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Abstract

Space filling curves are a widely used tool for domain decomposition due to their low
execution times. In the context of a parallel particle simulation for the solution of the cou-
pled Maxwell/Vlasov equations we obtain two-constraint domain decomposition problems,
which have to be solved during the simulation and hence require a fast method. The main
objective of the present diploma thesis is the extension of the applicability of space filling
curves to two-constraint domain decomposition problems. These problems are reduced to
matrix splitting problems. We present a fast method which is compared to graph-based de-
composition methods as implemented in in the software package MeTiS 1. The results show
that our method is at least 100 times faster than MeTiS to the disadvantage of edge-cuts
between 2 and 4 times worse as MeTiS.

1 http://glaros.dtc.umn.edu/gkhome/views/metis
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1. Introduction

1.1. Combinatorial Scientific Computing

Combinatorial Scientific Computing (CSC) [13], a term coined in the last decade, denotes
a research field that comprises combinatorial problems arising in computational science.
In a typical setting applied mathematicians develop numerical schemes for the solution of
a Partial Differential Equation (PDE) and face computational questions during parallel
implementations. Firstly an appropriate mesh generation is required. A domain decompo-
sition is needed in order to distribute mesh data among computational units. Further, for
instance, in Finite Element Method (FEM) simulations, the solution of huge sparse linear
systems is necessary, often preceded by a sparse matrix reordering.

These problems exhibit all combinatorial features and may be the most prominent rep-
resentatives of CSC. Bruce Hendrickson and Alex Pothen, researchers in CSC, provide an
overview about CSC in their paper titled: “Combinatorial Scientific Computing: The En-
abling Power of Discrete Algorithms in Computational Science” [13]. They emphasize the
importance of good solutions and their impact on execution time of numeric applications,
however problems in CSC seem also to have in common that the question of what is to be
considered a good solution is highly problem dependant and it is hard or even impossible
to answer this question once and for all. Even though it seems that for many problems
we have a precise image in mind about the properties a good method should exhibit 1, for
certain applications this way of assessing methods in question is insufficient. We discuss
some problems that come with the assessment of methods for solving problems of CSC:

Firstly, most of the methods provide a compromise between quality of a solution and re-
quired computational resources (speed, memory). Considering again the problem of solving
linear equation systems, some iterative methods for certain types of equation systems may
result in poor accuracy to the benefit of being fast 2 while for instance direct methods may
produce accurate results at the expense of high runtime.

Secondly, typically applications do not require methods that solve any possible problem
instance but only the subset of problem instances that actually arise in the applications.
Considering again the solution of linear systems in Finite Element (FE) simulations, for
the fact that the arising systems are symmetric, a method does not need to be able to
handle unsymmetric systems. A further example that is also topic of the present thesis,
is the problem of Domain Decomposition (DD). Graph partitioning is often applied as a
method for decomposing meshes. For this meshes are transformed into their dual graphs
which are subsequently decomposed. In our setting we consider tetrahedral meshes and the
dual graphs of tetrahedral meshes consist of nodes of maximal degree 4. Hence if choosing
to solve the DD problem by reducing it to a graph decomposition problem it is sufficient if

1For instance a method for solving linear systems should be accurate and fast, or mesh generation should
produce nicely shaped elements.

2E.g. few iterations of the conjugated gradient method for symmetric and positive definite systems.
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1. Introduction

the graph partitioning method is able to handle the subset of graphs that contain nodes of
maximum degree 4.

Thirdly, it is not always evident how to measure the quality of a solution. This is
especially true for DD problems and in particular for the DD problems that are dealt
with in the present thesis. For simple DD problems there are at least two aims, that is
each partition should consist of the same number of elements and the partitions should
be shaped such that the surfaces of the partitions are minimal, which, in the case of data
dependency among adjacent elements that are separated by the decomposition, minimizes
the communication time among computational units. Methods for solving the problem
provide a compromise between these needs, perfect balance mostly leads to surface sizes that
are worse than solutions with a slight imbalance. A good solution hence should consider the
underlying hardware architecture of the simulation. If the interconnection network is slow,
high emphasis should be put on the surfaces sizes of partitions whereas the communication
is fast, good balancing is more important than small surface sizes.

In general, we search for solutions according to models we create. We can create con-
tinuously more complicated models that approximate the given situation. Pursuing the
DD problem as a first step, we could investigate the correspondence of surface sizes to
communication time. The so-called edge-cut, which represents the number of edges that
are cut in the dual graph of a given mesh by a decomposition, is at present the dominat-
ing quality measure for DDs. Hendrickson and Kolda discuss in [12] that minimizing the
edge-cut is the wrong measure if we aim to minimize communication time and they sug-
gest the use of hypergraphs (which complicates our model to a high extent). Further, we
could include heterogeneity in our model, for instance if we execute a numerical application
on clusters with different types of processors. Even communication times among different
computational units may differ. Communication among processor Pi to Pj might be fast
while communication among Pi to Pk might be slow (due to the underlying interconnec-
tion network). In this setting high edge-cuts among the partitions for processor Pi and Pj
are not costly while high edge-cuts among partitions for processor Pi and Pk are. These
examples illustrate that it is a matter of discussion up to what extent it is reasonable to
model a specific situation. The intention of these examples is to illustrate that in order to
evaluate methods it is necessary to compare them according to certain measures (e.g. the
edge-cut), however we always have to be aware up to what extent the measure models the
real situation.

Fourthly, the fact that some of the problems of CSC are NP-complete makes theoretical
considerations even more difficult. Even if we succeed in strictly defining a best solution to
a given problem, for instance as a minimization problem, 3 and finding the best solution is
NP-complete we have to be aware that approximation algorithms that solve the problem
are only heuristics and in many cases we are far from best solutions. Well-known problems
are partitioning problems and graph coloring problems.

These aspects point out that attention has to be paid when discussing the applicability
of methods for problems of CSC. This is especially true when we assess these methods
theoretically. In many cases estimations can not be made at all and different methods have
to be tested and compared.

3We may regard a best solution to the domain decomposition problem as the solution that minimizes a
weighted sum of the imbalance of the partition sizes and the maximal surface size of a partition.

2



1.2. Scientific context

The present diploma thesis considers the problem of DD for certain types of particle
simulations. All of the four mentioned criteria are met within this problem: methods for
solving the problem pose compromises between runtime and quality, we can restrict the set
of decomposition problems to a certain subset of decomposition problems, that is certain
types of so-called one-constraint and two-constraint decomposition problems as described in
section 2.7.4, further it is hard to establish models for characterizing the quality of solutions,
compare this fact with our loose definition 2.10 of the DD problem, and the decomposition
problem is NP-complete.

1.2. Scientific context

The present thesis discusses DD for particle simulations for the solution of the coupled
system of Maxwell/Vlasov equations and the design of a new DD method based on Space
Filling Curve (SFC)s. In a first step an analysis of the problem setting is done which leads to
the formulation of the problem as so-called one-constraint and two-constraint DD problems.
For our intended particle simulation we require solutions to two-constraint problems. These
problems can be solved by multilevel graph partitioning. Since computation time is a crucial
demand on the DD method we developed a new method based on SFCs.

The thesis was prepared at INRIA, Sophia Antipolis4 in the NACHOS project group5.
The main objective of the NACHOS team is the formulation, analysis, and evaluation of
numerical methods and high performance resolution algorithms for the computer simulation
of evolution problems in complex domains and heterogeneous media. In the recent years the
group has been developing a discontinuous Galerkin method for the solution of the three
dimensional Maxwell equations on unstructured tetrahedral grids. In the HOUPIC6 project
whose aim is to research the coupling of FE and discontinous Galerkin (DG) methods
to particle methods the group will contribute a prototype of a parallel Particle-In-Cell
(PIC) solver for the coupled system of Maxwell/Vlasov equations on unstructured grids
with a DG discretization scheme for the solution of the Maxwell equations and Dynamic
Domain Decomposition (DDD) for good load balancing.

1.3. Outline of this work

Chapter 2 introduces the coupled system of Maxwell/Vlasov equations (2.1), their dis-
cretization schemes (2.2, 2.3) and discusses the PIC method that numerically couples the
equations (2.4). We investigate on the demands of a DD for the PIC method (2.5) and
provide a formal section for the definition of DD problems (2.6). The chapter is closed by
section 2.7, that maps the requirements on a DD of the PIC method to the formal model
introduced in section 2.6, in particular it points out that certain PIC simulations pose a
two-constraint decomposition problem.

4INRIA: Institut National de Recherche en Informatique et en Automatique
http://www-sop.inria.fr

5NACHOS: Numerical modeling and high performAnce computing for evolution problems in Complex
domains and HeterogeneOuS media
http://www-sop.inria.fr/nachos

6HOUPIC: High Order Finite Element Particle-In-Cell Solvers on Unstructured Grids
http://www-math.u-strasbg.fr/houpic/
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1. Introduction

In Chapter 3 we discuss multilevel graph methods (3.1) as a method for solving the
arising decomposition problems. We further discuss SFCs (3.2), that suit, due to their low
running times, fine for so-called one-constraint DD problems. This chapter is also intended
to provide the basic understanding of SFCs which is necessary for discussing our SFC based
DD algorithm which is described in the subsequent chapter. We point out in section 3.2.5
that there is no straight-forward extension of the applicability of SFCs to so-called two-
constraint decomposition problems, which we aim to solve since they pose an appropriate
model for certain PIC simulations.

Chapter 4 documents the main work of the present thesis, the development and discussion
of an SFC-based approach to solving two-constraint decomposition problems. The section
is kept theoretical and technical details are postponed to the subsequent chapter.

We discuss in chapter 5 technical aspects of additives that are required for an implemen-
tation of our new method. This includes the computation of the inverse of SFCs (5.1) as
well as the construction of what we call problem-specific SFCs (5.2).

In Chapter 6 we provide test cases. We compare the results obtained with our new
method to results of methods provided by MeTiS 7, a state-of-the-art Software package for
DD following a multilevel graph-based approach, and outline that our method is extremely
fast to a reasonable loss of quality.

We conclude with chapter 7 and discuss the sequel of this work.

1.4. Acknowledgements

7 http://glaros.dtc.umn.edu/gkhome/views/metis
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2. Problem formulation

This chapter introduces the Maxwell-Vlasov system and explains the PIC method as the
method of discretization. The PIC method allows us to discretize and solve the Maxwell
equations and the Vlasov equation independently and consists of two coupling phases that
connect these equations. For this reason the discretization issues of the two equations
are presented independently. The numerical details of the Vlasov equation are presented
because they contribute to the understanding of the particle-push phase of the PIC sim-
ulation. The discontinuous Galerkin method as the discretization scheme of the Maxwell
equations is discussed as detailed as it is necessary for the arising DD problems. We con-
tinue with presenting the PIC method. A section about the difficulties of implementing the
PIC method in parallel with a distributed memory system outlines that the parallel per-
formance is mainly determined by an appropriate data distribution. The chapter is closed
with definitions of the DD problems that are dealt with in the present thesis and a section
that discusses how they are applied to the concrete setting of a PIC simulation.

2.1. The Maxwell-Vlasov system

An introduction to electromagnetic field theory is given by Thiedé in [32]. Details about
the Vlasov equations are provided for instance in [3].

The Maxwell equations are a system of PDEs which describe the temporal evolution of
an electromagnetic field induced by currents and charges:

∇ · (εE) = ρ (Gauss’s Law), (2.1)

−∇× E = −µ∂H
∂t

(Maxwell-Faraday equation), (2.2)

∇ · (µH) = 0 (Gauss’s Law for magnetism), (2.3)

∇×H = j + ε
∂E

∂t
(Ampère’s Circuital Law) (2.4)

with electric field E, the magnetic field H, the charge density j, the current density ρ, and
the spatially varying tensors ε and µ the permittivity and the permeability. These equa-
tions form a hyperbolic system and given initial and boundary conditions they completely
determine the temporal evolution of E and H.
We assume that the initial conditions E0 and H0 fulfill the properties:

∇ · (εE0) = ρ and (2.5)

∇ · (µH0) = 0, (2.6)

that means that the Gauss Laws 2.1 and 2.3 are initially fulfilled. If this is the case equations
2.1 and 2.3 are equivalent to the charge conservation law (see appendix A.1):

∂ρ

∂t
+∇ · j = 0. (2.7)

5



2. Problem formulation

Hence, if we chose appropriate initial conditions and we ensure the conservation of charge,
the four Maxwell equations reduce to the two equations 2.2 (Maxwell-Faraday equation)
and 2.4 (Ampère’s equation) which is a foreseen property for the applied discretization
scheme.

These equations are non-linearly coupled to the Vlasov equation which states a condition
for a charged-particle distribution f(x, v, t):

∂f

∂t
+ v · ∇f +

F

m
· ∂f
∂v

= 0, (2.8)

with velocity v, spatial coordinate x, force F and particle mass m. The distribution f(x, v, t)
states the particle distribution in phase-space (x, v) and represents a usual continuous prob-
ability distribution.
The coupling is hidden in the force term F of the Vlasov equation. Since we model particles
in an electromagnetic field the Lorentz force:

F = q(E + v ×B), (2.9)

acts on each charged particle and the Vlasov equation transforms to:

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∂f

∂v
= 0. (2.10)

For this coupling we introduced electromagnetic quantities into the Vlasov equation. This
can be thought of regarding the electromagnetic field as given and as a consequence of
the field this induces forces for the particles. This cause-and-effect dependency can also
be seen vice versa and we can also regard the electromagnetic field as a consequence of
moving charged particles, that is we introduce the particle distribution f into the Maxwell
equations. A snapshot of the particle distribution states the charge density and the current
density which serve as input for the Maxwell solver. ρ and j are functions of x and t and
are computed as the first and second moments of f :

ρ = q

∫
R3
fdv (2.11)

j = q

∫
R3
vfdv. (2.12)

2.2. Discretization scheme for the Vlasov equation

An introduction to particle methods is given in [3], in particular a discussion of the demon-
strated discretization method of the Vlasov equation can be found there. Issautier et al.
solve in [7] the coupled system of Maxwell-Vlasov equations in 2D on unstructured meshes
with a finite volume method for the Maxwell equations. A compact description of the
discretization of the Vlasov equation is provided there.

Discretizing the probability distribution f(t, x, v) is done by a deterministic particle
method. We introduce discrete superparticles (Pk)k=1...NS , NS the number of superparti-
cles, each representing a set of multiple particles. A superparticle Pk bears its own constant
mass wk and charge qk which means that we assume that the constitution of a superparticle

6



2.3. Discretization scheme for the Maxwell equations

does not change throughout the simulation. This allows us to approximate f by the sum
over Dirac contributions of each superparticle:

f(t, x, v) =
N∑
k=1

wkδ(x− xk(t))δ(v − vk(t)) (2.13)

with the position xk, the velocity vk and the weight wk of a superparticle. xk and vk are
determined by the differential system®

dxk
dt = vk = 1

mk

∫
Fkdt

Fk = qk(E(t, xk(t)) + vk ×B(t, xk(t))).
(2.14)

The second equation of 2.14 states the Lorentz force Fk that is induced by the electromag-
netic field which causes the particles to move. Equation one of 2.14 is basically Newton’s
equation of motion. Note that the formulation of this system is a direct consequence of the
Vlasov equation 2.8 (compare [3]) , that means Newton’s law of motion is already anchored
in the Vlasov equation.

Discrete counterparts of equations 2.11 and 2.12 compute to:

ρ(t, x) = e
N∑
k=1

ωkδ(x− xk(t)) and (2.15)

j(t, x) = e
N∑
k=1

ωkvk(t)δ(x− xk(t)). (2.16)

Since ρ and j are defined at the mesh vertices some interpolation scheme has to be applied,
details and further pointers can be found for instance in [8].

2.3. Discretization scheme for the Maxwell equations

The Maxwell equations are discretized with a discontinuous Galerkin method. For the
moment we assume that the charge conservation 2.7 is fulfilled at any time which supersedes
the two Gauss Laws of the Maxwell equations as already mentioned in 2.1. Hence the set
of four Maxwell equations reduces to the set of two equations®

−∇× E = −µ∂H∂t
∇×H = j + ε∂E∂t

. (2.17)

This set of equations is solved on an unstructured tetrahedral grid T = {τi|i ∈ I} with
the tetrahedra (τi)i∈I , N the number of tetrahedra and I an index set, that labels the
tetrahedra, such that the computational domain Ω =

⋃
i∈I τi ⊂ [0, 1]3.

A tetrahedron τi consists of 4 faces. For two tetrahedra τi, τj ∈ T it holds either τi∩τj = ∅
or τi ∩ τj 6= ∅, in the latter case the intersection is a common face and we denote it by Fij .
We call the set Nτi = {τj ∈ T |τi ∩ τj 6= ∅, i 6= j} the neighborhood of τi.
E andH are approximated by Eh, Hh ∈ V k

h = {f sufficiently smooth | f |τi ∈ P k(τi), i =
1 . . . N}. P k(τi) denotes the space of polynomial functions of maximum degree k defined
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2. Problem formulation

on τi. In other words, we seek solutions in a space of smooth functions that, restricted
to a tetrahedron, are polynomials. This definition implies that we allow solutions to be
discontinuous across tetrahedron boundaries.

Eh, Hh are sought as linear combinations of basis functions ϕij ∈ P k(τi), i = 1 . . . N, j =
1 . . . di. For each tetrahedron τi we fix a value di that indicates the local degrees of freedom
and determines the number of test functions associated to tetrahedron τi.

We multiply 2.17 by test functions ϕi, integrate by parts over a tetrahedron τi, replace
E,H by Eh, Hh and obtain the weak formulation:® ∫

τi
ϕij · µi ∂Hh∂t =

∫
∂τi
ϕij · (Eh × n)− ∫

τi
∇× ϕij · Eh∫

τi
ϕij · εi ∂Eh∂t = − ∫

∂τi
ϕij · (Hh × n) +

∫
τi
∇× ϕij ·Hh −

∫
τi
ϕij · j

, (2.18)

n denotes the unitary normal, pointing outward a tetrahedron.

The volume integrals in 2.18 can be evaluated locally, that is in terms of data dependency
computing volume integrals

∫
τi
. . . requires only degrees of freedom connected to tetrahedron

τi. In terms of a stiffness matrix the volume integrals pose only conditions among degrees
of freedom of the same tetrahedron.

The boundary integrals in 2.18 perform the actual coupling between adjacent tetrahedra.
We can rewrite

∫
∂τi
. . . as

∑
τj∈Nτi

∫
Fij

. . . where the latter integrals state the dependencies
between adjacent tetrahedra. More precise the computation scheme for evaluating Eh, Hh on
a face Fij states these dependencies. Since our solutions Eh, Hh are discontinuous through
element faces we nevertheless have to assign unique function values to Eh, Hh on faces. We
use totally centered fluxes, that is:

Eh|Fij ≈
Eh|τi + Eh|τj

2
, Hh|Fij ≈

Hh|τi +Hh|τj
2

. (2.19)

This scheme combined with a leap frog time integration scheme leads to an almost explicit
computation scheme that only requires the inversion of small local mass matrices. Further
details about the described method can be found in [25, 26].

2.4. The PIC Method

The PIC method [14, 3] is a method that basically simulates moving particles on a grid.
The framework handles at the one side a list of superparticles as the discretization unit
of the Vlasov equation as well as a computational grid for the solution of the Maxwell
equations. It consists of a four-step computation cycle as shown in figure 2.1.

� Scatter :
The set of superparticles (Pk)k=1...N with their locations (xk)k=1...N and their veloc-
ities (vk)k=1...N determine ρ and j by equation 2.15 and 2.16. In this manner each
particle contributes to the global current and charge density. Since ρ and j are dis-
cretized on the physical grid the contributions of each particle have to be scattered by
some scattering scheme (compare e.g. [17]) to grid points in the neighborhood of the
particle’s location.
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2.4. The Particle-In-Cell method

Field Solve

solve Maxwell Equation on grid

Gather

for each Particle compute elec-

tromagnetic field at Particle po-

sition

Scatter

for each Particle depose current

and charge contribution to grid

Push

for each Particle compute

Lorentz force and push Particle

to new position

2.

1. 3.

4.

ρ, j E, H

Exp ,
Hxp

f

Figure 2.1.: Main Loop of a PIC Simulation: the labels of the arrows denote the input/out-
put quantities of the phases, Exp and Hxp denote the electromagnetic field at
a particle’s location

� Field solve:
In the Scatter phase ρ and j are set up and they serve as input for the field solve phase.
The Maxwell equations are solved on the grid and produce the new electromagnetic
field E,H.

� Gather :
The electromagnetic field E,H is evaluated at the particle locations by an interpola-
tion scheme. These values allow the computation of the Lorentz force acting on each
particle.

� Particle push:
By Newton’s law of motion each particle is advanced due to the Lorentz force.

Note that this scheme contains two phases (particle push, field solve) that treat the two
equations independently and two coupling phases (scatter, gather) that actually connect
the two equations. The presented granularity of observation omits technical details. At this
level the numerical schemes for the different phases are fully exchangeable. however, for a
technical implementation the interfaces between the phases can not be strictly separated, an
efficient particle simulation is a highly specialized tool, compare [6]. In an implementation
the different phases might intertwine rather than being separately executed.
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2. Problem formulation

2.5. Parallelization issues

The parallel performance of a PIC simulation on a distributed memory system is mainly
determined by the way data is distributed to the different processors, therefore we start with
investigating on the two different kinds of data, the mesh data and the superparticles. We
continue with pointing out the requirements of the different phases of the PIC simulation in
terms of data distribution. We close this section with a distinction between independently
implemented computational phases and interleavingly implemented phases.

2.5.1. Types of data

There are mainly two types of data that are manipulated throughout the particle simulation.
Quantities like the electromagnetic field E, B, and the charge and current distribution ρ
and j are mesh data and exhibit spatial order. On the other side there are the moving
particles that can not be attached to any geometric position once for the entire simulation
because they move throughout the simulation.

Data is distributed with respect to DDs. A domain decomposition for the grid states a
mapping that assigns to each tetrahedron of the triangulation a processor number. The
mesh data that is connected to this tetrahedron will be stored on the processor that is
assigned to this tetrahedron. Since mesh data is connected to vertices and due to the fact
that adjacent tetrahedra have a common face and hence common vertices, at partition
boundaries a special treatment of mesh data is required. Our modelling does not consider
this technical detail.

A domain decomposition for the particles also states a DD of the mesh and indicates the
way we distribute the particles. All particles that reside in a tetrahedron that is assigned
by this DD to a certain processor will be stored on the same processor as the surrounding
tetrahedron. Note that, since the particles move, a particle might leave the cells that are
stored on the same processor as the moving particle and we have to either migrate the
particle to another processor (particle migration) or we implicitly adapt the DD for the
particles by keeping the particle on the same processor.

Carmona and Chandler provide in [6] an overview about the structure of parallel PIC ap-
proaches. They point out that for a wide range of particle simulations the structure of data
distribution can be described by the notion of a particle box and a mesh box. Each processor
holds one particle box and one mesh box which corresponds to the two partitions as a result
of the DDs described above. Carmona and Chandler identify two different settings: in the
first case a processor’s particle box and its mesh box are different, and in the second case,
they are not. For both cases they discuss the pros and cons. We decided to restrict our
considerations to particle simulations with one single DD for both the particles and the
mesh, which corresponds to the case particle box = mesh box. This design decision will be
justified after a discussion about the demands that the different computational phases ask
for a good DD.

2.5.2. Requirements of the phases of the PIC method

Figure 2.2 shows a two dimensional decomposition problem of a U-shaped domain in 3
partitions. The density of the particles grows with increasing x and increasing y coordinate,
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2.5. Parallelization issues

Figure 2.2.: Left: good mesh box, Right: good particle box

hence the highest density is on the top right part.

The left image shows a good decomposition for the field solve phase. In this example
the sizes of the partitions correspond to the workload for each processor (note that this is
not always the case, see 2.7.1) which are well balanced in this example. Since the numeric
scheme requires communication of boundary data among the processors the decomposition
should be chosen such that the boundaries are small.

On the right side a DD for the particles is shown. The only property the particle push
phase requires is that each partition contains the same number of particles because this
balances the workload of pushing the particles. The example is one good solution.

The fact that the particles interact in the scatter and gather phases of the simulation
with grid data that is geometrically close to the current position of the particle, therefore
it is beneficial in terms of data communication to place a particle onto that processor that
also governs the cell that surrounds the particle. During the scatter phase the charge and
current of a particle is deposed on the grid. We assume that the scattering scheme is local,
that means that the particle’s charge and current only contributes to mesh data associated
to the tetrahedron that governs the particle. The same assumption holds for the gather
phase. We assume that the electromagnetic field at a particle’s position is interpolated
from grid data connected to the sourrounding tetrahedron of a particle. These assumptions
guarantee that there is no communication necessary during the gather and scatter phases.

Concerning the distribution of figure 2.2 this means that the illustrated situation of mesh
box and particle box is only good for the green partition, all particles of the green partition
(right image) reside in the mesh box of the green domain (left image), in other words, the
green particle box is a subset of the green mesh box. This is neither true for the blue nor
the red partition. It is the worst situation for the coupling phases of the blue partition
since for all particles the blue partition has to initiate data communication with the green
partition since the blue particle box is a subset of the green mesh box. To summarize for the
coupling phases an optimal situation is the setting that a processor’s particle box matches
its mesh box.

To avoid the communication overhead we decided to restrict us to the setting particle
box = mesh box. In this case the scatter and gather operations do not require additional
communication since it is ensured that the mesh elements reside on the same processor as
the particle and we assume that both operations are local. From a computational point of
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2. Problem formulation

view this also allows us to coarsen the 4-phases cycle of the simulation as a cycle with mainly
two computational phases, the Maxwell solver (field solve) and a compound phase consisting
of the particle-push, scatter and gather, since there is no communication required for the
coupling phase and there is no processor synchronization needed during the compound
phase. We will also refer to this phase as extended particle push phase.

Figure 2.3.: Good decomposition for both, the field solve and the extended particle push
phase

The setting particle box = mesh box requires particle migration since we demand that
a particle always resides on the processor that governs its sourrounding cells. Therefore
even if we assume to have an initial decomposition that balances both (as in figure 2.3), the
number of particles per processor and the sizes of the partitions, load imbalance will occur
because the numbers of particles in the particle boxes change throughout the simulation.
If we do not migrate the particles then we would implicitly adjust the particle box, hence
this case corresponds to the setting particle box 6= mesh box. In the latter setting the
number of particles in a particle box would stay constant but the moving particles require
communication during the coupling phases.

To cope with the arising imbalance by particle migration we consider DDD, that is we
measure the load imbalance during the simulation and initiate a redecomposition if neces-
sary. [34] considers load imbalance measures for particle simulations and decision criteria
for the best moment to redecompose. Note that this demands from the decomposition
strategy not only to produce good decompositions but also to be fast since we redecompose
online (during the simulation).

We summarize these considerations in table 2.1 and the following statement:

computational phase requirement

field solve equally sized mesh boxes with small surfaces
particle push equally sized particle boxes
gather + scatter particle boxes match mesh boxes

Table 2.1.: Desired properties of a DD for the different PIC phases

Assuming an initially balanced setting, the fact that particles move in the setting of
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2.5. Parallelization issues

� particle box = mesh box implies particle migration. The boxes remain unchanged but
the number of particles in the particle boxes change and this induces imbalance for
the particle push phase.

� particle box 6= mesh box leads to an implicit adaption of the particle box. The
numbers of particles in the particle boxes do not change. No imbalance is induced for
the particle push phase but an increase of communication in the gather and scatter
phase occurs.

2.5.3. Execution model of a PIC simulation

We have to consider whether the two remaining computational phases, the Maxwell solver
and the extended particle push phase are implemented as independent or interleaving com-
putational phases, see figure 2.4.

: idle time

Interleaved setting:

4

9

7

7

4

5

field solve + ext. particle push

barrier

proc1

proc2

proc3

0 13

Independant computational phases:

4

9

7

7

4

5

field solve ext. particle push

barrier barrier

proc1

proc2

proc3

0 9 15

Figure 2.4.: The computational phases of the PIC method can be implemented interleaved
or independent

In the independent setting the processes are synchronized after each computational phase
while in the interleaved setting a processor already starts with the extended particle push
phase as soon as he finished the solution of the Maxwell equations in its domain. The setting
of independent computational phases arises for instance if an existing parallel Maxwell solver
is used in the context of a PIC simulation. Implementing the interleaving setting requires
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2. Problem formulation

intensive use of asynchronous communication of boundary data during the field solve and
is from a practical point of view more difficult to implement than the independent setting.
But note that an interleaving setting reduces not only idle time as shown in figure 2.4
but also poses as described in 2.7.4 an easier DD problem. In the interleaved setting we
require to balance only one weight, that is the sum of the workload of the field solve phase
and the workload of the extended particle push phase. In the setting of two independent
computational phases a DD requires to balance both, the workload for the field solve and
separately the workload for the extended particle push phase.

2.6. Formal definition of the domain decomposition problem

This section introduces further notations to which we refer throughout the present thesis
and formulates the DD problems.

Definition 2.1 A domain decomposition of the mesh T in NP parts is a mapping

d : I → {1, . . . NP }. (2.20)

The sets Pk = {τi ∈ T |d(i) = k}, k ∈ {1, . . . NP } are the induced partitions by d. D(T,NP )
denotes the set of all domain decompositions of the triangulation T in NP parts. Note that
|D(T,NP )| is finite 1.

Assigning weights to the mesh allows us to model workload.

Definition 2.2 A weight ω that is assigned to the mesh T is a mapping

ω : I → R+
0 , such that (2.21)∑

i

ω(i) = 1. (2.22)

We write ωi = ω(i).

Note that assumption 2.22 is no restriction to the modelling. If a weight does not satisfy
this property we simply divide each ωi by

∑
i ωi. This is a common simplification also done

for instance in [22].
In order to evaluate the quality of partitions we measure the balancing of the assigned

weights, the edge-cut of the partitions as well as the edge-cut of the mesh.

Definition 2.3 The edge-cut of a partition Pk is defined as

µe(Pk) =
∑
τ∈Pk

|{τi ∈ Nτ |τi /∈ Pk}|. (2.23)

Definition 2.4 The edge-cut of a mesh T is defined as

µe(T ) =
1

2

∑
P∈T

µe(P ). (2.24)

1|D(T,NP )| = (NP )N .
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2.6. Formal definition of the domain decomposition problem

Definition 2.5 The load induced by a domain decomposition d for a partition Pk and the
weight ω is defined as

l(ω, Pk) =
∑
j∈Pk

ω(j). (2.25)

Definition 2.6 The balancing of weight ω with respect to a domain decomposition d is
defined as the quantity

µw(ω, d) = Np ·max
i
{l(ω, Pi)}. (2.26)

µw defines a total order on D(T,NP ).

The definition of this measure follows the observation that we aim to minimize the idle
time of a computational phase.

Definition 2.7 Given a domain decomposition d and a weight ω then the idle time of the
computational phase that is modeled by ω computes to:

idletime(ω, d) =
∑

i=1...NP

max
j
{l(ω, Pj)} − l(ω, Pi). (2.27)

idletime defines a total order on D(T,NP ).

The following theorem shows that idletime and µw order the set of domain decompositions
in the same manner and hence justifies the definition of µw.

Theorem 2.8 idletime(ω, d1) ≤ idletime(ω, d2)⇔ µw(ω, d1) ≤ µw(ω, d2) .

Proof: We consider d1, d2 ∈ D(ω,NP ). (Pk)k=1...NP are the induced partitions by d1,
(Qk)k=1...NP are the induced partitions by d2.

idletime(ω, d1) ≤ idletime(ω, d2)
2.27⇔∑

i=1...NP

max
j
{l(ω, Pj)} − l(ω, Pi) ≤

∑
i=1...NP

max
j
{l(ω,Qj)} − l(ω,Qi) ⇔

NP ·max
j
{l(ω, Pj)} −

∑
i=1...NP

l(ω, Pi) ≤ NP ·max
j
{l(ω,Qj)} −

∑
i=1...NP

l(ω,Qi)
2.22⇔

NP ·max
j
{l(ω, Pj)} ≤ NP ·max

j
{l(ω,Qj)} 2.26⇔

µw(ω, d1) ≤ µw(ω, d2).

�

idletime and µw define equivalence classes in D(T,NP ). Elements in D(T,NP ) are equal
with respect to idletime or µw if they have the same maximum of the induced load for a
partition. As an example considering again the field solve phase of the independent setting
in figure 2.4, the splitting 7, 9, 4 is equivalent with respect to idletime and µw to any other
splitting with maximum 9, for instance 9, 2, 9.

With these definition we state now the domain decomposition problems that are handled
in the following chapters.
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2. Problem formulation

Problem 2.9 Given a weight ω the single-constraint domain decomposition problem
is the problem of finding a d ∈ D(T,NP ) such that:

max{µe(Pi)} is small, and (2.28)

µw(ω, d) is small. (2.29)

Problem 2.10 Given multiple weights ωi the multi-constraint domain decomposition
problem is the problem of finding a d ∈ D(T,NP ) such that:

max{µe(Pi)} is small, and (2.30)

∀i µw(ωi, d) is small. (2.31)

The DD problems are loosely formulated, especially note that we do not establish any
relation in terms of importance about small edge-cut and good balancing(s), because, as
section 2.7.5 points out, the requirements depend on the problem setting. Chapter 3 outlines
that technical methods to solve problem 2.9 and problem 2.10 emphasize the conditions
edge-cut and weight balancing differently. While multilevel graph partitioning methods
aim primarily to minimize the edge-cut (objective) with the side conditions to balance the
weights (constraints) this is vice versa with DDs along SFCs.

The following section describes how we apply this model to the settings of particle sim-
ulations.

2.7. Modelling particle simulations

The definitions in 2.6 give rise to defining two weights ωM (Maxwell) and ωP (Particles)
to model the computational load for the field solve phase and the particle push phase.

2.7.1. Modelling the load for the field solve phase

Concerning ωM due to the underlying numerical scheme (as described in 2.3) we have the
possibility to vary the degrees of freedom di per element τi and hence the computational
load per element may vary. Clearly if we keep the same number of degrees of freedom for
each tetrahedron we model ωM = 1

N since there is equal workload for each tetrahedron. If
we vary the number of degrees of freedom per tetrahedron we have to figure out ratios of the
computational loads for possible degrees of freedom that we apply. We do not precise here
how to obtain good models but state brief hints. One way to obtain a first estimation to
these ratios can be done theoretically by summing up, according to the numerical scheme,
for each occurring number of degrees of freedom the number of Floating Point Operation
(FLOP)s, weighted by the number of tact cycles they need to perform, that are required
to perform the computations for a tetrahedron. A practical alternative and probably even
more accurate is plainly performing time measurings.

This modelling lets us assume that it holds ωM > 0 for all tetrahedra. We further assume
that max{ωM (i)}

min{ωM (i)} < C, for some small C, that is we assume that the work load does not vary
too intensively, for instance C = 5.
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2.7. Modelling particle simulations

2.7.2. Modelling the load for the particle push phase

The computational load for the particle push phase is also modelled tetrahedron-wise. We
assume that pushing a single particle requires computational load ν = 1

total number of particles
and a reasonable way to define ωP is:

ωP (i) = “Number of particles in tetrahedron i” · ν.

Note that it is not realistic to restrict ωP in any way, there might be tetrahedra that do not
govern any particle at some time, hence 0 ∈ ωP (I). Further we can think of simulations
where particles are attracted by a certain region in the computational domain and hence
few tetrahedra will contain almost all particles. Therefore we do not impose any limitation
on the number of particles per tetrahedron or any similar restriction as for ωM .

2.7.3. Influence of the edge-cut for a particle simulation

A particle simulation benefits from a DD with a small edge-cut at least at two steps. As
already discussed in 2.5.2 there is firstly communication of boundary data during the solu-
tion of the Maxwell equation. The edge-cut provides an estimation for the transfer volume
hence it is beneficial to keep the edge-cut low. Secondly a small edge-cut is also beneficial
for the particle push phase, more precisely the amount of particle migrations that are nec-
essary during the simulation. Due to some Courant-Friedrichs-Levy (CFL)-condition for
the solution of the Maxwell equations the time step in particle simulations is limited which
leads to a limited distance a particle can travel during one particle push phase. Further with
decreasing edge-cut the probability that the neighborhood of a particles surrounding tetra-
hedron contains tetrahedra from other partitions decreases. For this reason the likelihood
that a particle remains on a certain processor during one particle push phase increases with
decreasing edge-cut. Less particle migration keeps a decomposition balanced and minimizes
the communication required for distributing particles.

2.7.4. Execution models

As 2.5.3 points out we differ between interleaving computational phases and independent
computational phases. The difference between the two models is reflected in the number of
constraints we set up for the DD problem.

In the setting of independent computational phases we model the problem in fact with a
two-constraint DD problem, balancing ωM and ωP .

In the interleaved setting we have to balance the sum of the loads for the two phases.
That is here we model the problem with a single-constraint DD problem balancing the
constraint 1

2(ωM + ωP ).

2.7.5. Models for the runtime of parallel PIC simulations

Zumbusch provides in [36] a simple model for the runtime of a parallel FEM solver. We
adapt and extend this model here for the interleaved setting and the independent setting.

The runtime tcyc of one cycle of the PIC simulation is the runtime of the processor with
the highest load. This runtime consists of computation time and communication time. The
computation time is linear in the number of tetrahedra of a partition (which is linear to the
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global number of tetrahedra N) and linear in the number of particles of a partition (which
is linear to the global number of particles Nparticles). We assume that communication time
is linear to the maximal edge-cut of a partition of the decomposition, which we assume is
linear to the overall edge-cut of the decomposition. In the independent setting we obtain:

tcyl = C1NNparticlesµw(
1

2
(ωM + ωP ), d) + C2µe(T ), (2.32)

for constants C1, C2. In the independent setting we obtain:

tcyl = C1Nµw(ωM , d) + C2Nparticlesµw(ωP , d) + C3µe(T ). (2.33)

Further if we consider DDD the overall computation time t of the simulation grows
linearly with the time td needed for redecompositions (and note that ωP changes with the
time).

t = C1Nµw(ωM , d) + C2Nparticlesµw(ωP , d) + C3µe(T ) + C4td. (2.34)

Equation 2.34 shows that the overall computation time depends on many aspects. We see
that the importance of good balancings of ωM and ωP depends on the number of tetrahedra
and the number of particles respectively. Since practical DD methods pose compromises
between small edge-cuts and good balancings it is problem-dependant whether to optimize
the balancing or the edge-cuts in order to achieve low computation times. Further we
can also construct examples where the redecomposition time is more important than the
balancing or the edge cut. Domain decomposition for particle simulations are hence a huge
compromise and the best decomposition strategy is problem-dependant.
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3. Domain decomposition methods

Multilevel graph partitioning algorithms are widespread methods for graph partitioning in
scientific computing because they produce good quality partitions, they are robust and due
to their hierarchic nature they are fast. To make them applicable, the dual graph (see
3.1.1) of a mesh is constructed and the decomposition is performed on the graph. There
are several software packages (among MeTiS 1, Jostle 2, Chaco 3, Scotch 4) that make them
convenient to apply in scientific applications. These methods are also applied for particle
simulations as for instance in [16]. The authors describe the application of PJostle, the
parallel version of Jostle, in the scenario of a particle method with DDD on unstructured
tetrahedral grids.

Not all graph partitioning software packages offer the possibility to balance multiple
weights. MeTiS for instance supports true multi-constraint partitioning in the sense of our
definition of the multi-constraint partitioning problem in 2.10, which is one reason why we
decided to compare our results in chapter 6 to MeTiS. Jostle for instance comes with the
so-called multi-phase partitioning which requires that the weights are 0 for at least some of
the graph vertices. These methods are explained in 3.1.4.

Besides multilevel methods there are a variety of less known but though competitive
approaches. For instance recently Meyerhenke et al. developed a diffusion-based graph
partitioning heuristic based on shape optimization, whose edge-cuts are minimized by the
objective to generate surface minimizing shapes. They describe their method in [27] and
claim that their algorithm computes consistently better results than MeTiS and Jostle in
terms of edge-cuts.

Mesh partitioning along SFCs are known to be very fast, which is an important property
for DDD and the subject of the present diploma thesis. In addition decompositions via
SFCs result in a cache-efficient mesh data storage. Section 3.2 gives a brief introduction
to SFCs and how they are applied for DD for single-constraint problems. The chapter is
closed by section 3.2.5 that points out that SFCs are not directly applicable as a device
for DD for 2-constraint problems as required for particle simulations with independent
computational phases.

3.1. Multilevel graph methods

Before discussing the main principles of multilevel graph partitioning, we give a brief dis-
cussion about the construction of graphs from meshes.

1http://glaros.dtc.umn.edu/gkhome/views/metis/
2http://staffweb.cms.gre.ac.uk/~wc06/jostle/
3http://www.sandia.gov/~bahendr/chaco.html
4http://www.labri.fr/perso/pelegrin/scotch/
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3. Domain decomposition methods

3.1.1. Constructing dual graphs

The vertex-weighted undirected dual graph G = (V,E) to the triangulation T is constructed
as follows. For each τi ∈ T we create a vertex, hence V = T . Further, for each τi and for
each τj ∈ Nτi we add the edge (τi, τj) to E if it is not yet contained. It is immediately
clear that for unstructured tetrahedral meshes the degree of a vertex is limited by 4 (for
unstructured triangular meshes the degree is limited by 3), the maximal number of faces
an element can have. Figure 3.1 illustrates an unstructured triangulation of a triangle and
its corresponding dual graph.
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Figure 3.1.: A triangular mesh and its corresponding dual graph. The degrees of the nodes
of the dual graph of an unstructured triangular mesh is limited to 3.

This construction allows to transfer the defined weights directly to the graph, since
weights are defined on elements and elements are transformed into vertices. Therefore
we construct a vertex-weighted graph. Furthermore, a solution to the graph decomposition
problem (a function that maps a vertex to a partition number) is directly interpretable as
a solution to the mesh decomposition problem.

Note that a graph that is constructed from a mesh is a representation of the connectivity
of the elements of the mesh and contains no geometry information of the mesh. Graph-
based mesh decomposition therefore just considers the connectivity of a mesh. Contrariwise,
decompositions along SFCs do not consider the connectivity of a mesh but just the spatial
location of elements.

3.1.2. Multilevel structure

Multilevel graph partitioning methods consist of three phases and follow the V-cycle as
shown in figure 3.2.

In the coarsening phase a series of successively coarser graphs is constructed. One coars-
ening step starts with identifying a matching, that is a set of edges, that do not have a
common vertex, compare e.g. [28], of the fine level graph. The vertices that are connected
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3.1. Multilevel graph methods

Figure 3.2.: V-cycle of multilevel graph partitioning: multilevel graph partitioning algo-
rithms coarsen the input graph, compute a solution on the coarse graph and
prolong and refine the coarse solution to obtain a solution for the initial graph.
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3. Domain decomposition methods

by an edge of this independent set are collapsed and they form a single vertex in the coarse
level graph and the weights of the vertices and edges are appropriately adapted.

In the initial partitioning phase the coarsest graph produced by this construction is
decomposed with a conventional partitioning algorithm.

This initial decomposition is transfered to the finer levels in the uncoarsening phase. At
each uncoarsening step a refinement heuristic is performed to improve the quality of the
decomposition until the initial level is reached.

3.1.3. The single-constraint problem

As the graph partitioning problem is NP-complete, so are the objectives of the three phases
of the multilevel approach. Finding matchings for arbitrary graphs is known to be NP-
complete, the initial graph partitioning is NP-complete as well as the decomposition im-
provement step since the best decomposition improvement would be to solve the decom-
position problem itself. For this reason it is necessary to apply heuristics for each of these
three phases. This observation shows that a variety of algorithms can be constructed that
follow the multilevel scheme. There are plenty of algorithms for finding matchings (Random
Matching, Heavy-Edge Matching, Sorted Heavy-Edge Matching, . . . compare [21]) as well as
for improving existing decompositions (strategies based on the Kerninghan-Lin algorithm
[23], boundary refinement strategies, . . . compare [21]) and for performing an initial decom-
position (Random initial decomposition, Region Growing approaches, . . . compare [21]) each
with characteristic weaknesses and potentials. For different partitioning problems different
heuristics perform differently well, even a certain combination of heuristics for the three
phases might perform well on certain inputs but produce bad results on others. For this
reason MeTiS implements multiple strategies for these three phases and offers the possibility
to the user to select the heuristics to apply in each phase.

For single-constraint problems graph partitioning software packages allow the user to
specify an imbalance µw(ω, d) which the algorithm tries to achieve and under which the
algorithm tries to improve the edge-cut. Allowing a higher imbalance allows more possi-
bilities for improving the edge-cut, hence multilevel graph partitioning poses a compromise
between edge-cut and balancing.

3.1.4. Multiple constraints

To the author’s best knowledge there are only two software packages, MeTiS and Jostle, that
provide the possibility to balance multiple constraints. Karypis and Kumar, the developers
of MeTiS, refer to this problem as multi-constraint graph partitioning problem in [22], that
is where we adopted this term. The MeTiS team provides two formulations of the multi-
constraint graph partitioning problem, that is:

Problem 3.1 The horizontal multi-constraint partitioning problem is the problem
of, given real numbers ci ≥ 1, find a domain decomposition d such that the sum of the edges
cut by the partitioning is minimized subject to the constraints:

∀i : µw(ωi, d) ≤ ci, (3.1)

and:
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3.2. Space filling curves

Problem 3.2 The vertical multi-constraint partitioning problem is the problem of,
given a real number c ≥ 1 and real numbers ri ≤ 1 such that

∑
i ri = 1, find a domain

decomposition d such that the sum of the edges cut by the partitioning is minimized subject
to the constraint: ∑

i

riµw(ωi, d) ≤ c. (3.2)

Problem 3.1 aims that each weight is balanced with respect to an imbalance limit chosen
for each weight independently, while 3.2 aims to balance each weight such that a convex
combination of the imbalances fulfills a certain limit. The horizontal formulation is more
strict than the vertical formulation, however the vertical formulation allows more flexibility
in the modelling of a problem. Consider for instance a particle simulation that spends 80%
of its computation time in the particle push phase and only 20% in the field solve phase.
For this problem a balancing of the weight that models the particle push (ωP ) impacts
stronger on the total computation time than the balancing for the weight that models the
field solve phase (ωM ). The total computation time for the simulation is proportional to
0.2 ·µw(ωM , d)+0.8 ·µw(ωP , d) (according to this very simplified model). Hence, the setting
µw(ωM , d) = 1.4, µw(ωP , d) = 1.02 computes in total faster than µw(ωM , d) = µw(ωP , d) =
1.1. Modelling this example with the vertical formulation of the multi-constraint problem
yields domain decompositions that exhibit higher imbalances for some weights while the
balancings of other weights recompense these surpluses.

For both formulations the MeTiS group developed multilevel algorithms that follow the
three phases scheme as presented above, that is the multi-constraint multilevel recursive
bisection algorithm for the horizontal formulation of the problem and the multi-constraint
multilevel k-way partitioning algorithm for the vertical formulation, both described in [22].

Walshaw and the Jostle group present in [33] their approach to balancing multiple weights
which they call multi-phase partitioning. Their approach follows the horizontal formulation
3.1. For the fact that their algorithm requires that ωi(τ) = 0 for at least some τ their algo-
rithm is only applicable for a subset of the problems that could be solved by MeTiS. To the
author’s best knowledge there are no papers comparing the multi-constraint decomposition
abilities of MeTiS and Jostle.

3.2. Space filling curves

Before illustrating the capabilities of SFCs as a device for DD, we give a brief introduction
to SFCs for a better understanding of the method. Chapter 5 describes the technical
realization of our work and takes on this introduction.

The term “Space Filling Curve” arose with a graphical representation by David Hilbert
in 1891 of a curve that fills the entire unit square. At this time mathematicians searched
for a bijective mapping from the unit interval to the unit square which would have had a
strong impact on the concept of dimensionality. Eugen Netto showed in 1889 that such a
mapping does not exist, however dropping the requirement of injectivity, mathematicians
formulated curves that are surjective but not injective. We define a Space Filling Curve as
follows:

Definition 3.3 A d-dimensional Space Filling Curve (2 ≤ d <∞) is a continuous and
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3. Domain decomposition methods

surjective mapping

f : [0, 1]→ [0, 1]d . (3.3)

We denote [0, 1] the index space and [0, 1]d the geometric space.

3.2.1. Recursive construction principle

The SFCs we consider are constructable by a recursive scheme as it is illustrated for the two
dimensional Hilbert curve fh in figure 3.3. The Hilbert curve is the limit of the displayed
procedure. For further information about the recursive nature of SFCs refer for instance
to [2, 30].
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Figure 3.3.: Recursive construction principle of the two dimensional Hilbert curve.

Iteration 1 consists of one basic shape of the curve which is used to construct the following
iterations recursively. Figure 3.4 demonstrates this construction principle.
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Figure 3.4.: Constructing the second iteration of the Hilbert curve: the basic shape is qua-
druplicated, the parts are assembled and connected.
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3.2. Space filling curves

Besides u there are three further basic shapes A, @ and t, which are rotated versions
of u. To construct a new iteration we substitute each basic shape contained in the prior
iteration by four downscaled basic shapes and connect them appropriately.

In figure 3.4 the transition from iteration 1 to iteration 2 is shown. The blue basic shape
(u) is substituted by the sequence A, ^, u, �, u, _, @ in terms of its own direction 5, the
arrows denote the direction of the connections between the basic shapes, hence iteration 2
can be seen as 4 basic shapes appropriately connected.

Constructing iteration 3 from iteration 2 follows the same scheme as the transition from
iteration 1 to iteration 2 except that we have to substitute four basic shapes instead of
only one. The first step to construct iteration 3 is to substitute the red basic shape (A)
by four appropriately connected basic shapes. Considering figure 3.3 we construct a new
substitution rule. We infer that A gets substituted by the sequence u, �, A, ^, A, �, t.
In the same manner we construct a rule for @ and with these two additional rules we can
completely construct iteration 3.

Iteration 4 (which is not displayed here) defines a substitution rule for t in the same
manner as we obtained the rules for the other three basic shapes. Note that these four
iterations are sufficient to uniquely define the Hilbert curve in 2D. We summarize the
obtained construction principle in table 3.1.

u ⇐ A ^ u � u _ @
A ⇐ u � A ^ A � t
@ ⇐ t � @ _ @ � u
t ⇐ @ _ t � t ^ A

Table 3.1.: Grammar for the 2D Hilbert Curve.

Using these rules as the productions of a context-free “L-system” (compare [29]), a
context-free grammar with the constraint to apply as many rules as possible in each it-
eration, this system determines the iterations of the Hilbert curve and serves as a base
for constructing turtle graphics (compare [2]), in principle a sequence of arrows that in-
structs a turtle into which direction it should move. Turtle graphics can be used to traverse
two-dimensional data along the Hilbert curve as well as for simply constructing visual rep-
resentations of the iterations of the Hilbert curve.

The following section points out that the recursive nature of the Hilbert curve gives rise
to a computation principle of the mapping from index space to geometric space as well as
its inverse.

3.2.2. Basic idea of an algorithm for computing the Hilbert mapping

The Hilbert curve in 2D exhibits an inherent quartering. Each basic shape is substituted
by four basic shapes in each iteration. For actually computing the mapping from an index
i ∈ [0, 1] to a 2D coordinate c ∈ [0, 1]2 we make use of this observation.

The first iteration of the Hilbert curve in figure 3.3 already shows the rough course of
the curve: it starts in the left bottom subsquare (subsquare 0), then visits the left top

5We consider the curve’s starting point in the bottom left subsquare, however this decision is arbitrary.

25



3. Domain decomposition methods

subsquare (subsquare 1) and the right top subsquare (subsquare 2) and ends in the right
bottom subsquare (subsquare 3). Due to the local substitution principle and its recursive
nature this gives rise to the assumption (and follows from a definition of the Hilbert curve
by nesting intervals as e.g. in [2]) that once the curve exits a subsquare it never reenters
again. Hence the curve visits all points in subsquare 0 before visiting any point of subsquare
1 (or even of any other subsquare).

Another important observation is that the Hilbert curve evolves with constant speed which
formalizes as: ∫ t0+δ

t0

fh(i) =

∫ t1+δ

t1

fh(i) (3.4)

for t0, t1, δ ∈ [0, 1] and 0 ≤ a, b ≤ 1− δ. That is if we interpret the index parameter of the
Hilbert curve as a time parameter, then the curve travels in a certain time span always the
same area independent from its absolute starting time.

These facts combined give a first estimation of the Hilbert mapping:
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Each further iteration allows us to restrict the interval for c. Let us assume i ∈
î
3
4 , 1
ó
,

hence c is in subsquare 3. As figure 3.3 shows the curve enters subsquare 3 on the top right
subsquare of subsquare 3 and follows the green basic shape. We apply the same idea as for
iteration 1 and we obtain the more precise estimation:
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This procedure may be continued until we reach the desired precision.
Representing the index i in base four system simplifies the computation of the Hilbert

mapping. We explicitly denote the base four system by brackets and the subscript 4 while
otherwise assuming the decimal system unless explicitly indicated. It holds

i = (0.i0i1i2 . . . )4 =
∑
k

ik · (
1

4
)k, ik ∈ {0, 1, 2, 3}. (3.13)

We benefit from the quaternary representation of i because each digit ik of i directly de-
termines a subsquare in the refinement of the above procedure. We illustrate this by the

26



3.2. Space filling curves

example i = 0.8 = (0. 3︸︷︷︸
i0

0︸︷︷︸
i1

3︸︷︷︸
i2

1︸︷︷︸
i3

)4. i0 = 3 means that i ≥ 0.75 and hence we already

know that fh(i) is in subsquare 3. The next digit i1 determines the subsquare in subsquare
3. Since i1 = 0 we know that i ≤ 13

16 (cmp. equation 3.9) and hence fh(i) lies in the top right
subsquare of subsquare 3. If for each refinement level we label the subsquares consecutively
in the order the Hilbert curve passes through them, then the quarternary representation of
the index directly tells us the sequence of subsquares that contain fh(i).

In section 5.1 we take on the quarternary representation of the index and describe our
method for computing SFC mappings and their inverses.

3.2.3. Proximity preservation

DD along SFCs requires that the SFC preserves proximity, that is given two indices i1, i2 ∈
[0, 1] that are close, for instance |i1− i2| < ε, we also require that their corresponding points
in geometric space fh(i1), fh(i2) are close, for instance ||f(i1)−f(i2)||2 < π(ε, (i1− i2)) with
π being some appropriate dependency on ε and the distance from i1 and i2. The appropriate
dependency that holds for SFCs is formalized in the definition of Hölder continuity.

Definition 3.4 A mapping f : [0, 1]→ Rn is called Hölder continuous on the interval [0, 1]
to the exponent k if there is a C ∈ R such that:

||f(i1)− f(i2)||2 ≤ C · |i1 − i2|k ∀i1, i2 ∈ [0, 1] . (3.14)

In general it holds that a d-dimensional SFC that can be recursively constructed is Hölder
continuous to the exponent 1/d, compare e.g. [2].

Note that there is no inverse statement of Hölder continuity for SFCs, that is given
two close points p1, p2 in geometric space there is no statement that guarantees that their
indices f−1(p1) and f−1(p2) are also close in some sense. This becomes immediately clear
by considering points around the center (0.5, 0.5), for instance for some ε > 0 the indices of
the point (0.5− ε, 0.5− ε) that lies in subsquare 0 and the point (0.5 + ε, 0.5− ε) that lies
in subsquare 3 have a distance of at least 0.5 in index space, compare equation 3.5.

3.2.4. The single-constraint domain decomposition problem

The basic idea of DD along SFCs is to reduce a multidimensional DD problem to a one-
dimensional splitting problem. This holds for both, single-constraint problems as well as
for our developed methods for two-constraint problems.

We illustrate the basic method with a 2D example based on a geometry that is similar to
the geometry of the introductory example in figures 2.2 and 2.3. The U-shaped geometry as
displayed in figure 3.5 consists of 2716 triangles, hence T = {τ1, . . . τ2716}. The red overlay
is the third iteration of the Hilbert curve.

For simplicity we assume one constant weight ω = 1
2716 , that is we aim to decompose the

mesh into partitions that contain the same number of triangles. We chose NP = 3.

Reducing the dimensionality of the problem is done by the inverse of the Hilbert mapping
f−1h , see section 5.1.1 for details about its construction. Since we deal with triangles and f−1h
is defined on points, we have to assign points to each triangle. We use the center of gravity
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Figure 3.5.: U-shaped example geometry with 2716 triangles, the red overlay is the third
iteration of the Hilbert curve.

of a triangle, which has the property that it is, stochastically speaking, the expected value of
the random experiment “pick some point from a triangle” and hence the best representative
for the whole triangle:

Definition 3.5 τ is a d-dimensional simplex with the vertices x1, . . . xd+1 ∈ Rd. We define:

cg(τ) =
1

d+ 1
· (x1 + · · ·+ xd+1). (3.15)

We compute f−1(cg(τ)) ∀τ ∈ T and obtain 2716 indices as illustrated in the histogram
of figure 3.6. In the following we may also omit the cg in the notation and abbreviate:
f−1(τ) := f−1(cg(τ)).
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Figure 3.6.: Hilbert index distribution of the triangles of example geometry 3.5.

The correspondence between the index distribution 3.6 and the triangles 3.5 becomes
clear by regarding the overlain iteration of the Hilbert curve in figure 3.5. The curve starts
in the bottom left corner, there are many triangles and hence in the interval from 0 to
about 0.12 there are many indices. The gap from about 0.12 to about 0.18 corresponds
to the exit of the Hilbert curve of the U-shaped geometry until its reentrance to the left
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3.2. Space filling curves

part of the U. In the same manner the other gaps can be explained. Note that since the
Hilbert curve is axially symmetric to the straight line y = 0.5 and the triangulation of the
geometry is nearly axially symmetric to the straight line y = 0.5 the index distribution
exhibits approximately point symmetry to the point x = 0.5.

Now we perform the one dimensional splitting of the index distribution, that is we split
the interval [0, 1] into NP parts and the triangles are distributed according to this interval
splitting and their assigned Hilbert indices. Since we have a total weight of 1, each partition
should have a weight of 1

3 which corresponds to ∼ 905 triangles (13 of the number of triangles)
. We sort the list of triangles increasingly with respect to their indices and the decomposition
problem transforms to basically setting split points each 905 triangles. More generally, if
we had an arbitrary ω, the splitting would be done by traversing the list of triangles and
accumulating the weights of the triangles. A split point is set if the accumulated weight
exceeds a multiple of 1

3 . This decomposition of the index space is visualized in figure 3.7.
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Figure 3.7.: Decomposition result in index space.

The geometric counterpart as displayed in figure 3.8 illustrates that gaps in index space
do not necessarily mean disconnected partitions. As figure 3.7 displays, the index space of
each partition exhibits a gap but only the gap of the green partition leads to a disconnected
partition.
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Figure 3.8.: Decomposition result in geometric space.
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It is immediately clear that this decomposition procedure enables to balance the weight
perfectly, µw(ω, d) = 1 + ε for some small ε. That is due to the fact that at the procedure of
setting split points it is very unlikely that the weights accumulate exactly to a multiple of
1
NP

and hence the load for a partition will always be a bit above or below 1
NP

which induces
slight imbalance.

Note that this procedure does not allow any influence on the induced edge-cut. We split
the unit interval into NP parts such that each partition consists of one (connected) interval.
And in this sense we can say that we minimize the edge-cut of the one dimensional problem.
It is the SFC that transforms this decomposition to the multidimensional decomposition
and the final quality of the decomposition depends on the curve. It is clear that the degree
of locality of the curve affects the quality of the partition. There are few works discussing
the term “locality” of SFCs, e.g. [9], and the quality of SFC induced partitions, e.g. [35].

3.2.5. Two constraints

There is no straightforward way of extending this procedure to balancing multiple weights
that suits arbitrary decomposition problems. This section provides one difficult demonstra-
tive problem instance for a two-constraint problem and discusses why a one dimensional
interval splitting into NP intervals is in general not sufficient for a balanced decomposition.
Our method as described in chapter 4 is able to solve problems of this kind.

We extend the problem from the previous section, that is we consider the U-shaped
geometry of figure 3.5 with one constant weight ωM = 1/N which is displayed in figure
3.6 in index space. The M as the index of ωM indicates that this weight models the
computational load for the Maxwell-solver phase. We assume that this weight is constant
for each triangle.

We add a second weight ωP which represents a particle distribution. The support of ωP
is limited to the top right area of the geometry as displayed in figure 3.9.

We compute the particle distribution in index space. The upper weight distribution in
figure 3.10 displays ωP , the lower weight distribution displays ωM and is hence a copy of
figure 3.6.

This example demonstrates that there is no simple interval splitting that balances both
ωM and ωP . A splitting that suits ωP requires that each of the three partitions gets a
fraction of the particles and hence the two inner boundaries lie within the index range of
the particles (somewhere between 0.62 and 0.69). Therefore the first partition ranges from
0 to the first boundary ≥ 0.62 which means that partition one already gets more than half
of the weight of ωM .

3.3. Graph-based multilevel schemes versus space filling
curves for one-constraint particle simulations

3.3.1. Weight balancing

As discussed in the prior sections decompositions along SFCs balance one single weight per-
fectly. The same holds for graph based methods, they achieve any user-defined imbalance.
Hence both methods are equally good with respect to weight balancing.
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Figure 3.9.: Two-constraint decomposition problem that can not be solved with SFCs by a
simple interval splitting.
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Figure 3.10.: Two weights in index space
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3.3.2. Edge-cut

Schamberger and Wierum compare in [31] the edge-cut of mesh decompositions of MeTiS
and SFCs induced partitions in the one-constraint setting. SFCs achieve edge-cuts between
1.2 up to 7 times worse than MeTiS. However, the cases where this factor exceeds 3 are
rare. Furthermore, with the increase of the number of partitions this factor decreases.

This is the clear advantage of graph based methods.

3.3.3. Execution time and memory requirements

Typically, DD methods are part of a numerical application. It is not immediately clear
what should be considered the execution time of a DD-method. If we consider the problem
of, given a mesh, computing DD d, we also have to count the time graph based methods
require for constructing the dual graph of a mesh. Furthermore, we have to consider the
computation time of inverse SFCs and the time for sorting the mesh elements.

Now consider the interleaved setting of a particle simulation as discussed in section 2.5.3.
We assume DDD (due to the imbalance induced by moving particles) and a mesh that
does not change in time (no refinement for instance). If we apply graph based methods,
then even though we redecompose during the simulation it is sufficient to construct the dual
graph of the mesh once for the entire simulation, hence we should not consider this step.

Considering SFCs we can precompute the indices of the mesh elements of SFCs. Further
we can already sort the mesh and store the mesh in a file already sorted with respect to their
SFC indices. Hence during the simulation it is not necessary to compute any SFC indices
or to perform sorting. Here a (re-)decomposition merely consists of setting new split points.

Papers, e.g. [31], underline that decompositions along SFCs are much faster than graph
based methods even when the time for computing indices and the sorting are considered.
Therefore it is expectable that for particle simulations with DDD a lot of time can be
saved by the application of SFCs.

Concerning memory requirements, [31] states that graph based methods require much
more memory resources than SFCs (they provide examples where the ratio is 220 MBytes
for graph based methods and 5 MBytes for SFCs. Note that they consider the computation
time for SFC indices and the reordering); hence a clear advantage of SFCs.

3.3.4. Cache efficiency

Typically algorithms in scientific computing access mesh data not randomly. Discontinuous
Galerkin methods, as applied in the discussed framework, compute numerical fluxes between
adjacent tetrahedra, hence when accessing an element τi it is very likely that the elements
in Nτi are accessed sequentially. Therefore, a memory layout that stores the mesh in a
proximity preserving manner is beneficial.

Proximity preservation is the attribute that enables SFCs to be used as a device for DD.
Therefore we obtain cache efficiency for granted when decomposing along SFCs.

Unfortunately this is not true for decompositions via graph based methods. These meth-
ods require additional local reordering strategies (for instance based on SFCs) if cache
efficiency is important.
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simulations

3.3.5. Conclusion

As discussed in the introduction it is not possible to uniquely state a method that is superior.
SFCs bring lots of advantages (execution time, cache efficiency) to graph based methods
however they are inferior in terms of edge-cuts. These issues have to be equiponderated in
concrete problem settings. Among others, the following questions have to be considered:

� Does cache efficiency matter?

� Is the interconnecting network fast/slow such that larger edge-cuts matter?

� Does memory usage matter?

� Do we redecompose?

� Will the mesh be refined?
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4. Space filling curves for domain
decomposition for two-constraint
particle simulations

The two-constraint SFC DD is an interesting combinatorial problem. We introduce a
more appropriate notation for this problem to highlight its combinatorial nature and define
the two-constraint decomposition problem for SFCs. We show that an algorithm that splits
the unit interval optimally, such that the weight balancing is satisfied best possible, in NP

parts, is in O(NNC
P ·N2·NC+1 ·NC), NC is the number of constraints for the two-constraint

problem O(N2
P ·N5). This algorithm only suits for simple decomposition problems and is

not generally applicable for the arising problems of a particle simulation. However, this
algorithm poses some lower bound in terms of the number of cuts of the unit interval and
can therefore be expected to produce good edge-cut results to the disadvantage of the weight
balancing.

We continue by discussing our algorithm for the two-constraint decomposition problem
and show that the algorithm can balance nearly any problem in charge of the edge-cut.
Here we provide a worst-case quality bound.

We further discuss an arising subproblem of our algorithm, which we denote as the RE-
UNIFICATION problem. This problem turns out to be NP complete and is structurally sim-
ilar to the integer set partitioning problem. We provide a heuristic for REUNIFICATION
that can be seen as an extension to the Karmarkar-Karp largest-differencing algorithm for
the integer partitioning problem.

Our algorithm can be based on any SFC. However, depending on the SFC the difficulty
of the problem varies. We develop new problem-specific SFCs that can simplify some
decomposition problems. For these problems our two-constraint algorithm based on these
problem-specific curves leads to smaller edge-cuts than the ones we obtain if our algorithm
was based on the Hilbert curve.

4.1. Combinatorial problem

Throughout this chapter we assume NC constraints which we denote by (ωi)i=1...NC . If we
consider the two-constraint problem, we may also denote the two constraints with ωM and
ωP . For each tetrahedron we compute their indices with the inverse of a SFC and sort the
tetrahedra in ascending order with respect to their indices. We assume that the index set
I for labeling the tetrahedra is exactly this ordering, that means for two tetrahedra τi1 , τi2
it holds: i1 < i2 ⇔ f−1(τi1) < f−1(τi2) for the applied SFC f . We also write ωi = ω(τi).
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4. Space filling curves for domain decomposition for two-constraint particle simulations

We group the weights in the matrix W :

W ∈ (R+
0 )N×NC (4.1)

W =

Ü
ω1
1 ω2

1 . . . ωN1
...

...
ω1
NC

ω2
NC

. . . ωNNC

ê
. (4.2)

As section 3.2.5 points out, most two-constraint decomposition problems can not be
balanced by simply splitting the unit interval into NP parts as in the single-constraint case.
Therefore our strategy consists of two steps: we first split the unit interval into several
(> NP ) intervals and in a second step we construct partitions by reuniting intervals.

In terms of the notation of W the first step of this procedure corresponds to finding
vertical separators (here demonstrated with two constraints ωM , ωP )

W =

Ç
ω1
M ω2

M . . . . . . . . . . . . ωN−1M ωNM
ω1
P ω2

P . . . . . . . . . . . . ωN−1P ωNP

å
, (4.3)

that group the discrete weights into several groups. We refer to these matrix subparts of
adjacent weights in the following as groups. The groups are reunited afterwards into NP

partitions.
Before we present our considerations we give a remark on the definition of a weight in

2.6. We define a weight as a mapping from the set of tetrahedron indices to some real
value. Sticking to this definition in the sequel is however quite cumbersome. For instance
as part of a DD process we split the unit interval into subintervals and it will be necessary
to compute the weight that falls to tetrahedra with an index in a certain interval [a, b]. A
notation for this is: ∑

i∈{j∈I|f−1
h

(cg(τj))∈[a,b]}

ω(i) (4.4)

which is neither simple to read nor simple to write. There are multiple situations like these
and for the sake of clarity we will extend the applicability of a weight to other mathematical
objects as needed (and only if there are no ambiguities), for instance we will write for the
upper expression simply ω([a, b]). Since an interval characterizes in our setting a set of
tetrahedra this extension is straightforward. The same holds for groups as defined in the
prior subsection. Groups also denote tetrahedra and hence a group represents, in the same
manner as an interval, a set of tetrahedra and we will also write loosely ω(G) for some
group G.

4.2. Splitting W optimally into NP parts

4.2.1. Motivation

Even though splitting the unit interval into NP parts is insufficient for balancing the major-
ity of two-constraint decomposition problems (e.g. the example in section 3.2.5), this idea
is by all means theoretically interesting since we perform the least number of cuts possible.
In this way a resulting partition consists of one single interval (in terms of the matrix W of

36



4.2. Splitting W optimally into NP parts

one group) and due to the Hölder continuity of the SFC it is very likely1 that the partitions
are connected in geometric space.

For this reason splitting W into NP intervals provides an indication for the lower bound2

for the edge-cut of a decomposition problem along the SFC. This implies that we can not
expect better edge-cut results as in the case of a one-constraint problem. Increasing the
number of splits and a subsequent reunion will hence increase the edge-cut of the resulting
partition but offers the possibility to reunite the parts in a sophisticated way such that the
balancing increases. In some sense the number of cuts of the unit interval is a parameter
that trades off the edge-cut against the balancing of the weights.

4.2.2. Problem definition

A solution to the splitting of W into NP parts is a vector s ∈ INP−1 that indicates the
indices after which we put a separator in W . We consider here the general problem with
NC constraints. We characterize the optimal solution s′ as follows:

µO(s) =
NC∑
c=1

max{
s1∑
i=0

ωic,
s2∑

i=s1+1

ωic, . . . ,
N∑

i=sNP−1

ωic} (4.5)

= mω1 +mω2 + · · ·+mωNC
, with (4.6)

mωc = max{
s1∑
i=0

ωic,
s2∑

i=s1+1

ωic, . . . ,
N∑

i=sNP−1

ωic}, then (4.7)

s′ = argminsµO(s). (4.8)

(mωi)i=1...NC denote hence the maximal load of weight ωi that falls to one partition.

We use the indices (mi)i=1...NC to denote the partitions that pose the maxima (mωi)i=1...NC ,
for instance Pm4 is responsible for mω4 .

We say a solution s ∈ INP−1 is well-formed if it represents a proper decomposition, for
instance it guarantees that si > si−1 with 1 ≤ i ≤ NP − 1.

4.2.3. Proof: Problem is efficiently solvable

We start with a Lemma concerning the computational complexity of computing µO.

Lemma 4.1 Given a well-formed solution s ∈ INP−1 there is an algorithm that computes
µO(s) in O(NC ·N).

Proof: The matrix W contains NC · N elements. Each element contributes exactly to
one sum of µ0 and hence is only visited once. Selecting the maxima and summing up the
maxima can be done on the fly while computing the sums.

1If the population of the intervals by triangles/tetrahedra is sparse or contains gaps, as for instance the
green partition in figure 3.8, the partition may be disconnected. Note that even though the blue and
the red partition of the example are also disconnected in index space their geometric counterpart is
connected.

2At least it provides an indication for the order of magnitude of the lower bound.
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4. Space filling curves for domain decomposition for two-constraint particle simulations

�

Since there are O(NNP ) different s, computing µ0(s) for all s (which is simply an ex-
haustive search) leads to an algorithm with a complexity that grows exponentially with the
number of partitions. To meet the above mentioned complexity of O(NNC

P ·N2·NC+1 ·NC),
which is, for a fixed number of constraints, a polynomial complexity, we reconsider the
definition of µ0. µ0 is a sum over the maxima of the loads for each constraint, hence a sum
of NC maxima. Each maximum belongs to one partition and since there are NP partitions
there are NNC

P different possible memberships of these maxima to the partitions. We will
consecutively test all possible memberships of these maxima.

A partition is uniquely defined by two partition separators, in terms of the splitting of
the unit interval by a lower bound and an upper bound. Therefore given the membership
of the assumed maxima there are at most3 2 ·NC partition separators to set up to uniquely
define the partitions that exhibit a maximum, therefore there are O(N2·NC ) possibilities
for setting the boundaries of the assumed maxima. Note that of course not all settings of
separators lead to the desired maxima distribution, but since we check all possibilities we
will also come across these settings, where the intended maxima contribute as the maxima
of µ0.

Since we only fix the boundaries of the partitions that are intended to pose a maximum, we
have to check, whether we can set up the other boundaries, such that the intended maxima
remain the maxima. The following lemma shows, that we can check this in O(N ·NC).

Lemma 4.2 Without loss of generality we assume that s sets the boundaries that uniquely
define NC different and not adjacent partitions that are intended to pose the maxima of µ0,
that is, if the partitions Pm1 , . . . PmC are supposed to pose the maxima, then we assume, that
the indices sm1 , sm1+1, sm2 , sm2+1, . . . , smC , smC+1 are set up. Then there is an O(N ·NC)
algorithm, that checks in a constructive way whether the remaining boundaries can be set
up such, that the intended maxima remain the actual maxima.

Proof: First we compute the maxima mωc for all c. This can be done in O(N ·
NC). Then we consider the sets of adjacent indices that are not yet fixed, that is the
sets {s0, . . . , sm1−1}, {sm1+2, . . . , sm2−1}, . . . , {smC+2, . . . , sNP−1}. For each of these sets we
check whether the indices can be set such that the loads of the new partitions for each
weight do not exceed the prior computed maxima mωc . This can be done by traversing the
sets from left to right defining partition boundaries such that none of the weights of these
partitions barely exceed the maxima mωc . If this procedure succeeds for all sets we return
true otherwise false.

This constructive check requires also at most O(N · NC) steps and hence the overall
runtime is in O(N ·NC).

�

We use lemmata 4.1 and 4.2 to proof the existence of an algorithm that computes the
optimal splitting of W into NP parts.

3For boundary partitions there is only one separator to define, for two adjacent partitions there are only
three boundary markers to set.
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4.2. Splitting W optimally into NP parts

Theorem 4.3 There is an algorithm that computes an optimal splitting s′ of W into NP

parts in O(NNC
P ·N2·NC+1 ·NC).

Proof:

Listing 4.1: Efficient algorithm for an optimal splitting of W into NP parts

1s′ ← ⊥ (* s t o r e s a b e s t s o l u t i o n *)
2m ← ∞ (* s t o r e s µ0(s

′) *)
3
4∀ maxima d i s t r i b u t i o n s Pm1 , Pm2 , . . . , PmNC do

5∀ maxima p a r t i t i o n boundary s e t t i n g s s do
6i f ( extend s to a wel l−formed s o l u t i o n
7as de s c r ibed in lemma 4.2)
8µt ← µ0(s)
9i f (µt < m)
10m ← µt
11s′ ← s
12end
13end
14end
15end

The correctness of the algorithm follows by construction. The outer loop is performed
O(NNC

P ) times, the inner loop is executed O(N2·NC ). The body of the loop, that is the
construction of a conform splitting from given boundaries for the maximum partitions, and
the computation of ω0(s) requires O(N · NC) time. In total: O(NNC

P · N2·NC · N · NC) =

O(NNC
P ·NC ·N2·NC+1) .

�

4.2.4. Remarks

There are at least two reasons why we emphasize the existence of efficient algorithms for
the above problem in such detail. First of all it is remarkable that we can efficiently (if the
numbers of constraints are fixed) find a best solution to this problem as in the one-constraint
situation. We do not apply heuristics to find just good solutions, but we can compute in
fact a best solution.

Secondly this problem may also arise in different other settings, for instance directly as
array distribution problem. Suppose a one-dimensional array A = [a1, a2, . . . , an]. Com-
putations are performed on each ai while there are data dependencies between adjacent
elements of A, that is ai is dependant on ai−1 and ai+1. Suppose further that the com-
putation of ai requires time ti and memory storage mi. Then splitting up the matrixÇ

t1 . . . tn
m1 . . . mn

å
in a locality preserving way, that guarantees a simple communication

pattern, can be solved with the discussed algorithm. This splitting balances the required
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4. Space filling curves for domain decomposition for two-constraint particle simulations

computation time and the storage requirement under the constraint of only having commu-
nication among adjacent processors. If the ti and mi do only vary slightly the quality of the
balancing and hence the parallel efficiency of the computation may be quite satisfactory.

Note that the aim for simple communication patterns are strongly demanded and this
example is not too artificial. For instance the generalized block distribution splits a two
dimensional array into rectilinear blocks such that the maximum sum of the elements of a
single block is minimized. This way of decomposing an array guarantees a simple commu-
nication pattern. The problem of finding such a splitting is NP-complete, see [10], however
heuristics are developed for approximating solutions efficiently, see [1].

4.3. Two constraint domain decomposition with space filling
curves

This section describes our basic strategy of splitting in the two-constraint setting. In a first
step the algorithm splits W into σ ·NP groups, σ ∈ {1, 2, . . . b NNP c}, and then it generates
NP partitions, each consisting of σ groups. We point out that the imbalance of the weights
decreases with increasing σ. First we provide a case study to demonstrate and motivate
the algorithm followed by a theoretical discussion.

4.3.1. Case study

We consider here an artificial two-constraint problem that does not correspond directly to
a PIC decomposition problem. We denote the weights here with ω1 and ω2 and the weights
are distributed in index space as illustrated in the topmost distribution in figure 4.1, ω1

is colored green, ω2 is colored blue. Even though the distribution of ω1 is constructed in
the same manner as in prior examples (a.e. 3.5), that is we take our habitual U-shaped
geometry and set ω1 = 1/N for all triangles, ω2 does not correspond to a proper particle
distribution. For particle simulations it holds that each particle is governed by a sourround-
ing triangle/tetrahedron and hence if in index space ω2 exhibits particles in some region,
ω1 also has to have some support in this region because it is constructed to indicate the
appearances of triangles. This does not hold here and this fact makes the example artificial.

Figure 4.1 illustrates the decomposition phase of our algorithm, we decompose into NP =
3 parts and equally set σ = 3.

I1 displays the distribution of the two weights in index space, the unit interval [0, 1].
In a first decomposition step we decompose [0, 1] into σ subintervals I21, I22, I23. This
decomposition balances ω1 in these intervals, such that

ω1(I21) = ω1(I22) = ω1(I23). (4.9)

Balancing ω1 is highly conflictive with balancing ω2 in this example, ω2(I23) = 0 while I21
poses most of the contribution of ω2.

The second step of the decomposition phase is to further decompose each of the σ subin-
tervals I21, I22, I23 into NP = 3 parts such that ω2 is balanced for each new decomposition,
hence
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4.3. Two constraint domain decomposition with space filling curves

Figure 4.1.: Decomposition phase of our basic algorithm for a two-constraint problem, σ =
NP = 3.

ω2(I31) = ω2(I32) = ω2(I33) , (4.10)

ω2(I34) = ω2(I35) = ω2(I36) ,

ω2(I37) = ω2(I38) = ω2(I39) (= 0) .

Note that any decomposition of I23 balances ω2 simply because ω2(I23) = 0. Here we
decomposed I23 such that ω1 is balanced but we could have chosen any other decomposition,
for our considerations the only requirement is that ω2 is balanced.

We make use of the properties 4.10 and 4.9 in the reunification step. By the equations
4.10 we observe that forming partitions by picking from each set of groups

S1 = {I31, I32, I33}, S2 = {I34, I35, I36}, S3 = {I37, I38, , I39} (4.11)

one interval, leads to a balancing of weight ω2 automatically. This allows us to select
intervals such that ω1 is balanced as good as possible. Figure 4.2 shows the best combination
for our example, each path represents a final partition.

Figure 4.2.: Reunification phase of our two-constraint algorithm. Each path represents a
partition.

We formally define the reunification problem:

Problem 4.4 The reunification problem (REUNIFICATION) consists of, given σ,N ≥ 2,
the sets A1, . . . Aσ ⊂ R+

0 with |Ai| = N ∀i, find P1, . . . PN ∈ A1 × · · · × Aσ with P ki =
P kj ⇔ i = j such that:

max{
σ∑
i=1

P ik} → min. (4.12)
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4. Space filling curves for domain decomposition for two-constraint particle simulations

In our concrete setting we have: σ = NP = 3, A1 = {ω1(I31), ω1(I32), ω1(I33)}, A2 =
{ω1(I34), ω1(I35), ω1(I36)}, and A3 = {ω1(I37), ω1(I38), ω1(I39)}.

In the sequel we will denote the groups, that are formed as a result of the second splitting
operation (in the example I31, . . . I39), further on as group and we will use the character
G with some index if we want to emphasize its representation as a part of matrix W . We
will use the character I if we want to emphasize that we deal with intervals.

Further we will denote sets of groups, that contain these groups that are a product of the
same second splitting operation, with the character S as we already used it in 4.11, and
refer to this structure as a set of groups.

REUNIFICATION is NP-complete, compare section 4.3.3, therefore we apply for now the
following greedy heuristic (in section 4.3.4 we discuss a heuristic that performs better in
average, example in section 6.5 shows that it is absolutely necessary to apply the improved
heuristic). As illustrated in figure 4.2 a solution to the reunification problem can be repre-
sented by connecting arrows between S1, S2, S3. We start by connecting S1 to S2 in such a
way, that the resulting (yet incomplete) partitions are balanced best. For doing this we sort
the intervals in S1 with respect to ω1 in increasing order, that is I32, I33, I31, and we sort
the intervals in S2 in decreasing order I36, I34, I35. Now we connect the items with the
same position in the sorted lists, that is [I32, I36] , [I33, I34] and [I31, I35]. We continue
by sorting these partitions in increasing order with respect to ω1, and the partitions in S3
in decreasing order with respect to ω1, and unite them in the same manner as before, and
we end up with [I32, I36, I39] , [I33, I34, I37] and [I31, I35, I38]. If Np > 3 this procedure
is repeated.

As already mentioned this procedure automatically balances ω2. We argue in the following
section 4.3.2 that this procedure produces decompositions d such that µ0(ω1, d) < NP+σ−1

σ ,
for our setting (NP = σ = 3) the balancing is guaranteed to be better than 5

3 , which
would be a poor result but fortunately just happens for artificial cases. In this example this
balancing strategy applies quite well and we get µ0(ω1, d) ≈ 1.042.

4.3.2. Quality of the balancing

We formalize the algorithm described in the case study in the previous section. Given is the
matrix (W ∈ R+

0 )N×2 which will be decomposed into NP parts and σ ≥ 2. We summarize
the decomposition algorithm:

� Partition Phase: Split W into σ parts W = (S1| . . . |Sσ). It holds ω1(Si) =
ω1(Sj) = 1

σ , 1 ≤ i, j ≤ σ.
Further split each (Si)i=1...σ intoNP parts, W = (G11| . . . |G1NP | . . . | . . . |Gσ1| . . . |GσNP ).
It holds ω2(Gki) = ω2(Gkj), 1 ≤ k ≤ σ, 1 ≤ i, j ≤ N .

� Reunification Phase: Form partitions (Pi)i=1...NP via the following greedy algo-
rithm:
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4.3. Two constraint domain decomposition with space filling curves

Listing 4.2: REUNIFICATION HEURISTIC 1

1Pi ={G1i} ∀ i
2
3for l = 2 . . . σ
4s o r t Pi d e c r e a s i n g l y with r e s p e c t to ω1

5s o r t Wli i n c r e a s i n g l y with r e s p e c t to ω1

6Pi ∪ = Wli ∀ i
7end

.We denote d the by Pi induced decomposition.

REUNIFICATION HEURISTIC 1 (RH1) initializes each partition with one group of S1.
It traverses S2 till Sσ and distributes the groups in these sets of groups to the partitions.

Proving the upper bound for µ0(ω1, d) requires the following lemma.

Lemma 4.5 Given N ∈ N, m ∈ R+, (ai)i=1...N , (bi)i=1...N ∈ R+
0 with ai ≤ ai+1, 0 < i < N

and bi+1 ≤ bi, 0 < i < N . Further it holds:

max{ai} −min{ai} = m1 ,

max{bi} −min{bi} = m2.

Then:

max{ai + bi|1 ≤ i ≤ N} −min{ai + bi|1 ≤ i ≤ N} ≤ max{m1,m2}. (4.13)

Proof: Proof by contradiction. Without loss of generality we assume m1 ≥ m2. We
assume that:

max{ai + bi|1 ≤ i ≤ N} −min{ai + bi|1 ≤ i ≤ N} > m1. (4.14)

imax, imin denote the indices that are responsible for the maximum and the minimum in
4.14. It holds further:

aimax + bimax − aimin − bimin > m1 ⇔ (4.15)

aimax − aimin︸ ︷︷ ︸
A

+ bimax − bimin︸ ︷︷ ︸
B

> m1. (4.16)

1. imax > imin ⇒ 0 ≤ A ≤ m1,−m2 ≤ B ≤ 0⇒ A+B ≤ m1,  

2. imax < imin ⇒ −m1 ≤ A ≤ 0, 0 ≤ B ≤ m2 ⇒ A+B ≤ m1.  

�

Theorem 4.6 µ0(ω1, d) ≤ NP+σ−1
σ .

Proof: We proof first that it holds throughout the algorithm that acc = max{ω1(Pi)} −
min{ω1(Pi)} ≤ 1

σ , hence the maximal imbalance is 1
σ . We prove this by induction.

Induction Hypothesis: Since ω1(W1) = 1
σ after the initialization in line 1 the hypothesis is

obviously clear.
Induction Step: Following the same argument for the hypothesis, it is obvious that for l > 1
it holds that accl = max{ω1(Wli)} −min{ω1(Wli)} ≤ 1

σ . Applying Lemma 4.5 completes
this first part of the proof.
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�

We estimate ω1(Pi) ∀i:

max{ω1(Pi)} −min{ω1(Pi)} ≤
1

σ
⇔ (4.17)

max{ω1(Pi)} − ω1(Pi) ≤
1

σ
∀i ⇔ (4.18)

ω1(Pi) ≥ max{ω1(Pi)} −
1

σ
∀i. (4.19)

Further it holds:

1 =
∑
i

ω1(Pi) (4.20)

= max{ω1(Pi)}+
∑

i 6=imax
ω1(Pi) (4.21)

≥ max{ω1(Pi)}+ (NP − 1)

Å
max{ω1(Pi)} −

1

σ

ã
(4.22)

⇔ (4.23)

NP + σ − 1

σ
≥ max{ω1(Pi)} ·NP = µO(ω1, d). (4.24)

�

This theoretic bound tells us, that by increasing σ the upper bound for the balancing
decreases. However increasing σ means increasing the number of subintervals per partition
and hence the connectivity of the resulting partition decreases which leads to higher edge-
cuts. For this reason σ is a trade-off between balancing and edge-cut.

4.3.3. REUNIFICATION is NP-complete

The greedy algorithm presented in the prior section for the reunification problem guarantees
the bound µ0(ω1, d) ≤ NP+σ−1

σ . This is indeed a sharp worst-case bound since we can
construct examples where no algorithm can do better, see figure 4.3.

On the other hand, we can also construct examples where the provided reunification
heuristic performs worst in the sense that there is a solution d0 with a perfect balancing
(µd(ω1, d0) = 1), however the reunification heuristic provides a solution dh with µd(ω1, dh) =
NP+σ−1

σ , see the example of figure 4.4.

The example of figure 4.4 demonstrates that there is an aim for improving the reunification
step. However, since REUNIFICATION is NP-complete, which we prove in the following,
there remains the application of better heuristics (see 4.3.4) that perform better in average.

We provide a reduction from the integer partitioning problem.

Problem 4.7 Given is a set of N positive integers M = {m1, . . . ,mN}. The partition-
ing problem (PARTITION) consists of splitting M into disjoint sets M1,M2 such that∑
m∈M1

m−∑
m∈M2

m is minimal.
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I1
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Figure 4.3.: NP+σ−1
σ poses a sharp worst case bound for the balancing, the two possible

reunifications d1 = {[I21, I23] , [I22, I24]} and d2 = {[I21, I24] , [I22, I23]} in
this example (σ = NP = 2) lead to µd(ω1, d1) = 1.5 = µd(ω1, d2) = NP+σ−1

σ .
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Figure 4.4.: The reunification heuristic performs worst possible in this example (NP =
2, σ = 3). It forms the reunification dh = {[I21, I24, I26] , [I22, I23, I25]} with
µd(ω1, dh) = 4

3 = NP+σ−1
σ . Note that here exists a perfectly balanced decom-

position d0 = {[I21, I23, I26] , [I22, I24, I25]}.
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PARTITION is one of the famous 21 NP-complete problems of Karp, see [20], and serves
as a reference problem for reductions of important NP-complete problems such as bin pack-
ing, multiprocessor scheduling or even the knapsack problem. Here we use this problem
and reduce it to REUNIFICATION to show that REUNIFICATION is NP-complete. In
section 4.3.4 we provide a better heuristic for REUNIFICATION that is inspired by the
Karmarkar-Karp largest differencing algorithm, a heuristic for solving PARTITION. For
this reason we will investigate on PARTITION in more detail in section 4.3.4.

Theorem 4.8 REUNIFICATION is NP-complete.

Proof: It is clear that REUNIFICATION ∈ NP because the corresponding decision
formulation of REUNIFICATION (”Are there Pi = (P 1

i , . . . , P
σ
i ) as a set of groups such

that
∑
l ω1(P

l
i ) = m for a given m”) has an efficient verifier.

It remains to show that REUNIFICATION is NP-hard. Therefore we reduce PARTITION
to REUNIFICATION. We assume we have an instance of PARTITION, that is the set
M = {m1, . . . ,mN} of N integers. We construct now a REUNIFICATION problem that
solves the PARTITION instance.

We set NP = 2, σ = N . Further we set S1 = {m1, 0}, S2 = {m2, 0}, . . . Sσ = {mN , 0}. An
algorithm for REUNIFICATION provides partitions P1, P2 that state the solution to the
PARTITION instance.

�

4.3.4. A better heuristic for REUNIFICATION

We propose in this section a heuristic, REUNIFICATION HEURISTIC 2 (RH2), for RE-
UNIFICATION that performs in average better than RH1. Note that since RH1 is already
optimal in terms of worst-case problems the theoretic quality bound of NP+σ−1

σ can not be
improved by any algorithm (not even exhaustive search). We do not provide an analysis
of the average case behavior of RH2. Since RH2 is very similar to the Largest Differencing
Method (LDM) of Karmarkar and Karp, compare subsection 4.3.4, the best known heuris-
tic for the PARTITION problem, we point out that an analysis of RH2 may be inspired by
an analysis for LDM.

REUNIFICATION HEURISTIC 2

The algorithm requires the definition of a diameter of a set of groups, and a diameter of
data structures we call pre-partitions that appear when we merge sets of groups:

Definition 4.9 The diameter of a set of groups S, |S| = N ∈ N with respect to a weight
ω is defined as:

diam(S) = max{ω(G) | G ∈ S} −min{ω(G) | G ∈ S}. (4.25)

The diameter of a pre-partition
∼
P= [[G11, . . . , G1d] , . . . , [GN1, . . . , GNd]] with respect to a

weight ω, with | ∼P | = N and | ∼P i | = d, is defined as:

diam(
∼
P ) = max{

d∑
i=1

ω(Gji) ∀j} −min{
d∑
i=1

ω(Gji) ∀j}. (4.26)
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4.3. Two constraint domain decomposition with space filling curves

For a pre-partition
∼
P ,
∼
P ij indicates the jth element of the ith set of groups of

∼
P , according

to the labeling provided in the definition of the diameter of a pre-partition this corresponds
to group Gij .

A pre-partition is hence an ordered set of N × d groups. By its inner bracketings a pre-
partition keeps track of groups that will definitely go into the same partition in the end.
It is an ordered set of sets of groups while the inner sets contain each the same number of
elements. We will use pre-partitions as NP ×d data structures to group NP times d groups.
The name pre-partition is chosen since a pre-partition is not yet a partition however it
already groups groups that will definitely go into the same partition.

RH2 merges pre-partitions via the following algorithm:

Listing 4.3: Merge operation

1(*
∼
P pre−p a r t i t i o n wi th d i m e n s i o n a l i t y NP × p *)

2(*
∼
Q pre−p a r t i t i o n wi th d i m e n s i o n a l i t y NP × q *)

3(*
∼
R pre−p a r t i t i o n wi th d i m e n s i o n a l i t y NP × (p+ q) *)

4
5function merge(

∼
P ,
∼
Q)

6s o r t
∼
P in ascending order with respect to diam

7s o r t
∼
Q in descending order with respect to diam

8
∼
R=

ïï∼
P 11, . . . ,

∼
P 1p,

∼
Q11, . . . ,

∼
Q1p

ò
, . . . ,

ï∼
PNP 1, . . . ,

∼
PNP p,

∼
QNP 1, . . . ,

∼
QNP p

òò
9return

∼
R

10end

Now we can state the improved heuristic for REUNIFICATION. The quantities corre-
spond to the quantities given in the problem definition of REUNIFICATION in 4.4.

Listing 4.4: REUNIFICATION HEURISTIC 2

1
∼
P
i
= [[Si1] , . . . , [SiNP ]] ∀i ∈ {1, . . . σ}

2
3while ∃ more than one

∼
P
i

4f i n d i , j such that diam(
∼
P
i
) ≥ diam(

∼
P
k
) ∀k and

5diam(
∼
P
j
) ≥ diam(

∼
P
k
) ∀k ∈ {1, . . . σ} \ {i}

6
∼
P
i

= merge(
∼
P
i
,
∼
P
j
)

7d e l e t e
∼
P
j

8end

RH2 initializes pre-partitions
∼
P
i

such, that each pre-partition contains one set of groups
Si. It merges iteratively those pre-partitions that have the largest diameter. Hence, after
σ − 1 merges one pre-partition remains. The inner sets of this pre-partition indicate the
groups that go into the same partition.

Comparison: RH1 and RH2

To highlight the behavior of RH1 and RH2, we give in table 4.1 a REUNIFICATION
instance that shows how RH1 and RH2 perform.
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4. Space filling curves for domain decomposition for two-constraint particle simulations

RH2 RH1

∼
P

1
=

Å
1
5
6

ã
,

∼
P

2
=

Å
11
7
13

ã
,

∼
P

3
=

Å
0
7
9

ã
,

∼
P

4
=

Å
2
8
12

ã
P =

Å
1
5
6

ã
, S2 =

Å
11
7
13

ã
, S3 =

Å
0
7
9

ã
, S4 =

Å
2
8
12

ã
dist(

∼
P

1
) = 5, dist(

∼
P

2
) = 6, dist(

∼
P

3
) = 9, dist(

∼
P

4
) = 10 dist(P ) = 5, dist(S2) = 6, dist(S3) = 9, dist(S4) = 10

Merge the two pre-partitions with maximal dist (
∼
P

3
,
∼
P

4
): Merge next set of groups S2 to P :

∼
P

1
=

Å
1
5
6

ã
,

∼
P

2
=

Å
11
7
13

ã
,

∼
P

3
=

Å
0 12
7 8
9 2

ã
P =

Å
1 13
5 11
6 7

ã
, S3 =

Å
0
7
9

ã
, S4 =

Å
2
8
12

ã
dist(

∼
P

1
) = 5, dist(

∼
P

2
) = 6, dist(

∼
P

3
) = 4 dist(P ) = 3, dist(S3) = 9, dist(S4) = 10

Merge the two groups with maximal dist (
∼
P

1
,
∼
P

2
): Merge next set of groups S3 to P :

∼
P

1
=

Å
1 13
5 11
6 7

ã
,

∼
P

3
=

Å
0 12
7 8
9 2

ã
P =

Å
1 13 7
5 11 0
6 7 9

ã
, S4 =

Å
2
8
12

ã
dist(

∼
P

1
) = 3, dist(

∼
P

3
) = 4 dist(P ) = 6, dist(S4) = 10

∼
P

1
=

Å
1 13 0 12
5 11 9 2
6 7 7 8

ã
P =

Å
1 13 7 8
5 11 0 12
6 7 9 2

ã
dist(

∼
P

1
) = 2 dist(P ) = 5

Table 4.1.: Computation table of RH2 and RH1 for a REUNIFICATION instance. The
entries in the pre-partitions and in the sets of groups represent here the weights
of the groups.

The strategy of RH2 can be verified in table 4.1. Since the diameter of the final group
corresponds to the imbalance of weight ω1 our goal is to minimize the final diameter. In
each step RH2 tries to diminish the maximum of the diameters of the groups by one merge
operation, hence picking the maximum element for a merge operation is necessary. We show
in theorem 4.10 that the diameter of a set of groups S3 that results as a merge from two sets
of groups S1, S2 is smaller or equal than the larger diameter of S1 and S2 and can get as
small as the difference between the diameters of S1 and S2. For this reason we also pick the
second largest element for the merge operation since the range of possible new diameters
is (dist(largest element)− dist(second largest element)) . . . dist(largest element) and hence
the lower bound gets as small as possible by picking the second largest element.

One merge operation of pre-partition
∼
P

1
and

∼
P

2
hence corresponds to deciding which

sets of groups of
∼
P

1
and

∼
P

2
go into the same partition. Note that the answer to into which

partition they go is postponed to the final merge operation. For instance, considering
∼
P

3

after the second merge operation, it is decided that 0 and 12 go into the same partition (as
well as 7 and 8, and 9 and 2), it is however not yet decided into which partition they will
go.

Table 4.1 shows that the final partitioning P of RH1 eats the sets of groups from left to
right without regards to the maximal diameter. The intention of RH1 is to assign in each
step the elements of a set of groups directly and finally to a partition. This corresponds to
immediately taking the decision into which partition a group will go. Compared to RH2
this early decision makes RH1 more static and inferior to RH2.

Basic Analysis

We only provide here a theorem concerning the diameter of a pre-partition that is the result
of a merge operation.
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4.3. Two constraint domain decomposition with space filling curves

Theorem 4.10 Given S1 ⊂ R+
0
d1, S2 ⊂ R+

0
d2, |S1| = |S2| = N . We assume diam(S1) >

diam(S2). Then:

diam(S1)− diam(S2) ≤ diam(merge(S1, S2)) ≤ diam(S1). (4.27)

Proof: We denote S3 = merge(S1, S2).

� diam(S1)− diam(S2) ≤ diam(S3):
Assume that S1 is sorted in ascending order with respect to diam, S2 is sorted in
descending order with respect to diam. S3 is the result of a merge operation of S1

and S2. It holds:

d1+d2∑
i=1

S3
1i =

d1∑
i=1

S1
1i +

d2∑
i=1

S2
1i and (4.28)

d1+d2∑
i=1

S3
Ni =

d1∑
i=1

S1
Ni +

d2∑
i=1

S2
Ni, (4.29)

and hence:

diam(S3) ≥ |
d1+d2∑
i=1

S3
1i −

d1+d2∑
i=1

S3
Ni| (4.30)

= |
d1∑
i=1

S1
1i +

d2∑
i=1

S2
1i −

d1∑
i=1

S1
Ni −

d2∑
i=1

S2
Ni| (4.31)

= |(
d1∑
i=1

S1
1i −

d1∑
i=1

S1
N,i) + (

d2∑
i=1

S2
1,i −

d2∑
i=1

S2
Ni)| (4.32)

= | − diam(S1) + diam(S2)| = diam(S1)− diam(S2). (4.33)

�

� diam(merge(S1, S2)) ≤ diam(S1):
Consequence of lemma 4.5.

�

�

Theorem 4.10 tells us that the diameter of two pre-partitions is bounded by the maximum
of the diameters of the pre-partitions. Hence, the diameter of the final partitioning is
bounded by the maximum diameter of a set of groups. This observation is already applied
in the proof of the worst-case quality in 4.6.

Theorem 4.10 however does not state the average decrease of the diameters as a result of
a merge operation which is a necessary quantity for a quality analysis of RH2.
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4. Space filling curves for domain decomposition for two-constraint particle simulations

Relation to the Karmarkar-Karp largest-differencing method

The LDM was introduced by Karmarkar and Karp in 1982 in [19]. This algorithm is the
best known heuristic for PARTITION. Given is a set M of N positive numbers that is to
be split into two disjoint subsets M1,M2 such that the difference of the sums of the subsets
is minimal, that is

∑
m∈M1

m−∑
m∈M2

m→ min.

LDM starts with a sorted list of the N numbers. Each step it takes the decision that the
two largest elements l1, l2 in this list go into different partitions. It removes l1 and l2 from
the list, computes their difference |l1 − l2|, and inserts this difference again into the list.
|l1 − l2| represents the imbalance of the two sets M1 and M2 that is caused by the decision
that l1 and l2 go into different partitions. Note that the algorithm does not decide at this
point into which partition l1 and l2 go, it only determines that l1 and l2 go into different
partitions. By keeping track of the procedure we can determine bottom-up the subsets M1

and M2. This procedure is illustrated in table 4.2, which provides an example taken from
[11].

set to be partitioned difference left right

19, 17, 13, 9, 6 2 13, 19 17, 9, 6
13, 9, 6, 2 4 13, 2 9, 6
6, 4, 2 2 4, 2 6
2, 2 0 2 2
0 0

Table 4.2.: Example of LDM for PARTITION.

RH2 performs similar. RH2 starts with a sorted list of pre-partitions, each pre-partition
is represented by its diameter, hence we have a sorted list of σ numbers. We merge the
two pre-partitions with the largest diameters and we replace these two pre-partitions by
one pre-partition. In terms of diameters we replace the two largest diameters by a new
diameter. And here is the difference to the LDM of Karmarkar and Karp: in their version
two numbers are replaced by their difference, we replace two diameters d1, d2 by a new
diameter ∈ [|d1 − d2|,max(d1, d2)]. To underline the similarity of RH2 to LDM we provide
in table 4.3 the evolution of the diameters of the example given in table 4.1 in the same
manner as the evolution of the numbers of LDM.

diameters difference replaced by

10, 9, 6, 5 1 4 ∈ [10− 9, 10]
6, 5, 4 1 3 ∈ [6− 5, 6]
4, 3 1 2 ∈ [4− 3, 4]
2

Table 4.3.: Evolution of the diameters of pre-partitions of the example of table 4.1
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4.4. Influence of σ on the edge-cut

Analysis of LDM provides indication for Analysis of RH2

Recently (in 2008) Boetcher and Mertens provide in [4] an analysis of LDM. They assume N
real random numbers in [0, 1] and prove that the expectation value of the final discrepancy,

that is the difference of the sums of the elements of the two sets, is N−
lnN
2ln2 .

The idea arises to adapt their proof for RH2. This requires at first to analyze the expec-
tation value of the new diameter of a pre-partition that is the result of a merge operation.
This already turns out to be rather complicated. Firstly, it is difficult to see to which extend
the weights of the elements of (already merged) pre-partitions are independent, since the
sequence of merge operations is not completely random. Secondly, it holds for the weights
of the groups Gi1, . . . , Giσ that belong to one set of groups Si that

∑NP
j=1 ω(Gij) = 1

σ (due
to the fact stated in 4.9), and hence the weights are not even intially randomly chosen.

The property that is important in the proof of Boetcher and Mertens is that two numbers
a, b ∈ O(1) get replaced by a number in O(1/N) (N = |M |), a property that follows from
the random distribution of numbers they assume. It has to be clarified if this property can
be assumed in our setting.

4.4. Influence of σ on the edge-cut

σ determines the number of intervals in index space a partition is made of. Since SFCs
are locality preserving this means in general that a partition consists of σ disconnected
subparts. Since multiple similarly shaped subparts covering a volume V have in total a
larger surface than one up scaled part of the same shape that covers the same volume 4,
we should keep σ as small as possible. Here we provide an estimation of the qualitative
influence of σ to the surface sizes (∼ edge-cut 5) of a partition.

4.4.1. The surface to volume ratio

The surface to volume ratio of partitions induced by SFCs is matter of ongoing research.
Zumbusch shows in [35] that the following equation holds for many SFC-induced partitions:

s ≤ Cpart · v(d−1)/d, (4.34)

with s the surface of a partition induced by a SFC, v the volume of the partition, d the
dimension of the curve and Cpart a constant depending on the SFC. Hungershöfer and
Wierum provide in [15] some results for worst-, average- and best-case surface to volume
ratios which are normed to the surface to volume ratio of a square for some two dimensional
SFCs . Based on 4.34 we provide a back-of-the-envelope calculation for estimating the
increase of edge-cut with the increase of σ.

4.4.2. Back-of-the-envelope calculation

We assume we decompose a volume V = [0, 1]d into NP parts with our two-constraint
algorithm. For this estimation we assume further that all subparts are of the same shape.

4For instance 2 cubes covering a volume with measure 1 have a surface of 12 · ( 1
2
)
2
3 ≈ 7.55 while one cube

with volume 1 has a surface of 6.
5We assume that the triangulation is such that the edge-cut is well represented by the surface sizes.
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4. Space filling curves for domain decomposition for two-constraint particle simulations

Since we construct in total σ ·NP subparts a subpart has a volume of 1
NP ·σ . We estimate

the surface in dependency of σ and the number of partitions NP :

“surface of a partition” = “number of its subparts” · “surface of subpart”

= σ · Cpart · “volume of subpart”(d−1)/d

= σ · Cpart ·
Å

1

NP · σ

ã(d−1)/d
= Cpart ·

Å
1

NP

ã(d−1)/d
· σ 1

d , (4.35)

since we assume that the edge-cut ∼ surface sizes we state:

“edge-cut of a partition” ∈ O

Å
N

1−d
d

P · σ 1
d

ã
. (4.36)

The overall edge-cut of the partitioning is hence:

“edge-cut of entire partitioning” =
1

2
·NP · “edge-cut for one partition”

∈ O

Å
N

1
d
P · σ

1
d

ã
. (4.37)

Estimation 4.37 shows, that in two dimensions the edge-cut grows with
√
σ which is worse

than the situation in three dimensions where the edge-cut grows with 3
√
σ.

If we wish to balance ω1 within some balancing ε, we can set up a relation between σ and
NP according to the worst-case quality bound of our algorithm (as provided in 4.3.2):

ε ≤ NP + σ − 1

σ
⇒ (4.38)

σ ≤ NP − 1

ε− 1
∈ O(NP ). (4.39)

Applying this in 4.37 leads to:

“edge-cut of entire partitioning” ∈ O

Å
N

2
d
P

ã
. (4.40)

4.4.3. Discussion

The calculation is very imprecise since we make lots of assumptions (the shape and the size
of subparts are all the same, we aim to divide into equally sized partitions and sub parts, we
assume that the triangulation is such that the surface sizes represent the edge-cut quite well
. . . ) as it is the nature of back-of-the-envelope calculations. Nevertheless the calculations
provide insight into at least two interesting aspects.

Firstly as equation 4.35 and 4.37 show, the surface of a partition and the surface of
the entire partitioning grows with σ

1
d . Increasing σ impacts hence on the edge-cut in 2D
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4.5. Simplifying difficult two-constraint problems

stronger than in 3D. Further this dependency shows that increasing a small σ (a.e. from 2
to 3) worsens the edge-cut more significant than increasing large σ (a.e. from 10 to 11). If
we think about σ as the number of subparts of a partition then an interpretation is that
the step from connected partitions (σ = 1) to disconnected partitions (σ = 2, 3, 4) is worse
than increasing the number of patches σ = 10, 11, ... if we already have a patchwork.

We verify the quantitative increase of edge-cut with respect to σ and the dimensionality
in testcase in section 6.1.

Secondly equation 4.40 shows the worst case growth rate of the edge-cut with respect to
the number of partitions. Since σ ∈ O(NP ) in worst-case we get that the edge-cut of the

entire partitioning is in O(N
2
d
P ). Note that for a constant σ this growth rate would be in

O(N
1
d
P ), which is a quasi-optimal growth rate 6.

4.5. Simplifying difficult two-constraint problems

Hitherto we discussed our algorithm for the two-constraint problem based on some SFC.
In 4.1 we state that we sort the tetrahedra with respect to some SFC but we do not
further discuss the influence of the SFC to our algorithm. Since the SFC defines the
weight distribution in index space, the SFC actually defines the input for our two-constraint
algorithm.

Based on experiments with our algorithm we could identify weight distributions in index
space that are difficult to balance for our algorithm. For these cases we apply new, problem-
specific SFCs that produce distributions that are easier to balance for our algorithm.

In this section we want to emphasize that the difficulty of the decomposition problem
depends on the SFC. We provide methods in 2D and 3D to produce new SFCs that lead
to weight distributions that are easier to balance for our two-constraint algorithm.

4.5.1. Difficulty increases with heterogeneity

We consider problems as difficult if it requires to apply a huge σ to balance ω1 (as discussed
ω2 is balanced automatically). As discussed in section 4.4, σ should be kept as small as
possible to limit the edge-cut of the decomposition.

In the context of two-constraint particle simulations we observed that our two-constraint
algorithm performs poorly if the particle distribution in index space is highly heterogeneous,
that is for instance if there are regions with lots of particles and regions with only a few
particles. Since the particle distribution is determined by the underlying SFC the idea
arises to apply a different SFC that produces more homogeneous distributions. One could
even regard the problem from rear: “Given a two-constraint decomposition problem find a
space filling curve such that our decomposition algorithm performs best”.

In this section we point out the idea of creating problem-specific SFCs, curves that
suit better for individual problems. These curves lead to a more homogeneous weight

6If we could decompose into d-dimensional spheres, which are known to have the optimal surface to volume
ratio, the edge-cut of the entire partitioning is in O(NP · “Surface of sphere“). For spheres (also for

cubes and even SFC-induced partitions according to 4.34) it holds: ”Surface“ ∈ O(”volume“
d−1
d ) =

O(( 1
NP

)
d−1
d ). Hence, the edge-cut of the entire partitioning grows with O(NP · ( 1

NP
)
d−1
d ) = O(N

1
d
P ).
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4. Space filling curves for domain decomposition for two-constraint particle simulations

distribution in index space and hence pose easier decomposition problems for our two-
constraint algorithm. Note that we do not claim that these curves are in some sense optimal,
neither do they provide the armametarium to ease any two-constraint problem. We rather
advert to the idea of constructing SFCs, that are problem-specific.

The construction of our problem-specific SFCs is technically complex. We base our
constructions on existing SFCs (we apply Moore’s version of the Hilbert curve since we
exhaust the fact that it forms a Hamilton cycle) and show that locality preservation in
terms of Hölder continuity is inherited to our new curves. We discuss these technical details
in section 5.2.

4.5.2. Example in 2D

We illustrate this procedure with the decomposition problem displayed in figure 4.5. The
unit square is triangulated with 19977 triangles. The example is constructed such that
each triangle in the bottom-left subsquare contains 20 particles, the other triangles contain
between 1 to 5 particles, randomly chosen. In total the example contains 144117 particles.
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Figure 4.5.: Left: Two-constraint decomposition problem in 2D: high particle density in the
the bottom-left subsquare, Right: Hilbert curve passing through the triangles.

As already discussed the Hilbert curve in 2D visits all points in the bottom left subsquare
before it visits any point outside this subsquare, hence most of the particles have an index
between [0, 0.25]. The particle distribution is displayed in figure 4.6. M = (0.25, 0.25)
denotes the high density particle center.

We try to ease the problem by applying a SFC that traverses the unit square such that
the indices of the particles are more scattered than in figure 4.6. Figure 4.7 shows a SFC,
which we denote by fMa4 , that traverses the unit square such that it returns from time to
time to the high density particle area.
fMa4 is constructed such that it starts at the center of the dense particles, hence fMa4 (0) =

M . It traverses the entire triangle with the corner points (0, 0), (1, 0),M and returns
to point M . Further it traverses the triangle (0, 0),M, (0, 1) and returns again to point
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Figure 4.6.: Particle distribution in index space of Hilbert curve.
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Figure 4.7.: Problem-specific space filling curve fMa4 .

M . In this manner it passes through the triangle (0, 1), (1, 1),M , and finally the triangle
(1, 1),M, (1, 0), and returns to M such that fMa4 (1) = M . The intuition of traversing the
unit square around a point M with a high particle density to which we return a couple of
times during the traversal is to scatter the high particle density in index space. Each return
to M means that a fraction of the particles near M is visited (due to the locality of the
underlying SFC). Hence, if we construct the curve such that the indices I = (fMa4 )−1(M)
are well scattered over [0, 1] the dense particle center becomes more distributed in index
space. Our method allows us to construct SFCs that visit the unit square around any point.

We loosely define:

Definition 4.11 The two-dimensional problem-specific SFC fPai , P ∈ [0, 1]2 , i ≥ 4 denotes
a SFC that traverses the unit square around point P . Therefore the unit square is de-
composed into i triangles and the triangles are visited in turn. The construction process is
sketched in section 5.2.1.

The distribution of the particles in index space of fMa4 as displayed in figure 4.7 is illus-
trated in the upper plot of figure 4.8.

The lower plot of figure 4.8 shows the index distribution with respect to a SFC that is
also centered around M , but visits the unit square in a sequence of visits of 8 triangles.
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Figure 4.8.: Particle distribution in index space of two problem-specific space filling curves,
Top: a decomposition of the unit square into four triangles, (fMa4 ), Bottom: a
decomposition of the unit square into eight triangles (fMa8 ).

Decomposing the domain into NP = 5 parts with the choice of σ = 3 leads to an imbal-
ance of 1.29 for ωM , if our algorithm is based on the Hilbert curve. We achieve an imbalance
of 1.04 for ωM , if the algorithm is based on the problem-specific curve fMa4 . These decom-
positions are visualized in figure 4.9. In terms of edge-cut the decomposition based on
the Hilbert curve achieves 652 cuts, while the decomposition based on the problem-specific
curve achieves 690 cuts. The higher edge-cut of the decomposition based on the problem-
specific curve is due to the fact that the adaptive curve is not as local as the Hilbert curve.
We provide an estimation of the Hölder coefficient of the problem-specific curves in 5.2.2.
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Figure 4.9.: Two-constraint decompositions for the example displayed in figure 4.5, σ =
3, NP = 5. Left: Hilbert curve, Right: Problem-specific curve.
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4.6. Mixed-constraint problems

4.5.3. Extension to 3D

The intuition of fMai is extended to 3D, we denote the 3D versions of the problem-specific
curves with FMai . Here we split the unit cube into at least six pyramids (the faces of the
cube are the base areas of the pyramids, M serves as apex) around a given point M . We
construct SFCs that visit the unit cube as a sequence of visits of these six pyramids. Figure
4.10 shows a path that visits 3410 randomly picked points that are ordered with respect

to the curve F
(0.5,0.5,0.5)
a6 . The path changes its color each 3410/6 ≈ 568 points. Since the

points are chosen randomly but homogeneously the 6 pyramids become visible.

Figure 4.10.: Space filling curve F
(0.5,0.5,0.5)
a6 visiting the unit cube in a sequence of visits of

6 pyramids.

Definition 4.12 The three-dimensional problem-specific SFC FPai , P ∈ [0, 1]3 , i ≥ 6 de-
notes a SFC that traverses the unit cube around point P . Therefore the unit cube is decom-
posed into i pyramids and the pyramids are visited in turn.

4.6. Mixed-constraint problems

We regard problems with ωP (τ) = 0 for many τ as mixed-constraint problems. The problem
provided in 3.2.5 poses hence a mixed-constraint problem since all particles are localized in
a small area top right and for many triangles τ it holds ωP (τ) = 0. These problems can be
dealt with our multi-constraint algorithm however we propose here a method that leads in
many cases to better edge-cut results.

4.6.1. Mixed-constraint algorithm

We assume an underlying SFC f that forms a Hamilton cycle, that is f(0) = f(1), for
instance any of our problem-specific curves or simply Moore’s version of the Hilbert curve.
We search the largest Z ⊂ [0, 1] such that ∀τ with f−1(cg(τ)) ∈ Z it holds that ωP (τ) = 0.
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4. Space filling curves for domain decomposition for two-constraint particle simulations

Z is either an interval or of the form Z = Z1
.∪ Z2 with Z1 = [0, z1] and Z2 = [z2, 1],

0 < z1 < z2 < 1. The Hamilton cycle allows us to obtain two index sets Z and N = [0, 1]\Z
such that:

1. f is continuous on Z and on N ,

2. ωP (Z) = 0, and

3. ωP (N) > 0 .

We first decompose the set N with our two-constraint algorithm into NP parts with a
small σ which may lead to some imbalance. The set Z serves now for equilibrating the
imbalance. Since ωP (Z) = 0, decomposing Z corresponds to a single-constraint problem
into which the arisen imbalance of the decomposition of N is incorporated. We formulate
this as follows:

Listing 4.5: mixed-constraint algorithm

1decompose N v ia our two−c o n s t r a i n t a lgor i thm in to (N1, . . . NNP )
2
3decompose Z i n t o Z1, . . . ZNP such that :
4i f @ Ni : ωM (Ni) >

1
NP

5ωM (Zi) = 1
NP
− ωM (Ni) ∀i

6else
7ωM (Zi) + ωM (Ni) ≤ max {ωM (Nj)} ∀i
8end i f
9
10Pi = Ni ∪ Zi ∀i

To obtain a simple notation, the formulation of the algorithm is based on intervals. A
partition is here a union of subintervals of [0, 1].

In line 1 we apply our two-constraint algorithm to divide the interval N into disjoint
subintervals (if σ = 1), or disjoint unions of subintervals (σ > 1).

In line 4 we check whether we can equilibrate by the second decomposition the imbalance
completely, that is the case if there is no Ni such that its weight ωM (Ni) exceeds already 1

NP
(since ωM ([0, 1]) = 1). If this is the case we compute the weights of Zi in line 5. The actual
decomposition then can be done by traversing the interval Z from left to right accumulating
ωM and setting split points appropriately as described in 3.2.4.

If ωM (Z) is not sufficient to balance the imbalances of the first decomposition, it only
remains to split Z such that the total weight of a final partition does not exceed the largest
ωM (Ni). Note that there are multiple solutions however they are all equivalent in terms of
µw or idletime as defined in 2.6.

4.6.2. Example

We base the following example on Moore’s version of the Hilbert curve.

As displayed in figure 4.11 we consider a U-shaped geometry with particles restricted to
the top right area. The particle distribution in index space is limited to a very small interval
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Figure 4.11.: Mixed-constraint decomposition problem: particles are restricted to the top-
right area. The upper histogram displays the particle distribution in index
space, the lower histogram displays the distribution of the triangles in index
space.

N = [0.750195, 0.809903] and hence Z = [0, 0.750195) ∪ (0.809903, 1]. We decompose here
in NP = 5 parts and set σ = 1, hence, the mixed-constraint algorithm corresponds to two
single-constraint decompositions. The result is displayed in figure 4.12.

Firstly, N is decomposed such that each partition contains the same number of particles.
We can see that a certain imbalance arises: the subparts of the orange and the brown
partition with indices in N consist of much more triangles than the dark blue, the light
blue and the green partition. This is considered in the decomposition of Z. We can see for
instance that the subpart of the brown partition with indices in Z is much smaller than the
subpart of the green partition with indices in Z such that in total the brown and the green
partition contain the same number of triangles.

Note further that the subpart of the indices of the light blue partition in Z is disconnected
([0, 0.05] and [0.985, 1]). Due to the Hamilton cycle of Moore’s curve the corresponding
subpartition is connected.

4.6.3. Remarks

The provided example is chosen such that there are enough triangles without particles to
equilibrate in the second decomposition the imbalance that occurred in the first decompo-
sition, even though σ is chosen to be 1 which leads in general to the highest imbalance.
If, however, the particles are more scattered such that there are fewer triangles without
particles, the situation may occur that it is not possible to equilibrate the imbalance of
the first decomposition. In these cases σ can be increased. If, however, there are only few
triangles without particles (more precise the triangles that have an index in Z), we may
achieve better decomposition results if we treat the problem as a two-constraint problem,
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4. Space filling curves for domain decomposition for two-constraint particle simulations
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Figure 4.12.: Result of mixed-constraint decomposition problem: in a first step the area that
governs the particles is decomposed. In a second decomposition the remaining
area is decomposed under consideration of the imbalances that arose during
the first decomposition. The upper histogram displays the particle distribution
in index space, the lower histogram displays the triangle distribution in index
space.

not as a mixed-constraint problem.
Further note that the difficulty here depends also on the underlying SFC, however in

an opposite manner as in section 4.5. While for the two-constraint algorithm the particles
should be scattered in index space as homogeneously as possible here it is beneficial if
particles are concentrated in a small interval (and as homogeneously concentrated in this
interval as possible). Optimally a SFC traverses the unit cube/square such, that it hits
all triangles that contain particles in a sequence and all triangles without particles in a
sequence. In this setting the number of triangles for the second decomposition is maximal,
hence, the potential to equilibrate imbalances of the first decomposition is maximal.
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5. Technical details

This chapter provides insight in technical aspects of this work. Besides an explanation of
how we actually compute the inverse mappings of SFCs we state the construction of our
problem-specific SFCs. We present a prove scheme for Hölder continuity of these curves.

5.1. Computing the inverse of Space Filling Curves

The present thesis makes use of four SFCs, the Hilbert curve in 2D and in 3D and Moore’s
version of the Hilbert curve in 2D and in 3D. For the computation of the Hilbert mappings
in any dimension Butz presented in [5] an algorithm, known as the Butz-algorithm, that can
be easily implemented. Lawder presented in [24] how the Butz-algorithm can be inverted
to compute the inverse of the Hilbert mapping.

In [18] Guohua and Mellor-Crummey present SFCGen, a framework for computing map-
pings of SFCs by recursion. The recursive scheme of a SFC is defined by tables which are
sufficient to compute the mappings. For Moore’s version of the Hilbert curve we developed
an automaton-based algorithm which seems to be identical to the implementation scheme
of SFCGen. This automaton-based scheme can also be applied for the Hilbert mapping and
it turned out that this scheme computes much faster than Butz algorithm which meets the
results of SFCGen provided in [18]. We explain the automaton-based scheme on the exam-
ple of the Hilbert curve in 2D. For Moore’s version of the Hilbert curve in 2D we provide the
grammar that is sufficient to construct the curve. For Moore’s curve in 3D we demonstrate
that setting up the definition of the automaton requires cumbersome engineering work. For
the Hilbert curve in 3D we sticked therefore to the inverse Butz algorithm to avoid setting
up the automaton. Since we can compute inverse SFC mappings as a preprocessing step,
efficiency is not crucial here.

5.1.1. Hilbert Curve in 2D

As in section 3.2.2 we compute the quarternary representation of the index i = (0.i1i2 . . . )4
of a two dimensional coordinate. For the coordinates a representation in dual system is
convenient:

x = (0.x1x2 . . . )2 (5.1)

y = (0.y1y2 . . . )2, (5.2)

xi, yi ∈ {0, 1}. The automaton reads in each step i the tuple (xi, yi) and according to these
values and the automaton’s current state the automaton performs a transition into a new
state and outputs a digit of the index. For the Hilbert curve in 2D the automaton in figure
5.1 computes the inverse mapping.
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5. Technical details

⊓ ⊐

⊏ ⊔

(0, 0) → 0

(1, 0) → 3

(0, 1) → 1

(1, 1) → 2

(0, 1) → 3

(0, 0) → 0

(1, 1) → 1

(1, 0) → 2

(1, 1) → 0

(1, 0) → 3

(0, 1) → 1

(0, 0) → 2

(1, 1) → 0

(0, 1) → 3

(1, 0) → 1

(0, 0) → 2

Figure 5.1.: Automaton for computing the inverse 2D Hilbert function.

As an example we discuss the index computation to the point

(x, y) = (
13

16
,

7

16
) = ((0.1101)4, (0.0111)4)

that also demonstrates the functionality of the automaton and verifies its correctness.

The automaton starts in state u. The first input are the first digits of the quarternary
representation of (x, y), that is (1, 0). Note that this indicates that the point lies in the
bottom right subsquare. Therefore the corresponding index is greater or equal to 0.75 =
(0.3)4 which means that the first digit of the quarternary representation of the index is
3. The automaton indicates this by the transition from state u to @ which is labeled by
(1, 0)→ 3.

The next input tuple consists of the second digits of the quarternary representation of
(x, y), that is (1, 1). The automaton indicates the transition from @ to t, labeled with
(1, 1) → 0, hence the second digit of the index is 0. This is also what we expect since
the Hilbert curve enters the bottom right subsquare from the right half of the top right
subsquare.

The third and fourth digits of the quarternary representation of (x, y) indicate further
transitions from t to A and from A to A and the index computes to 0.3031. Note that this
is not the final index of (x, y). The following inputs to the automaton are all (0, 0) (since
((0.1101)4, (0.0111)4) = ((0.1101000 . . . )4, (0.0111000 . . . )4)) and hence the computation
continues. After at most 4 further transitions of the automaton the computation loops
and the quarternary representation of the index gets periodic. For this reason we chose a
precision in advance which states the number of transitions the automaton performs for a
computation. In deed preselecting a desired precision p corresponds to a truncation of the
spatial coordinate to a corner point of the pth approximating polygon of the Hilbert curve.
Further details about approximating polygons can be found for instance in [2].
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5.1. Computing the inverse of Space Filling Curves

Note that the automaton can also be used to compute the Hilbert mapping itself. For this
purpose we only have to turn around the arrows of the labels of a transition. The automaton
reads each step a digit of the quarternary representation of an index and produces a tuple
of binary digits of the x and y coordinate of the corresponding point.

The construction of the automaton is completely determined by the grammar of the 2D
Hilbert curve which is shown in table 3.1. The non-terminals (or the basic shapes) in the
grammar pose the states of the automaton. For each occurring basic shape on the right side
of a grammar rule we construct a transition from the state represented by the basic shape
on the left side to the basic shape on the right side. Therefore we get four transitions for
each state of the automaton.

For setting up the labels for a transition we observe the way a basic shape is passed
through by the Hilbert curve. We explain this procedure at the example of the grammar
rule:

A ⇐ u � A ^ A � t

taken from 3.1. The Hilbert curve enters A at the bottom left subsquare, hence we create
the label (0, 0) → 0. (0, 0) indicates the bottom left subsquare and the 0 at the right side
of the arrow indicates the time when the corresponding subsquare is passed through. Next
the curve enters subsquare (1, 0) (bottom right). We create the label (1, 0) → 1. In this
manner we can construct labels for all transitions.

5.1.2. Moore’s Curve in 2D

Moore’s version of the Hilbert (we denote it with fm in 2D) forms a Hamilton cycle, that
is the curve is closed (⇒ fm(1) = fm(0) = (0.5, 0)).
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Figure 5.2.: Iterations of Moore’s version of the two dimensional Hilbert curve.

We assume that the curve starts in the bottom left subsquare and ends in the bottom
right subsquare.

Five basic shapes are required for the grammar of Moore’s curve. The basic shape u poses
two non terminals in the grammar since it is passed through both from bottom left to bottom
right which we denote by u , and from bottom right to bottom left which we denote by u’.
A grammar can be formulated as follows:
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5. Technical details

u ⇐ @ ^ @ � A _ A
@ ⇐ u’ � @ ^ @ � t
A ⇐ t � A _ A � u’
t ⇐ A _ t � t ^ @
u’ ⇐ @ ^ u’ � u’ _ A .

Table 5.1.: Grammar for Moore’s version of the 2D Hilbert curve.

The grammar in table 5.1 shows that the initial basic shape (u) does not appear on the
right sides of any production. For this reason the automaton does not return to the initial
state but only performs transitions among the other four basic shapes in the same way the
automaton of Hilbert’s curve does. For this reason Moore’s curve can be seen as an Hilbert
curve with an altered initial configuration.

The corresponding automaton is constructed in the same way as the automaton to the
two-dimensional Hilbert curve.

5.1.3. Moore’s curve in 3D

Constructing a grammar which defines an automaton for Moore’s curve in 3D turned out
to be cumbersome engineering work since there was no literature found that provides a
grammar for Moore’s curve in 3D. While the two dimensional Hilbert curve is unique (except
for symmetry) in 3D there are multiple Hilbert curves (see [2]) and hence multiple versions
of Moore’s curve. Since we only need one version of Moore’s curve we follow the following
strategy to setup a grammar: we start with basic shape one (compare with table 5.2) and
define a reasonable substitution rule for it. Reasonable means here that the sequence of
basic shapes and connections form a continuous curve and as far as possible we try to keep
symmetry during this construction. For all basic shapes on the right sides of grammar rules
we define substitutions. This procedure ends when we defined for all appearing basic shapes
a substitution rule. Our approach leads to the grammar displayed in table 5.3.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Table 5.2.: Basic shapes for Moore’s version of the 3D Hilbert curve.

Note that in three dimensions we substitute a basic shape by eight smaller basic shapes.
Due to the third dimension we have two further connecting arrows (↗,↙).

Similarly to the grammar for Moore’s curve in 2D the initial basic shape does not appear
on any right side of a production. In addition all grammar rules, except the first one,
exhibit symmetry and follow the structure A⇐ B,C,C,D,D,E,E, F . This coincides with
the grammar for Moore’s curve in 2D.

The construction of the corresponding automaton is analogous to the 2D case. In three
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5.2. Construction of composite Space Filling Curves

1 ⇐ 2 ^ 3 ↗ 3 _ 4 � 5 ^ 6 ↙ 6 _ 7

2 ⇐ 8 � 3 ↗ 3 � 5 ^ 5 � 9 ↙ 9 � 10

3 ⇐ 8 � 2 ^ 2 � 11 ↗ 11 � 4 _ 4 � 12

4 ⇐ 13 � 9 ↙ 9 � 7 _ 7 � 3 ↗ 3 � 12

5 ⇐ 12 � 6 ↙ 6 � 2 ^ 2 � 11 ↗ 11 � 13

6 ⇐ 5 ^ 12 � 12 _ 9 ↙ 9 ^ 14 � 4 _ 7

7 ⇐ 10 � 11 ↗ 11 � 4 _ 4 � 12 ↙ 6 � 14

8 ⇐ 2 ^ 3 ↗ 3 _ 13 � 13 ^ 6 ↙ 6 _ 7

9 ⇐ 4 _ 13 � 13 ^ 6 ↙ 6 _ 10 � 10 ^ 2

10 ⇐ 7 _ 11 ↘ 11 ^ 12 � 12 _ 9 ↖ 9 ^ 2

11 ⇐ 7 _ 10 � 10 ^ 3 ↗ 3 _ 13 � 13 ^ 5

12 ⇐ 5 ^ 6 ↙ 6 _ 10 � 10 ^ 3 ↗ 3 _ 4

13 ⇐ 4 _ 9 ↙ 9 ^ 14 � 14 _ 11 ↗ 11 ^ 5

14 ⇐ 2 ^ 3 ↗ 3 _ 13 � 13 ^ 6 ↙ 6 _ 7

Table 5.3.: Grammar for Moore’s version of the 3D Hilbert curve.

dimensions a label is of the form (x, y, z) → {0, . . . 7}. The computed index is provided in
base eight system since one basic shape passes through eight subcubes in 3D.

5.2. Construction of composite Space Filling Curves

In section 4.5 we discuss the use of problem-specific SFCs, fMai in 2D and FNaj in 3D for
points M,N and integers i, j, that suit better for specific decomposition problems. Here we
provide the construction of fMa4 . The scheme can be straight-forwardly extended to three
dimensions.

Our constructions are based on Moore’s version of Hilbert’s curve, which we denote by
fm in 2D. We discuss now the curve fMa4 , a SFC that visits the unit square around point

M ∈ (0, 1)2 as a sequence of visits of 4 triangles.
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5.2.1. Definition of fMa4

Figure 5.3 shows the course of the curve fMa4 :
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Figure 5.3.: f0.25,0.7a4 consecutively visits 4 triangles.

We denote the point sets of the triangles I, II, III, IV with 4I ,4II ,4III and 4IV .
The curve starts at point M , visits triangle I, and returns to point M . In the same

manner triangles II, III, and IV are visited. Since we aim that our problem-specific
curves evolve with constant speed triangle I covers the index interval II = [0, AI ] with AI
the area of triangle I. For the same reason triangle II covers the index interval III =
(AI , AI +AII ], triangle III covers IIII = (AI +AII , AI +AII +AIII ] and triangle IV
covers IIV = (AI +AII +AIII , 1] with Ai the area of triangle i.

For our construction we require contractions from the unit square to the triangles I, II, III, IV .
These contractions map the point (0.5, 0) to M . We assume that these mappings are
Lipschitz-continuous (to a Lipschitz constant ≤ 1) and we denote as follows:

mi : [0, 1]2 → 4i (5.3)

||mi(x1)−mi(x2)||2 ≤ Ki · ||x1 − x2||2 ∀i ∈ {I, II, III, IV } and Ki ≤ 1. (5.4)

These mappings allow the definition of fMa4 :

fMa4 : [0, 1] → [0, 1]2 (5.5)

fMa4 (i) =


m1(fm( 1

A1
· i)) , i ∈ II

m2(fm( 1
A2
· (i−A1))) , i ∈ III

m3(fm( 1
A3
· (i−A1 −A2))) , i ∈ IIII

m4(fm( 1
A4
· (i−A1 −A2 −A3))) , i ∈ IIV

(5.6)

= mj(fm(
1

Aj
· (i−

∑
l<j

Al))) for i ∈ Ij . (5.7)

For a given index i ∈ Ij the index range Ij is stretched to [0, 1]. Moore’s SFC mapping
is applied and the resulting point in [0, 1]2 is mapped to the triangle 4j . Note that since
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5.2. Construction of composite Space Filling Curves

fm(0) = fm(1), fMa4 is continuous. Further it holds that fMa4 (0) = fMa4 (A1) = fMa4 (A1+A2) =
fMa4 (A1 +A2 +A3) = fMa4 (1) = M .

We show that the Hölder continuity of fm is inherited to fMa4 :

5.2.2. Proof: fMa4 is Hölder continuous

Theorem 5.1 fMa4 is Hölder continuous ( ∀M ∈ (0, 1)2).

Proof: Cm denotes the Hölder coefficient of Moore’s curve. Given are further two indices
i1, i2 ∈ [0, 1]. We distinguish two cases:

1. i1, i2 ∈ Ij for some j. We assume i1 > i2.

||fMa4 ( i1 )− fMa4 (i2)||2 = (5.8)

= ||mj(fm(
1

Aj
· (i1 −

∑
l<j

Al)))−mj(fm(
1

Aj
· (i2 −

∑
l<j

Al)))||2 (5.9)

≤ Kj · ||fm(
1

Aj
· (i1 −

∑
l<j

Al))− fm(
1

Aj
· (i2 −

∑
l<j

Al))||2 (5.10)

≤ Kj · Cm · |
1

Aj
· (i1 −

∑
l<j

Al)−
1

Aj
· (i2 −

∑
l<j

Al)|
1
2 (5.11)

=
Kj · Cm√

Aj
· |i1 − i2|

1
2 . (5.12)

2. i1 ∈ Ij =: [j1, j2] , i2 ∈ Ik =: [k1, k2] , j 6= k. We assume that i1 > i2.

||fMa4 (i1)− fMa4 (i2)||2 = ||fMa4 (i1)− fMa4 (j1) + fMa4 (k2)− fMa4 (i2)||2 (5.13)

≤ ||fMa4 (i1)− fMa4 (j1)||2 + ||fMa4 (k2)− fMa4 (i2)||2 (5.14)

≤ Kj · Cm√
Aj

· |i1 − j1|
1
2 +

Kk · Cm√
Ak

· |k2 − i2|
1
2 (5.15)

≤ Cm ·max{ Kj√
Aj
,
Kk√
Ak
} · 2 · |i1 − i2|

1
2 . (5.16)

�

5.2.3. Inverting fMa4 and practical issues

In practice we require the inverse mapping of fMa4 :

(fMa4 )−1(x) =


A1 · f−1m (m−11 (x)) , x ∈ 41

A2 · f−1m (m−12 (x)) +A1 , x ∈ 42

A3 · f−1m (m−13 (x)) +A1 +A2 , x ∈ 43

A4 · f−1m (m−14 (x)) +A1 +A2 +A3 , x ∈ 44

(5.17)

= Aj · f−1m (m−1j (x)) +
∑
l<j

Al , x ∈ 4j . (5.18)
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The computation of the inverse of Moore’s curve is considered in 5.1.2. It remains to
define the mappings:

m−1j : 4j → [0, 1]2 , j ∈ {1, 2, 3, 4}. (5.19)

Since (mj)j=1...4 depend on M it is rather difficult to find analytical mappings (and on the
fly sinceM is not fixed). We decided therefore to divide this step into two computation steps.
Firstly we map the triangles (4j)j=1...4 to a reference triangle 4S defined by the vertices
(0, 0), (0.5, 1), (1, 0). We denote this mapping with nj : 4j → 4S , ∀j ∈ {1, 2, 3, 4}.
Secondly we apply a function ϕ : 4S → [0, 1]2. We precomputed ϕ on a grid and stored it
in file such that function values can be interpolated. nj is of the form:

nj(x) = Aj · x+ bj (5.20)

=

Ç
aj11 aj12
aj21 aj22

å
·
Ç
x1
x2

å
+

Ç
bj1
bj2

å
(5.21)

=

Ç
aj11 aj12 bj1
aj21 aj22 bj2

å
·

Ö
x1
x2
1

è
, (5.22)

Matrix Aj rotates and stretches the triangle 4j , the vector bj translates the triangle. If
Pj , Qj ,M (counterclockwisely labeled) denote the corner points of triangle 4j we obtain
the conditions:

nj(Pj) = (0, 0) (5.23)

nj(Qj) = (1, 0) (5.24)

nj(M) = (0.5, 1), (5.25)

and we compute Aj and bj as a solution of two small linear equation systems (3 × 3 in
2D, 4× 4 in 3D).

For mapping 4S to [0, 1]2 we used the mapping ϕ as displayed in figure 5.4:

We computed ϕ as the solution of a Laplacian equation:

∆ϕ = 0, (5.26)

∂ϕ(x) =


id , x2 = 0

(0, 32x1), 0 < x2 <
2
3 and x1 < 0.5

(1, 3− 3x1), 0 < x2 <
2
3 and x1 ≥ 0.5

(3x1 − 1, 1), x2 ≥ 2
3

.

The boundary conditions are set up such that the boundary of the triangle is mapped
continuously to the boundary of the unit square.

System 5.26 is discretized by finite differences. The unknowns of the triangle are collected
bottom-up left to right. The grid spacings hx, hy are chosen such that hy = 2 · hx since in
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5.2. Construction of composite Space Filling Curves

Figure 5.4.: Displacement of smooth mapping from 4S to the unit square.

this way the boundary points of all discrete y-coordinates 0 ≤ k · hy ≤ 1 are aligned with
the grid.

The resulting linear equation system has the non-zero structure as displayed in figure 5.5.
It is diagonally dominant however it is not symmetric.

Figure 5.5.: Non-zero structure of the arising linear equation system.

We solve this system with an algebraic multigrid solver implemented in hypre 1. The
discrete solution is stored in a file and via an interpolation ϕ can be computed for any
x ∈ 4S .

1http://www.llnl.gov/CASC/linear_solvers/
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6. Test cases

Before discussing test cases that demonstrate the applicability of our two-constraint decom-
position method we provide in section 6.1 a test case that verifies the edge-cut growth rate
in dependence of σ and the dimensionality as it is discussed in section 4.4.

The subsequent test cases compare our two-constraint method to MeTiS with respect to
quality and speed. All test cases are in 3D. In the appendix A.2 we provide a table that
itemizes the meshes that are applied in this section. In all test cases we assume ωM = 1

N
which corresponds to equal workload for each tetrahedron for the solution of the Maxwell
equations. This is for the fact that primarily we intend particle simulations with equal
polynomial degrees for all tetrahedra. We executed test cases with slightly varying ωM and
could not observe that the difficulties of the problems change significantly for MeTiS or for
our two-constraint algorithm.

We base the test cases on different triangulations. We can not identify any geometries
that are in any sense more difficult or easier to handle for our two-constraint algorithm, the
difficulty rather stems from the combination of particle distribution in the geometry. We
nevertheless apply different geometries to exclude that a certain geometry influences the
decomposition algorithms significantly.

Here it is important to mention that we do not consider the time for computing the
inverse of SFC mappings and the time for reordering the tetrahedra with respect to their
indices. In the setting of a full particle simulation we assume that the input meshes (that
are stored in a file) are already reordered with respect to some SFC.

The test environment uses MeTiS as a library. The two-constraint decomposition method
of MeTiS is called which operates on the dual graphs of our meshes. The time for construct-
ing dual graphs is neither considered since they can also be precomputed.

The result of a DD by MeTiS is an array of size N (number of graph vertices) that
states the domain decomposition as defined in 2.1. In order to compare the two methods
we generated the same interface to our two-constraint algorithm as the interface to the
MeTiS library. Further we return the results of our two-constraint method in the same
way MeTiS does. Note that for implementations in particle simulations this is not optimal,
rather an indication of the DD in terms of intervals (e.g. partition Pi consists of tetrahe-
dra {τj1 . . . τk1}, {τj2 . . . τk2} . . . ) is more beneficial in terms of data organization since the
memory requirements to store the DD is extremely reduced 1. In the sequel we discuss
the quality of the resulting decompositions as well as their runtimes, we do not discuss
implementation details or technical issues of the methods.

1If we store a DD as the result of our two-constraint algorithm as a list of separating intervals this requires
O(σ ·NP ) since we only have to store partition boundaries (if stored as an array as returned by MeTiS
this is O(N)).

71



6. Test cases

6.1. Verification of edge-cut growth rate in dependence of σ
and the dimensionality

In section 4.4 we provide an estimation for the growth rate of the edge-cut in dependency
of σ and the dimensionality of the problem. Equation 4.37 states that the edge-cut of a
decomposition into NP parts grows such that:

“edge-cut of decomposition” ∈ O(σ
1
d ). (6.1)

We verify this in the following. We base the experiments on the two meshes square and
cube, compare appendix A.2. square is a 2D Delauney triangulation of the unit square,
cube is a natural extension of square to 3 dimensions, a triangulation of the unit cube.

6.1.1. A simple and homogen example

In a first experiment we intend to pose a simple decomposition problem such that all
subparts of a partition cover about the same index range and the subparts are of about
the same volume. We achieve this by setting ωM = ωP = 1

N which corresponds actually to
a single-constraint problem since a balancing of ωP balances ωM automatically. We chose
NP = 4 here and base the algorithm on the Hilbert curve. With this experiment we intend
to setup conditions that are close to the assumptions we made in the derivation of the
growth rate in 4.4. The resulting subparts in this experiment are similarly shaped since
we selected NP = 4 (Hilbert curve’s inherent quartering) and the underlying geometries
are such that they fully populate the index spaces in a homogeneous way. Further the
edge-cut should be represented by the surface sizes quite well since we created the meshes
square and cube by triangulation tools that fulfill the demands of similarly sized and shaped
triangles/tetrahedra.
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Figure 6.1.: Edge-cut and normalized edge-cuts in dependency of σ for a homogeneous de-
composition problem of the meshes square (left) and cube (right).

Figure 6.1 shows the dependencies of the edge-cut in dependence of σ for the meshes
square and cube. The blue lines represent the absolute edge-cut as we defined it in definition
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6.1. Verification of edge-cut growth rate in dependence of σ and the dimensionality

2.4. The green lines display the edge-cut divided by
√
σ and the red lines display the edge-

cut divided by 3
√
σ. If the edge-cut of an experiment grows with σ

1
d then the corresponding

normalized edge-cut should resemble a straight line. The magenta colored line displays the
edge-cut normalized by σl, l is chosen such that the edge-cut is proportional to σl best
possible. We discuss the determination of l in 6.1.3.

The examples verify the predicted behavior. In both cases the actual growth rate (the
magenta colored line) is better than the predicted growth rate, while in the two dimensional
case the predicted growth rate and the actual growth rate nearly match.

We provide a second example that is intended to show that the growth rates also hold
for heterogeneous and more difficult problems.

6.1.2. A difficult and heterogeneous example

Here we partition the meshes square and cube into NP = 21 parts. We chose a highly
heterogeneous particle distribution such that the balancing is challenging for our algorithm.
The algorithm produces subparts that do neither resemble each other in shape nor are they
of similar sizes.
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Figure 6.2.: Edge-cut and normalized edge-cuts in dependency of σ for a heterogeneous
decomposition problem of the meshes square (left) and cube (right).

Figure 6.2 shows that the predicted growth rates and the actual growth rates do not
match as well as in the homogeneous testcase. For both geometries the growth rates are
better than it is predicted by O(σ

1
d ).

The example shows however that the orders of magnitude are met quite well, in particular
the fact that the edge-cut in 3D grows more slowly than in 2D is demonstrated.

6.1.3. Computing the best fitting proportionality

We briefly explain how we compute the best fitting proportionality. Given are the edge-cuts
µσe (T ) for σ = 1 . . . Nσ and a mesh T . We search an l such that 2:

2Clearly we make a mistake in assuming 6.3, however for a rough estimation assumption 6.3 is sufficient.
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6. Test cases

µσe (T ) ∈ θ(σl) ⇒ (6.2)

µσe (T ) ≈ C · σl, (6.3)

is satisfied best, hence we minimize the error

Nσ∑
σ=1

|µ
σ
e (T )

σl
− C| → min (6.4)

or equivalently
Nσ∑
σ=1

Ç
µσe (T )

σl
− C
å2

→ min. (6.5)

By differentiating 6.5 with respect to C we get the condition

C =

∑Nσ
σ=1 µ

σ
e (T )

σl ·Nσ
. (6.6)

A simple Matlab script numerically searches the best fitting l that minimizes 6.5.

6.2. Full particle coverage of a cylinder

The following example is based on the mesh cea-cylinder, compare appendix A.2. We
consider a particle distribution as displayed in figure 6.3.
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Figure 6.3.: Decomposition problem based on mesh cea-cylinder, for the visualization
here the right half is cut off. Each tetrahedron contains at least one particle.
The distributions are provided in index space of Moore’s curve.

The geometry, as it is the case of all geometries we consider, is a subset of [0, 1]3. We
determine the numbers of particles per tetrahedron τi by:

(xi, yi, zi) = cg(τi) (6.7)

# part. in τi = b−rand() ·
»

(xi − 0.5)2 + (yi − 0.5)2 · 4.75 + 5 + 10yic, (6.8)
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6.2. Full particle coverage of a cylinder

rand returns a random number in [0, 1]. The distribution is independent of the z-
coordinate and tetrahedra with a large y coordinate contain more particles than tetrahedra
with a small y coordinate, this property can be seen figure 6.3. The distribution is selected
such that each tetrahedron contains between 1 and 15 particles.

6.2.1. Comparison: MeTiS - two-constraint SFC

Here we provide a comparison of our two-constraint algorithm with MeTiS in terms of qual-
ity (balancing of weights, edge-cut) and speed. We perform decompositions into 2 . . . 512
parts. The provided results are obtained with our algorithm based on Moore’s curve, basing
our algorithm on Hilbert’s curve leads to similar results.

Since MeTiS can be used with different balancing constraints (compare to sections 3.1
and 3.2) and the two-constraint SFC algorithm can be used with different σ values it
is not evident how to set up these parameters to provide a meaningful comparison. We
decided to allow an imbalance of 3% for all test cases, that is for a decomposition d it
holds µw(ωP , d) ≤ 1.03 and µw(ωM , d) ≤ 1.03. To set up the appropriate σ to achieve
these balancing constraints we start with σ = 1 and increment σ until we reach the desired
balancing. For the measuring of execution time of our two-constraint algorithm we just
consider the runtime with the correctly chosen σ. The results are shown in figure 6.4.
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Figure 6.4.: Results for decomposition problem based on mesh cea-cylinder

In order to achieve the demanded balancing σ values of 5 or 6 are required for all numbers
of partitions ≥ 82. For smaller numbers of partitions smaller σ values are already sufficient.
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6. Test cases

The upper left figure shows the imbalances of the weights ωM and ωP . Even though we
allowed MeTiS to produce partitions with an imbalance of 3% MeTiS produced nevertheless
partitions with significantly better balancings. The imbalance of ωM produced by MeTiS is
nearly equal to the imbalance of ωP , the plot of ωM is hidden behind the imbalance of ωP .

The figures show the perfect balancing of ωP achieved by our algorithm. For small
numbers of partitions smaller σ values were chosen and hence a higher imbalance for ωM
occurred to the benefit of smaller edge-cuts as displayed in the upper right figure. For 512
parts the edge-cut produced by our algorithm is about 2.15 times worse than the edge-cut
produced by MeTiS as can be seen by the bottom right figure. This is remarkable since
σ values of 5, 6 are required which means that partitions consist of 5 or 6 disconnected
subpartitions. This is due to the fact that the edge-cut growth in O(σ

1
3 ) as discussed in

section 4.4 and the test case of section 6.1.

In terms of computation time the two-constraint algorithm needed between 0.1 and 0.12
seconds while MeTiS needed between 14 and 18 seconds. Here the two-constraint algorithm
is between 140 and 160 times faster than MeTiS.

6.2.2. Evolution of imbalance with respect to σ and NP

We further measured the imbalance of ωM with respect to σ and the number of parts NP .
The result is displayed in figure 6.5.
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Figure 6.5.: Result: Imbalance with respect to σ

Remarkable here is the quick diminishment of imbalance by only slight increases of σ.
Since in general small σ values are sufficient for good balancings this DD problem can be
considered to be an easy problem.
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6.3. Small particle cloud in cube

6.3. Small particle cloud in cube

Here we consider the mesh cea-cube, compare appendix A.2. We concentrated 91444
particles in a particle cloud as displayed in 6.7.
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Figure 6.6.: Decomposition problem based on mesh cea-cube, for the visualization here the
bottom half is cut off. The distributions are provided in index space of Hilbert’s
curve.

This setting poses a rather difficult problem. The example contains 1220192 tetrahedra
but only 36473 tetrahedra contain particles. Hence if we decompose the example into 100
parts each part obtains approximately 364 tetrahedra of those that contain particles (and
hence approximately 914 particles). These are very low numbers and we expect in general
particle simulations with many more particles. Nevertheless we picked the example because
it is somewhat an exemplar that gave rise to the development of the mixed-constraint version
of our two-constraint algorithm.

6.3.1. Comparison: MeTiS - mixed-constraint SFC

The mixed-constraint algorithm suits here much better than the two-constraint algorithm
since only few tetrahedra contain particles. We discuss here decompositions into 2 . . . 256
parts, maximally 256 parts since the problem sizes are already very small.

The mixed-constraint algorithm first applies the two-constraint algorithm in the interval
[0.91, 0.97] to balance ωP . In a second step the imbalance induced by this decomposition
is equilibrated by a single-constraint decomposition of the remaining domain which takes
this imbalance into account. For high numbers of processors the induced imbalance by
the first decomposition is rather high and it is not possible to balance it with the second
decomposition. For this reason increased σ values for the first decomposition have to be
applied. Results are displayed in figure 6.7.

Firstly, the high imbalance of ωP of the mixed-constraint algorithm is remarkable here,
since ωP should be balanced perfectly and automatically. This is due to the fact that the
number of tetrahedra that contain particles is small. These tetrahedra are decomposed into
subparts that contain only a couple of tetrahedra (5-15) and hence a small weight ωP . In
these small orders of magnitudes small absolute imbalances are already noticeable relative
imbalances. During the reunification phase subparts are combined and this procedure even
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6. Test cases
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Figure 6.7.: Results for decomposition problem based on mesh cea-cube
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6.4. Benefits of problem-specific curve

amplifies these imbalances (since the reunification does not consider ωP ). As a result we
obtain imbalances of up to 4%. This effect does not occur if the problem sizes, that is the
number of tetrahedra and the number of particles, is sufficiently large as it is the case for
realistic PIC simulation settings.

Secondly it is worth noticing that even though high σ values are required to achieve the
imbalance of 1.03 the edge-cuts are not noteworthy worse than in the test case of section
6.2, where smaller σ values were sufficient. The simple explanation is that a final partition
consists of σ − 1 small subparts that are located in the particle area and one huge subpart
outside the particle area. The edge-cuts of the small subparts are hence small and the
overall edge-cut is mainly determined by the edge-cut of the area without particles. Note
that in the prior example (in section 6.2) all subparts are of similar sizes. Hence, here huge
σ values do not contribute to the edge-cut as strongly as huge σ values in the prior example.

The ratio of computation time of MeTiS and the mixed-constraint algorithm decreases
while increasing the number of parts. The figures show that a larger σ is required for large
numbers of partition. The runtime of RH2 grows linearly with σ hence the total runtime
of the mixed-constraint algorithm increases.

6.4. Benefits of problem-specific curve

We consider another particle cloud example based on mesh cylinder (compare appendix
A.2) as displayed in figure 6.8.
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Figure 6.8.: Particle cloud in cylinder: Distributions are provided in index space of Hilbert’s

curve and in index space of the problem-specific curve F
(0.3,0.6,0.7)
a6 .

Each tetrahedron in the sphere with center M = (0.3, 0.6, 0.7) and radius 0.2 contains
20 particles. The tetrahedra outside this sphere contain zero or one particle, each with a
probability of 50%. Figure 6.8 shows the distributions in index space of Hilbert’s curve as
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6. Test cases

well as in index space of the problem-specific curve F
(0.3,0.6,0.7)
a6 .

This is a typical setting where problem-specific curves lead to better results than the
Hilbert curve. We construct a problem specific curve around the center of the particle cloud,

that is we consider F
(0.3,0.6,0.7)
a6 . As in the prior examples we increased σ until we reach a

weight imbalance smaller than 1.03. We compare MeTiS to the multi-constraint algorithm

based on the Hilbert curve and the multi-constraint algorithm based on F
(0.3,0.6,0.7)
a6 . Results

are shown in figure 6.9.
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Figure 6.9.: Results. The bottom figure compares the computation times and edge-cuts of
the two-constraint algorithm based on Hilbert’s curve with the two-constraint

algorithm based on F
(0.3,0.6,0.7)
a6 .

The figures show that the two-constraint algorithm based on the Hilbert curve requires
σ values up to 40 which leads to edge-cuts that are about 4 times as large as the edge-
cuts provided by MeTiS. Basing the two-constraint algorithm on the problem-specific curve

F
(0.3,0.6,0.7)
a6 allows to keep σ small and we obtain similar results as in prior examples.

The bottom figure of figure 6.9 shows the ratio of edge-cuts and computation times of

the two-constraint algorithm based on the Hilbert curve and based on F
(0.3,0.6,0.7)
a6 . Due to

the large σ values the two-constraint algorithm based on F
(0.3,0.6,0.7)
a6 is both faster since the

runtime of RH2 grows with σ and leads to smaller edge-cuts.
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6.5. Particles in mantle of cylinder - comparison of RH1 and RH2

6.5. Particles in mantle of cylinder - comparison of RH1 and
RH2

We provide another example based on mesh cea-cylinder (compare A.2) which is also used
in the test case of section 6.2. Particles are concentrated in the lateral mantle of a cylinder
as displayed in figure 6.10. Tetrahedra in the mantle contain 10 particles, tetrahedra outside
the mantle contain no particles with a probability of 90%, otherwise they contain one single
particle.
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Figure 6.10.: Mesh cea-cylinder. Particle are concentrated in the mantle of a cylinder.

Here we base our algorithm on the Hilbert curve. For demonstration purposes we also
apply RH1 for REUNIFICATION and obtain the results as displayed in figure 6.11.
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Figure 6.11.: Results for decomposition problem: particles in mantle of a cylinder

If we base our two-constraint algorithm on RH2 we obtain similar results in comparison
to MeTiS as in the other test cases concerning edge-cut, balancings and execution time.
The example rather demonstrates that the application of RH2 does not only improve the
quality of the solutions but is absolutely necessary for our two-constraint method.

For NP ≥ 102 RH1 requires already that σ = 932 which leads to edge-cuts more than 10
times worse than the edge-cut produced by MeTiS. We interrupted the test series for RH1
at NP = 162 simply because the evaluation and the search for the necessary σ requires
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enormous time.
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7. Summary

The present diploma thesis discusses a new DD method based on SFCs for two-constraint
problems and its application in the context of particle simulations. The method requires
the solution of a matrix splitting problem. We regarded this problem from two standpoints:

In section 4.2 we discussed a splitting with the minimal number of cuts possible such that
the sum of imbalances is minimized. In other words the number of cuts is fixed and the
objective is to minimize the imbalances. We showed that an algorithm that finds the best
possible balancing of two weights is in O(N5 ·N2

P ). Since there are problems that can not
be balanced by this algorithm and due to the algorithm’s bad complexity we designed our
new two-constraint algorithm as described in section 4.3.

Here we no longer minimize the number of cuts but rather split the matrix into multiple
parts (σ ·NP parts) such that a balancing of both weights is possible. Note that our process
of splitting and solving the REUNIFICATION problem does not lead to the optimal solution
to the problem of finding the best solution given a maximal number of allowed cuts. In fact
it seems that there are efficient algorithms to this problem however these algorithms have
worse complexity than the problem of finding the best matrix splitting with the minimal
number of cuts possible as discussed in 4.2. This observation makes our two-constraint
algorithm appear in a different light: even though a best solution seems to be efficiently
computable (but with bad complexity) we apply our two-constraint algorithm that computes
worse results and even has to overcome the NP complete REUNIFICATION subproblem
for the sake of fast computation times.

Further we showed that REUNIFICATION is NP complete and discussed the similar-
ity of RH2 to LDM for the PARTITION problem. RH2 can be seen as an extention of
LDM: RH2 substitutes two numbers a, b by some value c ∈ [|a− b|, . . .max{a, b}] while
LDM substitutes the two numbers by |a− b|.

Matrix W is the input to our two-constraint algorithm. The structure of W is strongly
determined by the applied SFC. In section 4.5 we try to obtain matrix layouts that are
easier to balance for our two-constraint algorithm by applying problem-specific SFCs. The
test case in section 6.4 shows that there are applications for these curves.

Besides these theoretical considerations we provide test cases that compare our two-
constraint DD method with MeTiS in chapter 6. We discuss in the following section 7.1 the
two-constraint abilities of graph based multilevel schemes to our two-constraint SFC de-
composition method. The diploma thesis is closed by section 7.2 that discusses the sequel
of the work.
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7. Summary

7.1. Graph-based multilevel schemes versus Space Filling
Curves for two-constraint particle simulations

7.1.1. Weight balancing

In general MeTiS and our two-constraint algorithm are able to balance both weights. The
two-constraint algorithm exhibits the feature that it is able to balance one weight perfectly
which is chosen to be the balancing of the particles throughout this work.

7.1.2. Edge-cut

In difficult settings it is necessary to apply large σ values in our two-constraint algorithm in
order to achieve good balancing. The provided test cases show that for difficult settings the
edge-cut of the two-constraint method may be up to four times worse 1 than the edge-cut
induced by MeTiS, in most cases we observed edge-cuts that are between two and three
times worse. Schamberger and Wierum reported in [31] that they observed edge-cuts for
DD via SFCs up to seven times worse compared to MeTiS for single-constraint problems
and we do not exclude that this might happen as well for certain two-constraint problems.

As in the single-constraint case MeTiS clearly outperforms SFC-based approaches.

7.1.3. Execution time and memory requirements

Since in our setting the computation of SFC indices can be precomputed as well as the
sorting, our method performs extremely fast. Note that there is still room for improvements
in the implementation. MeTiS is an optimized Software package while our two-constraint
algorithm is in prove-of-concept state. Nevertheless the timing measurements show the order
of magnitude by which our two-constraint algorithm outperforms MeTiS. It is expectable
that a fully engineered implementation leads to even better timing results. We can state that
the two-constraint algorithm in our setting performs about 100 times faster than MeTiS.

Memory requirement measurements were not done, however we expect similar results as
for one-constraint problems since our method does not make intensive additional use of
memory consuming data structures.

7.1.4. Cache efficiency

In the setting of our two-constraint algorithm a partition consists of σ disconnected sub-
partitions. These subpartitions are stored cache efficiently in memory. For MeTiS it holds
the same as in the single-constraint case, additional reordering strategies are necessary for
cache efficient data storage. This is a clear advantage of our two-constraint algorithm.

7.2. Sequel

In the near future our two-constraint method will be further developed and incorporated into
the development process of a full parallel PIC simulation with DDD for the Maxwell/Vlasov

1E.g. test case 6.4 without the application of a problem-specific curve.
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7.2. Sequel

system. To obtain a performant particle simulation the method of DD can not only be seen
as an external module but rather influences the structure of the simulation software.

This implementation will allow a practical assessment of the applicability of the methods.
We further plan to research redecomposition properties (average transfer volume induced
by new decompositions, . . . ) of the methods.
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A. Appendix

A.1. Gauss-laws follow from charge conservation

We assume the charge conservation

∂ρ

∂t
+∇ · j = 0 (CCL)

is fulfilled at any time and E,H fulfill the Gauss Laws initially, that is

∇ · (εE0) = ρ (E0) and

∇ · (µH0) = 0 (H0).

Theorem A.1 Given Ampere’s Law it holds:

E0 + CCL⇔ Gauss Law . (A.1)

Proof: Compute divergence of Ampere’s Law, apply CCL and E0 :

∇ · ∇ ×H︸ ︷︷ ︸
=0

= ∇ · j︸ ︷︷ ︸
=− ∂ρ

∂t
, CCL

+∇ · ε∂E
∂t

⇔ (A.2)

∇ · ε∂E
∂t

=
∂ρ

∂t
E0⇔ (A.3)

∇ · εE = ρ. (A.4)

�

Theorem A.2 Given Maxwell-Faraday’s equation it holds:

H0⇔ Gauss Law for Magnetism. (A.5)

Proof: Compute divergence of Ampere’s Law and apply H0 :

∇ · (−∇× E)︸ ︷︷ ︸
=0

= −∇ · (µ∂H
∂t

)
H0⇔ (A.6)

0 = ∇ · (µH). (A.7)

�
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A. Appendix

A.2. List of meshes

Name Figure # vert. # ele. Description

square

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7900 15613 Delauney triangulation
of the unit square, gen-
erated with the tool
triangle 1, used in the
test case in section 6.1

cube 3439 17727 Delauney triangulation
of the unit cube, gen-
erated with the tool
tetgen 2, used in the
test case in section 6.1

cea-cylinder 562426 3245588 Cylinder with a cylinder
cut out in its interior,
provided by HOUPIC
project partner CEA 3,
used in the test cases in
section 6.2 and 6.5

1 http://www.cs.cmu.edu/~quake/triangle.html
2 http://tetgen.berlios.de/
3 www.cea.fr
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A.2. List of meshes

Name Figure # vert. # ele. Description

cea-cube 211316 1220192 Cube with a cube cut
out in its interior, pro-
vided by CEA, used in
the test case of section
6.3

cylinder 2 3 Cylinder, triangulated
with the tool tetgen,
used in the test case of
section 6.4

Table A.1.: Meshes used in the test cases of chapter 6.

89





Bibliography
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