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ABSTRACT
We give deterministic distributed (1+ ϵ)-approximation algorithms

for Minimum Vertex Coloring and Maximum Independent Set on

chordal graphs in the LOCALmodel. Our coloring algorithm runs in

O( 1ϵ logn) rounds, and our independent set algorithm has a runtime

of O( 1ϵ log( 1ϵ ) log
∗ n) rounds. For coloring, existing lower bounds

imply that the dependencies on
1

ϵ and logn are best possible. For

independent set, we prove that Ω( 1ϵ ) rounds are necessary.
Both our algorithms make use of the tree decomposition of the

input chordal graph. They iteratively peel off interval subgraphs,

which are identified via the tree decomposition of the input graph,

thereby partitioning the vertex set into O(logn) layers. For color-
ing, each interval graph is colored independently, which results in

various coloring conflicts between the layers. These conflicts are

then resolved in a separate phase, using the particular structure of

our partitioning. For independent set, only the first O(log 1

ϵ ) layers

are required as they already contain a large enough independent

set. We develop a (1+ ϵ)-approximation maximum independent set

algorithm for interval graphs, which we then apply to those layers.

This work raises the question as to how useful tree decomposi-

tions are for distributed computing.
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1 INTRODUCTION
The LOCAL Model. In the LOCAL model of distributed compu-

tation, the input graph G = (V ,E) represents a communication
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network, where every network node hosts a computational entity.

Nodes have unique IDs. A distributed algorithm is executed on all

network nodes simultaneously and proceeds in discrete rounds.

Initially, besides their own IDs, nodes only know their neighbors.

Each round consists of a computation and a communication phase.

In the computation phase, nodes are allowed to perform unlimited

computations. In the communication phase, nodes can exchange in-

dividual messages of unbounded sizes with each of their neighbors.

The runtime of the algorithm is the total number of communication

rounds, and the objective is to design algorithms that run in as few

rounds as possible. The output is typically distributed: For vertex

colorings, it is required that upon termination of the algorithm,

every node knows its own color, and for independent sets, every

node knows whether it participates in the independent set.

DistributedVertexColoring.Vertex coloring problems have been

studied in distributed computational models since more than 30

years. Given a graph G = (V ,E), a (legal) c-coloring of G is an

assignment γ : V → [c] of at most c colors to the nodes of G
such that every pair of adjacent nodes receives different colors.

The algorithmic challenge lies in computing colorings with few

colors. The chromatic number χ (G) is the smallest c such that there

is a c-coloring of G. The Minimum Vertex Coloring problem

(MVC), one of the problems studied in this paper, asks to find a

χ (G)-coloring. This is a difficult task, even in the centralized setting:

In general graphs,MVC is hard to approximate within a factor of

n1−ϵ , for any ϵ > 0 [22].

Most research papers on distributed vertex coloring address the

problem of computing a (∆ + 1)-coloring, where ∆ is the maxi-

mum degree of the input graph. In the distributed setting, this

is a non-trivial task, and a long line of research has culminated

in the randomized algorithm of Chang et al. [7], which runs in

O(log∗ n + 2
√
log logn ) rounds, and the deterministic algorithm of

Fraigniaud et al. [10], which runs in O(
√
∆ log

2.5 ∆+ log∗ n) rounds.
Only very few research papers address the MVC problem in a

distributed model itself. On general graphs, the best distributed

algorithm computes a O(logn)-approximation in O(log2 n) rounds
[2]. This algorithm uses exponential time computations, which due

to the computational hardness of MVC is necessary unless P = NP .
Barenboim et al. [4] gave a O(nϵ )-approximation algorithm that

runs in expO(1/ϵ) rounds. Both the exponential time computa-

tions and the relatively large best known approximation factor of

O(logn) on general graphs motivate the study of special graph

classes. Besides results on graph classes with bounded chromatic

number [3, 13, 14], the only graph class with unbounded chromatic

number that has been addressed in the literature are interval graphs,
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which are the intersection graphs of intervals on the line. Halldórs-

son and Konrad gave a (1 + ϵ)-approximation algorithm forMVC

on interval graphs that runs in O( 1ϵ log
∗ n) rounds [16] (see also

[15]). This work is the most relevant related work to our results.

Distributed Independent Sets. An independent set in a graph is

a subset of pairwise non-adjacent nodes. In this paper we study the

Maximum Independent Set problem (MIS) that asks to find an

independent set of maximum size. Similar toMVC, theMIS problem

is hard to approximate within a factor of n1−ϵ , for every ϵ > 0 [22].

In the distributed setting, Luby [20] and independently Alon et

al. [1] gave distributed O(logn) rounds maximal independent set

algorithms more than 30 years ago. Improved results are possible

for graphs with bounded maximum degree ([5, 11]) or on specific

graph classes (e.g. [8, 21]). Using exponential time computations, a

(1 + ϵ)-approximation toMIS can be computed in general graphs

in O( 1ϵ logn) rounds [6] (see also [12]). Deterministic distributed

MIS algorithms may be inferior to randomized ones: It is known

that every deterministicMIS O(1)-approximation algorithm on a

path requires Ω(log∗ n) rounds [9, 18], while a simple randomized

O(1) rounds O(1)-approximation algorithm exists [9].

Chordal Graphs. In this paper, we studyMVC andMIS on chordal

graphs. A graph is chordal, if every cycle on at least four nodes

contains a chord, i.e., an edge connecting two non-consecutive nodes

of the cycle. Chordal graphs play an important role in graph theory

and have many applications, for example in belief propagation in

machine learning. They constitute a superclass of interval graphs

and trees and an inportant subclass of perfect graphs. The key

motivations for our work are as follows:

1. Minimum Vertex Colorings. Since the best known dis-

tributedMVC algorithm only gives a O(logn)-approximation, we

are interested in pinpointing graph structures that are difficult to

handle. In this paper, we show that MVC and MIS can both be well

solved on chordal graphs. A defining feature of a chordal graph

is that it does not contain any induced cycles of lengths at least 4.

This in turn implies that difficult instances for distributed coloring

necessarily contain induced cycles of length at least 4.

Furthermore, as previously mentioned, MVC can be solved well

on interval graphs in the distributed setting [16]. We are therefore

interested in identifying more general graph classes that admit

distributed (1 + ϵ)-approximation algorithms for MVC. Since trees

are chordal, Linial’s lower bound for coloring trees applies [19].

Linial proved that coloring trees with a constant number of colors

requires Ω(logn) rounds, which gives a Ω(logn) lower bound for

any constant factor approximation toMVC on chordal graphs. This

separates the difficulties of MVC on chordal and interval graphs.

Furthermore, it is proved in [16] that a (1+ϵ)-approximation toMVC

on interval graphs requires Ω( 1ϵ ) rounds. Combined, we obtain a

Ω( 1ϵ + logn) lower bound on the round complexity for approximat-

ing MVC on chordal graphs within a factor of 1 + ϵ .
2. Tree Decompositions. Tree decompositions are a powerful

algorithmic tool that allow for the design of (centralized) linear

time algorithms for NP-hard problems on graphs of bounded tree-

width. They have played however only a minor role in the design of

distributed algorithms. A tree decomposition of a graph G = (V ,E)
is identified by a set of bags S1, S2, . . . ⊆ V that are arranged in a

forest T such that every adjacent pair of nodes uv ∈ E is contained

in at least one bag, and, for any v ∈ V , the set of bags that contain

v induces a non-empty tree in T , which we denote T(v). It is
well known that a graph G is chordal if and only if it has a tree

decomposition T = (C, E) whose set of vertices (i.e., bags) C is the

family of maximal cliques ofG. We call such a tree decomposition

a clique forest of chordal graph G.
One potential reason for the limited success of tree decomposi-

tions in distributed computing is that even simple graphs, such as

a ring on n nodes, require that many bags of their tree decomposi-

tions consist of nodes that are at distance Ω(n) in the original graph.

For these graphs, it is thus impossible that nodes obtain coherent

local views of a tree decomposition in o(n) rounds.
Chordal graphs are well-suited for studying distributed algo-

rithms that exploit the input graph’s tree decomposition, since in a

chordal graph each bag is a clique. Thus, every bag that contains

a node v ∈ V further only contains nodes that lie in v’s neighbor-
hood. We exploit this locality property and show that in the LOCAL
model, nodes can indeed obtain coherent local views of a global

tree decomposition.

2 NEW RESULTS
We give deterministic distributed (1+ ϵ)-approximation algorithms

forMVC andMIS on chordal graphs in the LOCAL model. Our al-

gorithm for MVC runs in O( 1ϵ logn) rounds, and our algorithm for

MIS has a runtime of O( 1ϵ log( 1ϵ ) log
∗ n) rounds. ForMVC, the de-

pendencies of the runtime on logn and
1

ϵ are best possible (though

the existence of an algorithm with runtine O( 1ϵ + logn) is not ruled
out). For MIS, we prove that any, possibly randomized, (1 + ϵ)-
approximation algorithm requires Ω( 1ϵ ) rounds, even on paths.

We say that a path in a graph is binary, if all its vertices have

degree at most 2 in the graph. We say that a binary path is pendant,

if at least one of its end vertices has degree 1; and we say that it is

internal, if all its vertices have degree 2.

2.1 Minimum Vertex Coloring
Our algorithm consists of the pruning, the coloring, and the color

correction phases: In the pruning phase, the node set V is par-

titioned into at most ⌈logn⌉ layers V1, . . . ,V⌈logn ⌉ such that, for

every i ∈ [⌈logn⌉], G[Vi ] constitutes an interval graph. In each

step of the pruning phase, we remove every node v ∈ Ui from the

current graph G[Ui ] (we setU1 = V and hence G[U1] = G) whose
corresponding subtree T(v) in the clique forest Ti of G[Ui ] is a
subpath of a pendant path or an internal path of diameter at least

3k . The set of removed nodes, which we denoted by Vi , induces an
interval graph. We prove that the clique forest Ti+1 of the resulting

graphG[Ui+1], whereUi+1 = Ui \Vi , can be obtained by removing

all pendant paths and all internal paths of diameter at least 3k from

Ti . We also show that the pruning process ends after at most ⌈logn⌉
iterations and thus creates at most ⌈logn⌉ layers.

In the coloring phase, each interval graphG[Vi ] is colored with

at most (1 + 1/k)χ (G[Vi ]) + 1 colors. In the centralized setting, it

would be easy to color these interval graphs optimally. However,

since we implement the algorithm in the distributed setting, and

an optimal coloring on interval graphs cannot be computed dis-

tributively in few rounds, we impose a weaker quality guarantee

that can be achieved distributively. The colorings of different layers
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are computed independently from each other and do not give a

coherent coloring of the entire input graph.

In the color correction phase, these incoherencies are corrected.

To this end, the colors ofV⌈logn ⌉ remain unchanged and we correct

the layers iteratively, starting with layer ⌈logn⌉ − 1 and proceeding

downwards to layerV1. In a general step, for every path P ∈ Li , we

show that the nodesW ⊆ Vi whose subtrees are subpaths of P form

an interval graph together with those nodes in

⋃
j≥i+1Vj that have

coloring conflicts towardsW . Notice that each path P connects to

at most two bags (i.e., maximal cliques) in Ti . The neighborhood

ofW thus consists of subsets of these (at most two) cliques, which

implies that all conflicting nodes in

⋃
j≥i+1Vj are included in these

cliques as well. We then reuse a recoloring result previously proved

by Halldórsson and Konrad [16], which shows that we can resolve

all conflicts by changing the colors of those nodes inW that are at

distance at most k + 3 from the (at most) two conflicting cliques.

Theorem 2.1. For every ϵ ≥ 2

χ (G)
, there is a deterministic (1+ ϵ)-

approximation algorithm for MVC on chordal graphs that runs in

O( 1ϵ logn) rounds in the LOCAL model.

2.2 Maximum Independent Set
Our distributed MIS algorithm uses an adapted version of the peel-

ing process used in our coloring algorithm. The key observation

that allows us to obtain a runtime of o(logn) is the fact that the first
O(log 1

ϵ ) layers computed by our peeling process already contain

an independent set of large enough size. Our algorithm proceeds

as follows: In each iteration i = 1, . . . ,O( 1ϵ ) of the peeling process,

we remove all pendant paths and all internal paths of large enough

diameter
1
(letLi be the set of removed paths) from the clique forest

Ti of the graph induced by the remaining nodes. Next, we compute

large independent sets among the nodes whose trees are included

in each path P ∈ Li . If P has a large independence number
2
then

we run our (1 + ϵ)-approximation algorithm for interval graphs in

O( 1ϵ log
∗ n) rounds (which we design as an auxiliary tool for our

main algorithm for chordal graphs). If P has small independence

number we need to compute an optimal independent set in order to

locally stay within a (1 + ϵ)-approximation guarantee. This can be

achieved using only O( 1ϵ ) rounds, since paths with small indepen-

dence number necessarily have small diameter. The runtime is thus

dominated by the product of the number of iterations O(log 1

ϵ ) and

the O( 1ϵ log
∗ n) runtime of our MIS algorithm for interval graphs.

Theorem 2.2. For any ϵ ∈ (0, 1/2), there is a deterministic (1+ϵ)-
approximation algorithm for MIS on chordal graphs that runs in

O( 1ϵ log( 1ϵ ) log
∗ n) rounds in the LOCAL model.

2.3 Lower Bound on the Complexity for MIS
Using an indistinguishability argument, we obtain a lower bound

on the round complexity for MIS on paths.

Theorem 2.3. For every ϵ > 0 and n large enough, every random-

ized algorithm in the LOCAL model with expected approximation

factor at most 1 + ϵ for MIS requires Ω( 1ϵ ) rounds.

1
The diameter of a path in the clique forest is the maximum distance in the graph

between the nodes belonging to the bags of the path.

2
The independence number of a path in the clique forest is the maximum number of

pairwise non-adjacent nodes that belongs to the bags of the path.
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