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Abstract

Independent sets play a central role in distributed algorithmics. We examine here the minimal
requirements for computing non-trivial independent sets. In particular, we focus on algorithms that
operate in a single communication round. A classic result of Linial shows that a constant number of
rounds does not suffice to compute a maximal independent set. We are therefore interested in the size
of the solution that can be computed, especially in comparison to the optimal.

Our main result is a randomized one-round algorithm that achieves poly-logarithmic approximation
on graphs of polynomially bounded-independence. Specifically, we show that the algorithm achieves the
Caro-Wei bound (an extension of the Turán bound for independent sets) in general graphs up to a
constant factor, and that the Caro-Wei bound yields a poly-logarithmic approximation on bounded-
independence graphs. The algorithm uses only a single bit message and operates in a beeping model,
where a node receives only the disjunction of the bits transmitted by its neighbors.

We give limitation results that show that these are the minimal requirements for obtaining non-
trivial solutions. In particular, a sublinear approximation cannot be obtained in a single round on
general graphs, nor when nodes cannot both transmit and receive messages. We also show that our
analysis of the Caro-Wei bound on polynomially bounded-independence graphs is tight, and that the
poly-logarithmic approximation factor does not extend to O(1)-claw free graphs.

1 Introduction

Something For Almost Nothing. When designing approximation algorithms, the usual goal is to find
desirable trade-offs between approximation guarantee and the resources required by the algorithm, such as
computation time, memory consumption, or, in the area of distributed computing, message size and the
number of communication rounds. If only very limited access to computational resources is available, it
is often asked how much effort it takes to obtain at least something from the given problem instance. In
distributed computing, those limits are explored for example with regards to communication patterns and
the total number of communication rounds. It has been shown that non-trivial computation is possible even
when the communication pattern of nodes is restricted to beeps [10]. Moreover, highly non-trivial local
algorithms [31, 35, 24] that employ only a constant number of communication rounds have been obtained
(e.g. even some NP-hard problems can be solved by local algorithms [5, 6, 7]).

In this paper, we ask whether non-trivial computation is possible if we grant a distributed algorithm only
a single communication round. Specifically, we ask whether reasonable approximations to the maximum
independent set problem can be computed in this harsh setting.

∗Supported by Icelandic Research Fund grants 120032011 and 152679-051. C. Konrad is also supported by the Centre for
Discrete Mathematics and its Applications (DIMAP) at Warwick University and by EPSRC award EP/N011163/1.
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Computational Model. We consider a network of computational units V modelled by a graph G = (V,E),
which also constitutes the problem input. Algorithms run in a single round: They first compute locally, then
send a message to their neighbors, and after receiving they compute locally again and declare their output.

Our algorithm works in a restricted beeping model, where the message transmitted is a single bit sent
to all neighbors. A node (whether transmitting or not) receives only the disjunction of the bits sent by the
neighbors (or, equivalently, it learns whether some neighbor beeped or not). Additionally, the algorithm
operates anonymously, without information about identifiers, port labels or orientations. We assume that,
initially, each node v ∈ V knows its degree dG(v). This is a non-standard assumption in beeping models, but
is necessary for one-round algorithms with non-trivial approximation guarantees. Indeed, we give a proof in
the appendix showing that if degree information is not provided, then every algorithm has an approximation
ratio of Ω( n

logn ).

For lower bounds, we assume the more powerful LOCALmodel, where nodes can send (receive) individual
messages of unbounded sizes to (resp. from) their neighbors.

Independent Sets. An independent set I in a graph G = (V,E) is a subset of pairwise non-adjacent
vertices. An independent set I is maximal if it is inclusion-wise maximal, i.e., I ∪ {v} is not an independent
set for any v ∈ V \ I. A maximum independent set is one of maximum cardinality. The independence
number of graph G is the size of a maximum independent set in G and is denoted by α(G). Computing
maximum independent sets is NP-hard on general graphs [22] and is even hard to approximate within factor
n1−ε, for any ε > 0 [18, 38].

Main Result. Our main result concerns graphs of polynomially bounded-independence, a graph class that
includes unit disc graphs and similar graph classes that are used for modelling wireless networks (for a precise
definition see the next paragraph). We show that in the harsh setting of a single communication round, a
poly-logarithmic approximation ratio can be achieved in polynomially bounded-independence graphs. Fur-
thermore, we show that not only the number of communication rounds but also message size can be reduced
to an absolute minimum, i.e., to a single bit message.

Bounded-independence Graphs. Graphs of bounded-independence capture many intersection graphs of
geometrical objects which are used for modelling conflict graphs of wireless networks. Given a collection
X = {X1, . . . , Xn} of geometrical objects, the corresponding intersection graph on vertex set X is obtained
by introducing an edge between two vertices Xi, Xj iff the objects Xi and Xj intersect. In the literature,
conflict graphs of wireless networks are often modelled by unit disc graphs [33, 15], the intersection graph
of discs with equal radii, where the radii of the discs correspond to the transmission range of the wireless
transmitters. Unit disc graphs have many beneficial properties that allow for the design of efficient distributed
algorithms, but the assumption of identical transmission radii for all wireless transmitters is often too
restrictive. Consequently, the unit disc graphs model has been extended to more elaborate models such as
quasi unit disc graphs [26] or general disc graphs. In a general disc graph, no restriction on the radii of the
discs are imposed, but the parameter δ = rmax/rmin is introduced into the analysis of algorithms, where
rmax and rmin denote the maximum and minimum radii of a disc, respectively.

All graphs of the graph classes mentioned above are of bounded-independence, a property that restricts
the size of a maximum independent set within the set of nodes at a given maximal distance from any node.
The (inclusive) r-neighborhood of a node v is the set of nodes at distance at most r from v (including v).

Definition 1 (Bounded-independence). Graph G = (V,E) is of bounded-independence if there is a bounding
function f(r) so that for each node v ∈ V , the size of a maximum independent set in the inclusive r-
neighborhood of v is at most f(r),∀r ≥ 1. We say that G is of polynomially bounded-independence if f(r)
is a polynomial.

If G is of bounded-independence, then we say that G is a BI-graph, and if G is of polynomially bounded-
independence, then we say that G is a PBI-graph.

It is easily verified that unit disc graphs are BI-graphs with respect to a bounding function in O(r2),
and (general) disc graphs are BI-graphs with respect to a bounding function in O((rδ)2). Many important
problems such as the maximal independent set problem, or the (∆ + 1)-coloring problem can be solved on
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BI-graphs in O(log∗ n) rounds by an algorithm of Schneider and Wattenhofer [34], underlining the usefulness
of this graph class for distributed computation.

Turán’s Bound and a One-round Algorithm. A starting point of our work is an extension of a celebrated
theorem by Paul Turán. Turán showed that every graph G = (V,E) contains an independent set of size at
least n/(d + 1), where d is the average degree of G [36]. This was extended by Caro [8] and Wei [37] who
showed that G contains an independent set of size at least

β(G) :=
∑
v∈V

1

dG(v) + 1
,

where dG(v) denotes the degree of vertex v in G. An independent set of expected size β(G) can be found by
a (folklore) simple linear time randomized algorithm that follows from the analysis of the Caro-Wei bound
given by Alon and Spencer in [3]. This algorithm works as follows: Each node v chooses a random real
value between 0 and 1 and adds itself to the independent set I if none of its neighbors have chosen a larger
real value than v. Then, the probability that v is added to the independent set is 1

dG(v)+1 , and, hence, by

linearity of expectation, E|I| =
∑
v∈V

1
dG(v)+1 = β(G).

This algorithm can also be implemented distributively in a single communication round. Instead of
choosing a random real value, every node chooses a random value from a large enough ordered set (e.g.
{1, 2, . . . , n3} suffices) so that neighboring nodes choose different values with large enough probability. In
order to be able to determine such a number, nodes require knowledge of n, i.e., the order of the input graph.
Furthermore, communicating the chosen value to neighboring nodes requires messages of size O(log n). In
the following, we will refer to this algorithm as Alon-Spencer-IS.

It is easy to see that in general graphs, an independent set of size β(G) may be a factor Θ(n) smaller
than the independence number α(G)1. This raises the following questions:

1. Are there interesting graph classes for which β(G) is a non-trivial approximation to the independence
number α(G)?

2. What are the minimum communication requirements for achieving the β(G) bound?

3. Is there a one-round independent set algorithm with approximation factor o(n) on general graphs?

Our Results in Detail. Concerning Question 1, we prove that an independent set of size β(G) is a
poly-logarithmic approximation to a maximum independent set in PBI-graphs. For instance on unit disc
graphs, an independent set of size β(G) is an O(( logn

log logn )2)-approximation to a maximum independent set.
Moreover, we prove that our analysis is tight up to a constant factor by constructing families of d-dimensional
unit sphere graphs, for any constant integer d. We also show that on the more general class of k-claw-free
graphs2, for k ≥ 3, the Caro-Wei bound constitutes a O(

√
nk)-approximation, and this bound is tight.

With regards to Question 2, we show that the communication requirements can be reduced to an absolute
minimum, at the price of a constant factor in the bound. We present a different and even simpler one-round
algorithm that computes an independent set of expected size at least 0.267β(G) using a single bit message,
thus decreasing the message sizes from O(log n) to 1. This algorithm has the additional advantage that it
does not require knowledge of n. The latter property and the low communication requirements make an
implementation in a beeping model possible (see Section 2 for a detailed discussion of the model requirements
of our algorithm). Note that our main result, a poly-logarithmic approximation one-round single-bit message
algorithm for the maximum independent set problem in PBI-graphs, follows from the previous two results.

Last, we answer Question 3 in the negative. We provide a lower bound that shows that any (possibly
randomized) one-round algorithm has approximation ratio Ω(n), even on disc graphs.

1Consider for instance a complete bipartite graph G with equally sized bipartitions on 2n vertices where edges are added
that turn one bipartition into a clique. Then, α(G) = n and β(G) = O(1).

2A graph is k-claw-free, if it does not contain the complete bipartite graph K1,k as an induced subgraph.
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Further Related Work. Independent sets are among the most studied problems in distributed computing.
However, most works consider the maximal independent set problem while this paper addresses the maxi-
mum independent set problem. It is known that in general graphs, computing a maximal independent set

requires Ω
(

min{
√

logn
log logn ,

log ∆
log log ∆}

)
rounds of communication [24], and even on a ring, Ω(log∗ n) rounds

are necessary [27]. The currently fastest maximal independent set algorithm for general graphs of Ghaffari

[12] runs in O(log ∆)+2O(
√

log logn) rounds. It is known that the 2O(
√

log logn) term is best possible unless the

2O(
√

logn) deterministic maximal independent set algorithm of Panconesi and Srinivasan [32] can be improved
[9].

Concerning approximations to the maximum independent set problem, a O(nε)-approximation can be
computed in O( 1

ε ) rounds in general graphs, and that is best possible [7]. In planar graphs, a (1 + ε)-
approximation can be computed in O(log∗ n) [11]. The O(log∗ n)-round algorithm of [34] gives a constant-
factor approximation in BI-graphs, since in this graph class, any maximal independent set is a constant
approximation of a maximum independent set.

The study of constant-round distributed algorithms was proposed in [4, 31, 27], and today a multitude of
such algorithms are known, as evidence by the survey of Suomela [35]. Few non-trivial one-round distributed
algorithms are known. For example, Linial showed that a vertex coloring with O(∆2 log n) colors can be
computed in a single communication round [27]. Kuhn and Wattenhofer [25] proved that every coloring
computed in one round uses Ω(∆2/ log ∆ + log log n) colors.

In recent years, numerous works have studied the maximal independent set problem in beeping models
[10, 1, 20, 29, 19], but all those algorithms require a (poly-)logarithmic number of rounds.

Last, we note that the Caro-Wei and Turán bounds have previously been used as quality guarantees for
independent set approximation (e.g., [13, 14]).

Notations. Throughout the paper, we use the following notations. Let G = (V,E) be a graph with n = |V |.
For a node v ∈ V , let ΓG(v) denotes the neighborhood of v and dG(v) = |ΓG(v)| its degree. If the graph G
in which vertex v appears is clear from the context, then we may also write d(v) or Γ(v) to denote v’s degree
or neighborhood, respectively. The d-neighborhood of v, denoted ΓdG(v), is the set of nodes of distance at

most d from v excluding v, while the set of nodes at distance exactly d from v is denoted by Γ
(d)
G (v). Let

ΓdG[v] := ΓdG(v) ∪ {v} (and ΓG[v] = ΓG(v) ∪ {v}). For a subset of vertices U ⊆ V , the graph G[U ] is the
subgraph of G induced by the vertices U .

Outline. An algorithm with single-bit messages achieving the Caro-Wei bound up to a constant factor
is presented in Section 2. It is then shown in Section 3 that the Caro-Wei bound is a poly-logarithmic
approximation to the independence number in PBI-graphs. In Section 4, these results are shown to be the
strongest such results possible in several different ways. We conclude in Section 5 and point out interesting
research directions.

2 One-Round Algorithm With Single Bit Message

In this section, we give a randomized one-round algorithm that achieves the Caro-Wei bound up to a constant
factor and is even simpler than the Alon-Spencer-IS algorithm.

We will consider the one-round algorithm, Algorithm 1, which can be seen as a simplified version of a
well-known distributed maximal independent set algorithm commonly referred to as Luby’s algorithm [28]
(a similar version of the algorithm was independently discovered at the same time by Alon, Babai and Itai
[2]). In each round of Luby’s algorithm, nodes of a general graph G = (V,E) are added to an initially empty
independent set. One round consists of two phases: First, each node v ∈ V pre-selects itself with probability
Θ( 1

dG(v) ) as a candidate to join the independent set. Then, in the second phase, ties are broken among the

pre-selected nodes so that nodes with larger degree are preferred. Finally, selected nodes and their neighbors
are removed from G, and the round is completed. The algorithm terminates when G is empty.

In our version of the algorithm, a simplified method for breaking ties is used. Instead of preferring nodes
with larger degree, we only add a pre-selected node to the independent set if none of its neighbors have been
pre-selected. This method of breaking ties has previously been used, e.g., in [16, 23, 17].
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Algorithm 1 One-round independent set algorithm

Require: G = (V,E) {Input graph}
1: I ← ∅ {the independent set to be computed}
2: pi ← 1

dG(v)+1

3: Tv ←coin(pi) {Pre-selection step: If Tv = true then v is a candidate to join I}
4: for all v ∈ V with Tv = true do
5: if

∨
u∈ΓG(v) Tu = false then {Check whether a neighbor of v has been pre-selected}

6: I ← I ∪ {v} {v is selected into the IS}
7: end if
8: end for

In a distributed implementation of this algorithm, a node v beeps (broadcasts the same message 1 to all
its neighbors) if Tv = true and remains silent otherwise. In Line 5 of the algorithm, it is required that every
candidate node v learns whether at least one neighbor emitted a beep signal. It is hence enough if nodes
have the ability to learn the disjunction of incoming messages.

We will first prove that the algorithm achieves the Caro-Wei bound up to a constant factor and then
discuss the precise model requirements of the algorithm.

Our main theorem relies on a technical lemma, which bounds a certain quantity away from zero and is
proved first.

Lemma 1. Let G = (V,E) be any graph. Then:

S(G) :=
∑
v∈V

1

d(v) + 1

1−
∑

u∈Γ(v)

1

d(u) + 1

 > 0 .

Proof. First, observe that

1−
∑

u∈Γ(v)

1

d(u) + 1
>

∑
u∈Γ(v)

(
1

d(v) + 1
− 1

d(u) + 1

)
,

which implies

S(G) >
∑
v∈V

1

d(v) + 1

∑
u∈Γ(v)

(
1

d(v) + 1
− 1

d(w) + 1

)
.

The contribution of each edge (v, u) ∈ E to the right side of the previous inequality is

1

d(v) + 1

(
1

d(v) + 1
− 1

d(u) + 1

)
+

1

d(u) + 1

(
1

d(u) + 1
− 1

d(v) + 1

)
=

(
1

d(v) + 1
− 1

d(u) + 1

)2

≥ 0 ,

and hence, S(G) > 0.

Theorem 1. Algorithm 1 is a randomized distributed one-round algorithm using single bit messages that
finds on each input graph G an independent set of expected size at least 0.224β(G).
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Proof. Let v be a node in G. Algorithm 1 adds v to the independent set if two independent events happen:
v is pre-selected in Line 3 while none of its neighbors are pre-selected. Then, by linearity of expectation,

E |I| =
∑
v∈V

P [v pre-selected ] · P [v ∈ I | v pre-selected ]

=
∑
v∈V

1

dG(v) + 1

 ∏
u∈ΓG(v)

(1− 1

dG(u) + 1
)


︸ ︷︷ ︸

K

. (1)

We first bound the quantity K from the previous inequality. To this end, fix a vertex v ∈ V . Use the
notation Dv :=

∑
w∈ΓG(v)

1
dG(w)+1 . Using that 1 + x ≤ ex, for any real value x, and 1 − x ≥ e−1.39x, for

0 ≤ x ≤ 1/2, we have that for a node v,

K ≥ exp

−1.39
∑

w∈ΓG(v)

1

dG(w) + 1


=

1

e
exp (1− 1.39Dv) ≥

1

e
(2− 1.39Dv)

= 0.224 +
1.39

e
(1−Dv) .

Plugging K back into Equality 1 gives

P[v ∈ I] ≥ 0.224 · 1

dG(v) + 1
+

1.39

e
· 1

dG(v) + 1
(1−Dv) .

Summing up and applying the linearity of expectation,

E[|I|] =
∑
v∈V

P[v ∈ I] ≥ 0.224β(G) +
1.39

e
S(G)

≥ 0.224β(G) ,

by Lemma 1.

Model Requirements. In Algorithm 1, nodes do not require information about global properties, such as
the total number of nodes or a polynomial upper bound thereof. They also do not need to know their neigh-
bors, but only an estimate of their degree. In beeping, radio or sensor network models, degree information
is not generally provided. For the maximal independent set problem, algorithms with degree information
generally outperform algorithms that operate without such information: While for many models that do
not provide degree information, algorithms typically use Ω(log2 n) rounds [30, 10, 1, 20, 29, 19] (see also
the Ω(log2 / log log n) lower bound of [21]), degree information as employed for example in Luby’s algorithm
[28, 2] allows for O(log n) rounds. In our one-round setting, degree information is however crucial for ob-
taining non-trivial approximation guarantees. We proof in the appendix that if degree information is not
provided then every one-round randomized algorithm has an approximation ratio of Ω( n

logn ).
The amount of local computation is proportional to the length of the bit representation of the degree,

while the amount of space needed (in bits) is constant, besides access to the node’s (approximate) degree.
Synchronization is not really needed: Nodes can converge to a solution once they have heard from all

transmitting neighbors.
In terms of transmission capabilities, one bit messages are enough, and a broadcast transmission (the

same message goes to all neighbors) is sufficient. The algorithm requires that transmitting nodes are able to
hear if at least one neighbor is also transmitting. This ability is known as sender-side collision detection.
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These requirements are matched by the model BcdL (Broadcasting nodes possess collision detection) in
the spectrum of beeping models of [29]. It has previously been used for maximal independent set computation
in [1, 20].

Sender-side collision detection is the strongest requirement that we impose on the underlying model.
Interestingly, it can be avoided if we equipped listening nodes with a stronger reception ability that we
denote by full reception, i.e., the ability to detect whether all neighbors of a node transmitted.

Lemma 2. Suppose nodes have the ability to detect if all neighbors transmitted or not. Then, Algorithm 1
can be implemented without sender-side collision detection.

Proof. We invert the meaning of transmit and no transmit, i.e., nodes v with Tv = true remain silent and
nodes with Tv = false transmit a beep signal. The decision rule of the algorithm is now equivalent to checking
if all neighbors transmit while the node listens.

Full reception is also a strong assumption, and one may wonder whether a weaker requirement would
suffice. In Section 4.2, we show however that either sender-side collision detection or full reception is required
for computing non-trivial independent sets in one round, even in almost 3-regular unit interval graphs.

3 Poly-logarithmic Approximation On Bounded-independence Graphs

In this section, we show that an independent set of size β(G) is a poly-logarithmic approximation of a
maximum independent set in PBI-graphs.

We first show that in any graph G = (V,E), for any node v ∈ V , the sum of the inverted degrees of the
nodes in the 2 logn

log logn -neighborhood of v is Ω(1) (Lemma 3). In BI-graphs, the size of an independent set in

the subgraph induced by such a 2 logn
log logn -neighborhood is at most f(2 logn

log logn ), by definition. Hence, within

the 2 logn
log logn -neighborhood of any node v ∈ V , the ratio between the size of a maximum independent set and

the sum of inverted degrees is O(f( logn
log logn )). This argument is then extended to hold for the entire graph

(Theorem 2), which implies our main result.

Lemma 3. Let G = (V,E) be an arbitrary graph with maximum degree ∆, and let m = min{∆, 2 logn
log logn}.

Then: ∑
u∈Γm

G [v]

1

dG(u)
= Ω(1) .

Proof. Let v ∈ V be a node, and let d0 = dG(v). For abbreviation, let sj = |Γ(j)
G (v)| for j ≥ 1. We set

s0 = 1, and we have s1 = d0. Furthermore, we define di = 1
si

∑
u∈Γ

(i)
G (v)

dG(u) to be the average degree of

the nodes in Γ
(i)
G (v). Then, the inverted degree sum of the nodes in the m-neighborhood can be bounded as

follows: ∑
u∈Γm

G [v]

1

dG(u)
=

1

d0
+

m∑
j=1

∑
u∈Γ

(j)
G (v)

1

dG(u)

≥ 1

d0
+

m∑
j=1

∑
u∈Γ

(j)
G (v)

1

dj
=

1

s1
+
s1

d1
+

m∑
j=2

sj
dj
, (2)

where the first inequality follows from the relationship between the harmonic mean and the arithmetic mean.

For i ≥ 2, consider a node u ∈ Γ
(i)
G (v) of degree at least di. Then, ΓG(u) ⊆ Γ

(i−1)
G (v)∪(Γ

(i)
G (v)\{u})∪Γ

(i+1)
G (v).

Hence, dG(u) ≤ si−1 + si − 1 + si+1, and since di ≤ dG(u), we also have di ≤ si−1 + si + si+1. Similarly, for
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Γ
(j−1)
G (v)

Γ
(1)
G (v)

v

s0
s1 sj−2

sj−1
sj

v

s0
s1

s2
s3

Figure 1: Left: Sequence si is not strictly increasing. This implies that there exists an index j such that
sj−1 > sj−2 and sj−1 ≥ sj . Thus, the expression

sj−1

sj−2+sj−1+sj
is bounded from below by 1/3. Right:

Sequence si is strictly increasing. This implies that the number of indices j ∈ J such that
sj

2sj+sj+1
≥ log logn

logn

is at most logn
log logn (1 + o(1)). Thus, Θ( logn

log logn ) indices outside J are enough such that
∑
i/∈J

sj
2sj+sj+1

= Ω(1).

d1 we obtain the inequality d1 ≤ s1 + s2. Using this in Inequality 2, we obtain:

∑
u∈Γm

G [v]

1

dG(u)
≥ 1

s1
+
s1

d1
+

m∑
j=2

sj
dj

≥ 1

s1
+

s1

s1 + s2
+

m∑
j=2

sj
sj−1 + sj + sj+1

. (3)

In order to bound the right side of Inequality 3, we treat the cases when the sequence si is strictly increasing
and when it is not strictly increasing separately. Both cases are illustrated and summarized in Figure 1.

Suppose that the sequence (si)1≤i≤m is not strictly increasing. Let j be the smallest index so that
sj ≤ sj−1. If j = 2, then the term s1

s1+s2
of Inequality 3 can be bounded by s1

s1+s2
≥ s1

s1+s1
= 1/2, and thus,∑

u∈Γm
G [v]

1
dG(u) >

1
2 = Ω(1). Suppose that j > 2. Then, since j is the smallest index, we have sj−2 < sj−1.

Therefore, the addend with index j−1 of the sum in the right side in Inequality 3 can be bounded as follows:

sj−1

sj−2 + sj−1 + sj
>

sj−1

3 · sj−1
= 1/3,

which implies
∑
u∈Γm

G [v]
1

dG(u) >
1
3 = Ω(1).

Assume now that the sequence (si)i is strictly increasing. We bound the right side of Inequality 3 as
follows:

1

s1
+

s1

s1 + s2
+

m∑
j=2

sj
sj−1 + sj + sj+1

≥ 1

s1
+

s1

s1 + s2
+

m∑
j=2

sj
2 · sj + sj+1

. (4)

Let J ⊆ {2, . . . ,m} be the subset of indices so that for each j ∈ J :
sj

2·sj+sj+1
≤ log logn

logn . This implies that

we have sj+1 ≥ sj
(

logn
log logn − 2

)
, for j ∈ J . Since the sequence (si)i is strictly increasing, we can bound the

size of the set J as follows: (
log n

log log n
− 2

)|J|
≤ n,

and thus |J | ≤ logn
log logn (1 + o(1)). Since m = 2 logn

log logn , there are Θ( logn
log logn ) indices i with i /∈ J and

si
2·si+si+1

≥ log logn
logn . Then, the addends in the right side of Inequality 4 that correspond to those indices
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i /∈ J sum up to a constant bounded away from 0, for sufficiently large values of n. This proves part 1 of the
lemma.

We derive now a bound onm in terms of the maximum degree ∆. To this end, we depart from Inequality 4.
Notice that the bound on ∆ implies sj ≤ sj−1∆. Thus, for any j, the addend in Inequality 4 that corresponds
to j is bounded as follows:

sj
2sjsj−1

≥ sj
2sj+∆sj

= 1
2+∆ . Since m = Θ(∆), the right side of Inequality 4 sums

up to a constant.

Theorem 2. Let G = (V,E) be a PBI-graph with maximum degree ∆ and bounding function f . Then:

α(G) = O

(
β(G) · f(min{∆, log n

log log n
})
)
.

Proof. Let m = min{∆, 2 logn
log logn}. Let S be a maximal (2m + 1)-independent set in G, i.e., a maximal set

of vertices of mutual distance at least 2m+ 1. Let I∗ denote a maximum independent set in G. Since S is
maximal, every vertex in I∗ is at a distance at most 2m from a vertex in S, and thus |I∗| ≤ |S| ·f(2m). Since
S is (2m+ 1)-independent, the m-neighborhoods around nodes in S are disjoint. Thus, using Lemma 3, we
have

β(G) =
∑
v∈V

1

dG(v) + 1
≥
∑
s∈S

∑
v∈Γm

G (s)

1

dG(v) + 1

= Ω(|S|).

Thus,
α(G) ≤ |S| · f(2m) = O(β(G) · f(2m)) = O(β(G)f(m)),

where we used that f(2m) = O(f(m)) holds since f is bounded by a polynomial.

4 Limitation Results

We present here several results that indicate that our algorithmic result cannot be improved on. We first
see in Section 4.1 that one-round algorithms only yield a Ω(n)-approximation on (general) disc graphs. In
Section 4.2, we prove that either sender-side collision detection or full reception is necessary for one round
algorithms. Then, we prove in Section 4.3 that our analysis for d-dimensional unit sphere graphs is tight.
We see in Section 4.5 that going beyond BI-graphs is hard, in particular, there are claw-free graphs for
which the Caro-Wei bound only yields polynomial approximation factors. Finally, we show in Section 4.4
that multiple iterations of our algorithm do not substantially improve its approximation factor.

4.1 Lower Bound for One-round Algorithms on General Graphs

In this subsection, we prove that every possibly randomized distributed one-round algorithm computes an
independent set of size at most n/ω(G) on any regular graph G, where ω(G) denotes the clique number, i.e.,
the size of a largest clique. This implies that every one-round algorithm has an approximation factor of at

least α(G)ω(G)
n . We then show that there is a disc graph with ω(G) = Ω(n) and α(G) = Ω(n), implying that

even on disc graphs, no non-trivial approximation is possible in one round.
To this end, let G = (V,E) be a d-regular graph, for an integer d. We assume that each node has a

unique label chosen from U = {1, . . . ,m}, where m ≥ n. Let L denote the set of all possible labellings of V .
In order to prove our lower bound, we exploit the fact that all nodes in V have the same local views, i.e.,
in one round, all nodes can only learn the d labels and random coin flips of their adjacent nodes. Since all
nodes run the same algorithm, in average over all possible labellings L, the probabilities for all nodes to end
up in I are equal. This fact is used in the following theorem:

9



Theorem 3. Every possibly randomized one-round distributed algorithm for maximum independent set on
a d-regular graph G = (V,E) that outputs a correct solution with probability at least 1− 1/n has an expected

approximation factor of at least ω(G)α(G)
2n .

Proof. Consider a possibly randomized one-round algorithm for maximum independent set. Then, as pre-
viously argued, for all u, v ∈ V , we have P [u ∈ I] = P [v ∈ I], where the probabilities are taken over all
possible labellings L and the random coin flips of the algorithm. Let p = P [v ∈ I], for any node v. Then,

E|I| =
∑
u∈V

P [u ∈ I] = np .

Let C be a clique of G of size ω(G). Then, since the error probability of the algorithm is at most 1/n, we
have

ω(G)p = E|C ∩ I| =
∑
i

P [|C ∩ I| = i]

≤ P [|C ∩ I| ≤ 1] + P [|C ∩ I| ≥ 2]ω(G)

≤ 1 +
1

n
· n = 2,

and hence, p ≤ 2
ω(G) . Therefore, E|I| = np ≤ 2n

ω(G) . The expected approximation ratio is hence at least
ω(G)α(G)

2n .

Consider now the following disc graph Gr = (C1 ∪ C2 ∪ I, E), parametrized by an integer r ≥ 2, as
in Figure 2. Set I consists of r non-overlapping unit discs arranged on a line. Set C1 (C2) contains r − 1
identical discs of large radii (radius O(n3) suffices) arranged such that they overlap with all vertices of I from
above (below, respectively). Graph Gr has n = 3r − 2 vertices, is (2r − 2)-regular, and α(Gr) = ω(Gr) = r
holds.

clique C1 of size r − 1

clique C2 of size r − 1

indep. set
I of size r

Figure 2: A (2r − 2)-regular disc graph Gr with 3r − 2 vertices and ω(Gr) = α(Gr) = r.

Plugging Gr into Theorem 3, we obtain the following corollary:

Corollary 1. Every possibly randomized one-round distributed algorithm for maximum independent set that
is correct with probability at least 1−1/n has an expected approximation factor of at least 1

18n on disc graphs.

4.2 Model Aspects

In this subsection, we show that every randomized one-round algorithm that computes a o(n)-approximation
to the independent set problem either uses sender-side collision detection (a transmitting node can detect
whether at least one of its neighbors also transmitted) or full reception (receiving nodes can detect whether
all of its neighbors transmitted).

Theorem 4. Every randomized one-round algorithm that is correct with probability 1− 1/n without sender-
side collision detection or full reception has an expected approximation ratio of Ω(n), even on almost 3-regular
unit-interval graphs.
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Proof. We consider one-round algorithms that learn nothing when transmitting. When listening, they have
collision detection, i.e., can distinguish between 0, 1, or at least 2 neighbors transmitting. The basic require-
ment is correctness: The set computed must be independent with probability at least 1− 1/n.

Given number n, which we assume to be a multiple of 4, consider the following almost-cubic graph
G = (V,E), where V = {0, 1, . . . , n−1} and E = {(i, i+ 1) : i = 0, 1, 2, . . . , n−2}∪{(i, i+ 2) : i mod 4 ≤ 1}.
All nodes except nodes 0 and n− 1 are of degree three; nodes 0 and n− 1 are of degree 2. Graph G can be
represented as a proper interval graph. A portion of the graph is illustrated in Figure 3.

We allow the graph to be labeled. In this case, we assume a uniform distribution over the possible
labeling from a finite set set of labels [m], where m ≥ n. Thus, each node receives a unique label uniformly
at random from [m].

4j 4j + 1 4j + 2 4j + 3

Figure 3: Graph G = ({0, 1, . . . , n − 1}, E) used in the lower bound construction of Theorem 4. G consists
of n/4 repetitions of the boxed pattern. Nodes 0 and n− 1 are of degree 2; all other nodes are of degree 3.
A key property of G is that ΓG[4j + 1] = ΓG[4j + 2], for every 0 ≤ j ≤ n/4− 1.

When listening, a node can only learn the label of their transmitting neighbor when hearing from a
single neighbor. Each node makes two decisions: whether to transmit in the round and whether to join the
independent set, where the latter can depend on how many (and which) neighbors it heard from if it was
listening. Both of these actions can be probabilistic. We show that the expected number of nodes joining
the independent set must be constant, in order for the solution to be correct with probability 1− 1/n.

We first treat the case of nodes joining after transmitting. Let p denote the probability that a node
transmits, averaged over the labelings of the node. Let qT denote the probability that a node joins the
independent set in the case that it transmits, again averaged over the labelings of the node. Consider the
event Aj , for j = 1, 2, . . . , n/2, that both i and i + 1 transmit and join the independent set. None of
these independent events can take place for the solution to be correct. The probability of each event Aj is

(pqT )2, so the probability that none occurs is (1 − (pqT )2)n/2 ≤ e−(pqT )2·n/2 ≤ 1 − (pqT )2n/4, using that
1− x ≤ e−x ≤ 1− x/2, for 0 ≤ x ≤ 1. Since the probability of correctness is assumed to be at least 1− 1/n,
it holds that 1− 1/n ≤ 1− (pqT )2n/4 or 1/n ≥ (pqT )2n/4 or pqT ≤ 2/n. On the other hand, the probability
that a given node joins the independent set after transmitting is pqT , so the expected number of nodes that
join this way is at most npqT ≤ n · 2/n = 2.

Consider now the case of nodes joining after listening. There are four cases, depending on how many of
their neighbors transmitted. Let qi denote the probability that a node joins the solution after i neighbor
transmitted, averaged over the labels of the node and its transmitting neighbors. Fix i = 0, 1, 2. Consider
the event Bj,i, for j = 0, 1, . . . , n/4− 1 and i = 0, 1, 2, that nodes 4j + 1 and 4j + 2 both join after hearing
from exactly i neighbors (adjacent nodes cannot both hear from three neighbors). Observe that nodes 4j+1
and 4j + 2 have two common neighbors and no other neighbors. Thus, the probability of Bj,i occurring is
P [Bj,i] = pi(1− p)4−iq2

j , and the probability that none of them occurs (for fixed i) is

P

∧
j

Bj,i

 ≤ (1− pi(1− p)4−iq2
j

)n/4
≤ 1− pi(1− p)4−iq2

j

n

8
,

where we used 1− x ≤ e−x ≤ 1− x/2, for 0 ≤ x ≤ 1, again. Since the solution is correct with probability at
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least 1− 1/n, it follows that 1/n ≥ pi(1− p)4−iq2
i
n
8 , or

pi/2(1− p)2−i/2qi ≤
√

8/n ≤ 3/n. (5)

On the other hand, the probability that any node different from 0 and n − 1 joins the independent set
after listening and hearing from exactly i nodes is

(
3
i

)
(1 − p)4−ipiqi, so the expected number Ei of nodes

that join this way is at most (n− 2)
(

3
i

)
(1− p)4−ipiqi. Applying Inequality 5, we find that expected number

of nodes that join this way is

Ei ≤ (n− 2)

(
3

i

)
(1− p)4−ipiqi ≤

(
3

i

)
.

In total, the expected number of nodes that join the independent set is then bounded by: two nodes that join
after transmitting, the two nodes 0 and n− 1, and

(
3
0

)
+
(

3
1

)
+
(

3
2

)
= 1 + 3 + 3 = 7 of the nodes V \ {0, n− 1}

that join after listening.

The argument can be extended to the intermediate setting where a node can count up to k transmitting
neighbors, but cannot distinguish how many beyond k are transmitting, for a fixed value k.

4.3 Lower Bound for d-dimensional Unit Sphere Graphs

In this section, we design d-dimensional unit sphere graphs G such that α(G) = Ω
(
β(G)f(min{∆, logn

log logn})
)

holds, rendering the analysis of Theorem 2 tight.
A d-dimensional unit sphere graph G = (S,E) is the intersection graph of d-dimensional unit spheres

S = {s1, . . . , sn} (all spheres have the same radius): Each sphere si constitutes a vertex in G and two spheres
are adjacent iff they intersect. For d = 1, a unit sphere graph is a unit interval graph, and for d = 2, a unit
sphere graph is a unit disc graph.

Let d > 0 be some fixed dimension. We will denote our hard instance graph with Hk = (VH , EH) where k
is a parameter which we define later. We start our construction of Hk with a grid graph Gk = (VG, EG) that
is parametrized by an integer k ≥ 1. The vertex set of Gk is defined as VG = {vx |x ∈ {0, 1, . . . , k − 1}d}.
Let vx, vy with x, y ∈ {0, . . . , k − 1}d be two vertices of VG. Then vx and vy are adjacent iff |x − y| = 1,
where |x| =

∑
1≤i≤d |xi|.

The hard instance graph Hk is obtained from Gk as follows: For every vertex vx ∈ VG, a clique Cx of
size s(|x|) is introduced in Hk, where

s(i) = dikdi logi n . (6)

Suppose that vx and vy are adjacent nodes in Gk. Then all nodes of Cx are connected to all nodes of Cy in
Hk, or, in other words, Cx ∪ Cy also forms a clique in Hk. We say that a node vx or a clique Cx is in layer
i, if its distance from the vertices of clique C(0,...,0) is i, or, in other words, |x| = i.

First, notice that Hk is in fact a d-dimensional unit sphere graph. Each vertex v ∈ Cx ⊆ VH with
x ∈ {0, . . . , k − 1}d corresponds to a sphere centered at position x with radius 1/2 (for convenience, in
this construction we suppose that all spheres have the radius 1/2 instead of 1). An example is provided in
Figure 4.

We first observe that graph Hk contains an independent set of size (k2 )d.

Lemma 4. Consider graph Hk. Then α(Hk) ≥ (k2 )d.

Proof. Let X = {2i : i ∈ N ∪ {0} and 2i ≤ k − 1} be the even numbers up to k − 1 including 0, and let
I be a set that contains exactly one vertex from each clique Cx with x ∈ Xd. Then I is independent and
|I| = |Xd| = |X|d ≥ (k2 )d.

We prove now that Hk is a PBI-graph with respect to the bounding function f(r) = (2r + 1)d.

Lemma 5. The d-dimensional unit sphere graph Hk is of bounded independence with respect to the bounding
function f(r) = (2r + 1)d.
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Figure 4: Illustration of the two-dimensional case: On the left, the grid graph G4 is illustrated. On the right,
the hard instance unit disc graph H4 is shown. H4 is obtained from G4 by replacing each node at position
(i, j) with a clique of size s(i+ j).

Proof. For some x ∈ {0, . . . , k − 1}d, the size of a maximum independent set in the k-neighborhood of
a node v ∈ Cx ⊆ VH is the same as the size of a maximum independent set of the node vx ∈ VG in
the corresponding grid graph. Therefore, the r-neighborhood of an arbitrary node vx ∈ VG with x ∈
{0, . . . , k − 1}d is a subset of the nodes with indices j ∈ {x1 − r, . . . , x1 + r} × · · · × {xd − r, . . . , xd + r}.
Thus, |{x1 − r, . . . , x1 + r}× · · · × {xd − r, . . . , xd + r}| = (2r+ 1)d is a bound on the size of an independent
set in the r-neighborhood of v.

Next, we identify the correct value for k so that Hk has O(n) vertices, and we show that β(Hk) = O(1).

Lemma 6. Consider graph Hk = (VH , EH) with k = C · logn
d2 log logn , for a small enough constant C. Then,

Hk has O(n) vertices, and β(Hk) = Θ(1).

Proof. Let Vi := {v ∈ Cx : |x| = i} be the set of nodes in layer i, and denote by ni the number of cliques in
layer i. Then, |Vi| = ni · s(i). First, note that by construction of Hk we have ni ≤ ni+1d. This allows us to
establish a relation between |Vi| and |Vi+1|:

|Vi| = ni · s(i) ≤ ni+1d · (dikdi logi n) ≤ ni+1 · s(i+ 1)

kd log n

=
|Vi+1|
kd log n

.

Then, since |VH | =
∑d(k−1)
i=0 |Vi| and by the previous inequality, we obtain |VH | = O(|Vd(k−1)|). We compute:

|Vd(k−1)| = s(d(k − 1)) = O
(
dkdkd

2k logkd n
)

= O(n) ,

where the last equality can be verified using the definition k = C logn
d2 log logn . We thus established |VH | = O(n).

Next, in order to prove β(Hk) = Θ(1), notice that for i < (k − 1)d, the degree of every node of Vi is at
least s(i+ 1), the size of a clique in layer i+ 1. Furthermore, the degrees of the nodes of clique C(k−1,...,k−1)

are at least s(d(k − 1)). Thus,

β(Hk) =

d(k−1)−1∑
i=0

ni · s(i)
s(i+ 1)

+
nd(k−1)sd(k−1)

sd(k−1)

≤
d(k−1)−1∑

i=0

kd

dkd log n
+ 1 =

k − 1

log n
+ 1 = Θ(1) ,

where we used the rough estimate ni ≤ kd.
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Using the previous lemma, we show that the analysis of Theorem 2 is best possible.

Theorem 5. There is an infinite family of PBI-graphs G such that for every G ∈ G with bounding function
f :

α(G) = Ω

(
β(G) · f(min{∆, log n

log log n
})
)
.

Proof. Let n be an arbitrary large integer and let d ≥ 1 be a constant integer. Furthermore, let k =
C · logn

log log(n)d2 , for a small enough constant C, as in Lemma 6. By Lemma 6, graph Gk has O(n) vertices

and β(Gk) = Θ(1) holds. Furthermore, by Lemma 5, f(r) = (2r + 1)d is a bounding function of Gk. By
Lemma 4, Gk contains an independent set of size Ω((k2 )d), and thus:

β(Gk) · f(
log n

log log n
) = O

(
(

log n

log log n
)d
)
, and

α(Gk) = Ω((
k

2
)d) = Ω

(
(

log n

2d2 log log n
)d
)
.

The theorem thus holds for any constant d.

Since the expected size of an independent set computed by Algorithm 1 is Θ(β(G)) (and β(G) if computed
by Alon-Spencer-IS), we obtain the following corollary, which shows that the analysis of Theorem 1 is
tight.

Corollary 2. There is an infinite family of PBI-graphs G such that for every G ∈ G with bounding function
f , the expected approximation ratios of Algorithm 1 and Alon-Spencer-IS are Ω(f(min{∆, logn

log logn})) on
input G.

4.4 Lower Bound for Multiple Iterations

Instead of running Algorithm 1 or Alon-Spencer-IS once, one may wonder whether applying these algo-
rithms repeatedly leads to an improved approximation ratio. In this section, we show that this is not the
case: We show that running constant number of iterations improves the approximation factor at most by a
constant factor.

We consider the algorithm as depicted in Algorithm 2 (One-round-IS denotes either Algorithm 1 or
Alon-Spencer-IS):

Algorithm 2 Multiple iterations independent set alg.

Require: G = (V,E) {Input graph}, r {number of rounds}
1: V ′ ← V {active nodes}, I ← ∅ {the independent set to be computed}
2: for i = 1 . . . r do
3: I ← I ∪ One-round-IS(G[V ′])
4: V ′ ← V ′ \ (I ∪ ΓG(I))
5: end for
6: return I

We will show that in r iterations, Algorithm 2 computes an independent set of size at most rd with
probability (1 − O( 1

d logn ))i on graph Hk, which was defined in the previous section. Since Hk contains

an independent set of size Ω((k2 )d) (Lemma 4), this proves that the approximation ratio of Algorithm 2 is

Ω
(
( k2r )d

)
.

Consider the situation of Algorithm 2 at the end of the ith iteration of the for-loop. We will prove that at
this moment, all cliques of layers at most (k−1)d−2i are contained in V ′ with high probability. This proves
that with high probability, in each iteration the algorithm selects vertices of the outermost layer, which then
leads to the removal of a subset of the vertices of the two outermost layers.
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In the following, denote by V ′i the set V ′ of Algorithm 2 after the ith iteration of the for-loop, and denote
by Ii the set I after the ith iteration. The index i = 0 describes the situation before the first execution of
the for-loop, i.e., V ′0 = V and I0 = ∅.

Lemma 7. In Algorithm 2, all cliques of layers ≤ (k − 1)d − 2i are contained in V ′i , with probability
(1−O( 1

d logn ))i.

Proof. The proof is by induction on i. As a base case, it is easily verified that V ′0 and I0 fulfill the statement
of the lemma. Suppose now the lemma holds for iteration i. We will prove that it still holds after iteration
i+ 1.

Denote by E the event that all cliques of layers at most (k− 1)d− 2i are included in V ′i , and assume that
E holds. Let Cx be a clique with |x| ≤ (k−1)d−2i−1 (recall that |x| =

∑
1≤i≤d |xi|). Then, the probability

that a node v of Cx is chosen into the independent set by either Algorithm 2 or Alon-Spencer-IS in
iteration i+ 1 is at most 1

s(|x|+1) , since, conditioned on E, there is at least one clique Cy ∈ V ′i of layer |x|+ 1

incident to v. Thus, by the union bound, the probability that at least one node of Cx is chosen is at most

|Cx|
s(|x|+ 1)

=
s(|x|)

s(|x|+ 1)
= O

(
1

dkd log n

)
.

Applying the union bound again, the probability that a node of any of the cliques of layers at most (k −
1)d − 2i− 1 is chosen in round i+ 1 is O( 1

d logn ), since the total number of cliques in Hk is kd.

This implies that, conditioned on E, with probability O( 1
d logn ), all cliques of layers at most (k − 1)d −

2i − 2 are included in V ′i+1. Note that even though we proved that, with high probability, nodes of layer
(k − 1)d − 2i − 1 are not chosen by the algorithm, some of their neighbors of layer (k − 1)d − 2i might be
chosen, which would lead to their removal in Line 4 of the algorithm.

By the induction hypothesis, P [E] ≥ (1 − O( 1
d logn ))i, and, therefore, with probability at least (1 −

O( 1
d logn ))i+1, all cliques Cx of layers at most (k − 1)d − 2i − 2 = (k − 1)d − 2(i − 1) are included in V ′i+1,

which completes the lemma.

Theorem 6. There is an infinite family of PBI-graphs G such that for every G ∈ G with bounding function
f , running r iterations of Algorithm 2 obtains an

Ω

(
f(

1

r
·min{∆, log n

log log n
})
)

approximation on input G with probability (1−O( 1
d logn ))i.

Proof. Let n be an arbitrary large integer and let d ≥ 1 be a constant integer. Furthermore, let k =
C · logn

log log(n)d2 , for a small enough constant C, as in Lemma 6. By Lemma 7, all cliques Cx of layers at

most (k − 1)d − 2r are included in V ′r with probability Ω((1 − O( 1
d logn ))i). Hence, among the eliminated

nodes, every independent set is of size O(rd). Since Hk contains an independent set of size Ω(( logn
log logn )d)

(Lemma 4), the result follows.

4.5 The Caro-Wei Bound in Claw-Free-Graphs

Every PBI-graph is O(f(1) + 1) = O(1)-claw free. Claw-free graphs are a natural superclass of PBI graphs,
and one may wonder how well the Caro-Wei bound behaves on this graph class. We find that β(G) is a
Θ(
√
bn)-approximation to α(G) on b-claw-free graphs.

For integer b ≥ 1 with b = O(
√
n), we construct a (b+2)-claw-free graph G on O(n) vertices that contains

an independent set of size Ω(
√
nb) while β(G) = O(1). This construction shows that in (b + 2)-claw-free

graphs, β(G) may only be a polynomial approximation of the size of a maximum independent set.
To this end, let G′ be the graph that consists of k copies of Ka,b, the complete bipartite graph with

bipartitions of sizes a and b. Then, G is obtained from G′ by joining all left sides of the copies of Ka,b

15



(the bipartitions of size a) into a clique. In other words, G = (U ∪ V,E) is a split graph with a clique
U = {u1, . . . , uka} and independent set V = {v1, . . . , vkb}, where uivj ∈ E ⇔ b iac = b jbc. Notice that G is
(b+ 2)-claw-free.

Theorem 7. Let n, b be integers with b = O(
√
n). Then there exists a (b + 2)-claw-free graph G on O(n)

vertices such that α(G) = Ω(
√
nb)β(G).

Proof. Consider the graph G as defined above with a = Θ(
√
nb) and k = Θ(

√
n/
√
b). Observe that U has

ka node in a clique, each adjacent to b nodes in V , while nodes in V are independent and of degree a. Then,

α(G) = kb = Θ(
√
nb),

β(G) =
ka

ka− 1 + b
+

kb

a+ 1
≤ 1 +

Θ(
√
nb)

Θ(
√
nb) + 1

= O(1),

and thus α(G)
β(G) = Ω(

√
nb). Graph G has k(a+ b) = O(n+

√
nb) = O(n) vertices, since b = O(

√
n).

We now prove a matching upper bound.

Theorem 8. Let b ≥ 2 be an integer, and let G be a (b+ 1)-claw-free graph. Then, α(G) ≤
√
nb · β(G).

Proof. Let I∗ denote an independent set of size α(G). Let d = 1
α(G)

∑
v∈I∗ dG(v) be the average degree of

the nodes in I∗. Notice that since G is (b+1)-claw-free, each vertex outside I∗ is incident to at most b nodes
of I∗. Counting edges incident on I∗, using that I∗ is independent, we get that

∑
v∈I∗ dG(v) ≤ (n−α(G))b.

That implies that d ≤ (n−α(G))b
α(G) . Then, since β(G) ≥

∑
v∈I∗

1
dG(v)+1 ≥

|I∗|
d+1 (using the relationship between

the harmonic and arithmetic mean),

β(G) ≥ α(G)

d+ 1
≥ α(G)2

(n− α(G))b+ α(G)
>
α(G)2

nb
,

since α(G)(1− b) < 0. Since β(G) ≥ 1, we obtain that α(G)
β(G) ≤ min{α(G), nb

α(G)} ≤
√
nb.

5 Conclusion

In this paper, we gave a one-round, single-bit messages randomized algorithm, which computes an indepen-
dent set of expected size Θ(β(G)), where β(G) is the Caro-Wei bound. We proved that the Caro-Wei bound
approximates the size of a maximum independent set in polynomially bounded-independence graphs within
a poly-logarithmic factor, which implies that the approximation factor of our algorithm is poly-logarithmic
for this graph class. We complemented our results by showing that no one-round algorithm can achieve an
o(n)-approximation factor on general graphs.

A natural question to examine in the future is whether using larger (but still constant) number of rounds
gives markedly better results, either by extending the graph class or resulting in asymptotically better
approximations. A pertinent question might then be whether there is a property of a larger neighborhood
that materially improves on just knowing the degree.
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A Impossibility Result for One-round Algorithms Without De-
gree Information

We show in this section that degree information is required in order to obtain non-trivial approximation
guarantees in one round.

We assume the following setting. Let n be an integer. We will consider labelled graphs on n vertices,
where the labels of the nodes are chosen from the set L = [4n + 3]. Initially, nodes only know their labels
and the cardinality n of the graph; in particular, the nodes do not know their degrees. Nodes then either
transmit a signal or remain silent. Each node v subsequently receives a bit bv indicating whether at least
one of v’s neighbors transmitted; this is full-duplex, i.e., independent of whether v transmitted or not. Last,
based on this information each node decides whether to join the output independent set. The output must
be correct with probability 1. Let A be a randomized distributed one-round maximum independent set
algorithm operating in this way.

We show that, for each A, there is an input graph labeled with labels of L for which the approximation
factor of A is Ω( n

logn ). Specifically, we use the clique graph Kn when the algorithm is aggressive, opting to
transmit with relatively high probability, and use the path Pn, when transmissions are unlikely.

Theorem 9. The approximation factor of A is Ω( n
logn ).

Proof. For a label l ∈ L let p(l) denote the probability that a node with label l transmits. Furthermore, for
t, b ∈ {0, 1} let ptb(l) be the probability that a node with label l joins the independent set conditioned on
transmitting/not transmitting (indicated by t) and receiving/not receiving (indicated by b).

First, we observe that if the algorithm is to achieve any approximation at all, the algorithm can decide
to transmit deterministically on only few labels. Specifically, for at most 2n labels l does it hold that
p(l) ∈ {0, 1}. Namely, if all the nodes are deterministic in the same way, then no information is passed
between them. Thus, they must make their choice of joining the solution depending only on their label.
Since adjacent nodes cannot both join the solution with positive probability, there can be at most one label
that allows the node to join. Thus, if there are n+ 1 labels for which p(l) = 0 (or symmetrically, p(l) = 1),
then for n of these labels the nodes will never join the solution; the output of the algorithm is then zero, for
an infinite approximation ratio.

We focus therefore on the set L′ of at least 2n+ 3 labels for which transmission is not deterministic, i.e.,
labels l such that p(l) ∈ (0, 1). We argue that L′ contains at most one label l1 with p01(l1) > 0, at most
one label l2 with p00(l2) > 0, and at most one label l3 with p11(l3) > 0. We only give the argument for
l1, the arguments for l2 and l3 are similar: Suppose that there were two labels l1, l

′
1 ∈ L′ with p01(l1) > 0

and p01(l′1) > 0. Then, suppose there are nodes u, v with those labels that form a clique together with a
third node w with a label of L′. Since there is a non-zero probability that w transmits while neither u or v
transmit, both u and v may join the solution with positive probability, which contradicts the correctness of
the algorithm.

Thus, for all l ∈ L′′ = L′ \ {l1, l2, l3}, we have p00(l) = p01(l) = p11(l) = 0. The only safe configuration
for a node with a label from L′′ to join the independent set is then when it transmits and does not receive a
message from its neighbors. If there are n labels l ∈ L′′ with p(l) ≥ 24 log(n)/n, then consider the n-clique
graph with nodes assigned such labels. The random variable X counting the number of transmissions has
expectation EX ≥ 24 log(n) and by a Chernoff bound,

P [X ≤ EX/2] ≤ exp

(
−1

8
· 24 log(n)

)
≤ n−2 .

Thus, with high probability, more than one node of G transmits, and since only transmitting nodes whose
neighbors do not transmit can join the independent set, none of these nodes join the independent set. The
approximation factor of the algorithm is thus at least 1

n−2 = n2.
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On the other hand, if there are n labels l ∈ L′′ with p(l) ≤ 24 log(n)/n, then consider the path graph Pn
with nodes assigned such labels. The number X of transmitting nodes has expectation EX ≤ 24 log(n) and
by a Chernoff bound,

P [X ≥ 2EX] ≤ exp (−24 log n/3) ≤ n−2 .

Thus, with high probability, at most 48 log n nodes transmit, and by the discussion above, the independent
set computed is thus of size at most 48 log n. The approximation factor of the algorithm in this case is
Ω( n

logn ).

In all cases, the approximation factor is Ω( n
logn ), giving the result.
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