets in Graph Streams

