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Abstract. We study the streaming complexity and communication complexity of approximating
unweighted semi-matchings. A semi-matching in a bipartite graph G = (A,B,E) with n = |A| is
a subset of edges S ⊆ E that matches all A vertices to B vertices with the goal usually being to
do this as fairly as possible. While the term semi-matching was coined in 2003 by Harvey et al.
[WADS 2003, also Journal of Algorithms 2006], the problem had already previously been studied
in the scheduling literature under different names.

We present a deterministic one-pass streaming algorithm that for any 0 ≤ ε ≤ 1 uses space Õ(n1+ε)
and computes an O(n(1−ε)/2)-approximation to the semi-matching problem. Furthermore, with
O(logn) passes it is possible to compute an O(logn)-approximation with space Õ(n).

In the one-way two-party communication setting, we show that for every ε > 0, deterministic

communication protocols for computing an O(n
1

(1+ε)c+1 )-approximation require a message of size
more than cn bits. We present two deterministic protocols communicating n and 2n edges that
compute an O(

√
n) and an O(n1/3)-approximation respectively.

Finally, we improve on results of Harvey et al. [Journal of Algorithms 2006] and prove new links be-
tween semi-matchings and matchings. While it was known that an optimal semi-matching contains
a maximum matching, we show that there is a hierachical decomposition of an optimal semi-
matching into maximum matchings. A similar result holds for semi-matchings that do not admit
length-two degree-minimizing paths.

1 Introduction

Semi-matchings. A matching in an unweighted bipartite graph G = (A,B,E) can be seen
as a one-to-one assignment matching the A vertices to B vertices. The usual aim is to find a
matching that leaves as few A vertices without associations as possible. A semi-matching is then
an extension of a matching, in that it is required that all A vertices are matched to B vertices.
This, however, is generally not possible in an injective way, and therefore we now allow the
matching of multiple A vertices to the same B vertex. Typical objectives here are to minimize
the maximal number of A vertices that are matched to the same B vertex, or to optimize with
respect to even stronger balancing constraints. The term ’semi-matching’ was coined by [16]
and also used in [11], however, the problem had already previously been intensely studied in the
scheduling literature [6, 17, 4, 1, 23]. We stick to this term since it nicely reflects the structural
property of entirely matching one bipartition of the graph.

The semi-matching problem captures the problem of assigning a set of unit-length jobs
to a set of identical machines with respect to assignment conditions expressed through edges
between the two sets. The objective of minimizing the maximal number of jobs that a machine
receives then corresponds to minimizing the makespan of the scheduling problem. Optimizing
the cost function

∑
b∈B

(
degS(b)+1

2

)
, where degS(b) denotes the number of jobs that a machine

b receives in the semi-matching S, corresponds to minimizing the total completion time of the
jobs (optimizing with respect to this cost function automatically minimizes the maximal degree
as well).

Optimality of a Semi-matching. It is well known that matchings are of maximal size
if they do not admit augmenting paths [5]. Augmenting paths for matchings correspond to



degree-minimizing paths for semi-matchings. They first appeared in [16] under the name of cost-
reducing-paths, and they were used for the computation of a semi-matching that minimizes a
certain cost function. We use the term ’degree-minimizing-path’ since it is more appropriate
in our setting. A degree-minimizing path starts at a B node of high degree, then alternates
between edges of the semi-matching and edges outside the semi-matching, and ends at another
B node of smaller degree. Flipping the semi-matching and non-semi-matching edges of the path
then generates a new semi-matching such that the large degree of the start node of the path
is decreased by 1, and the small degree of the end node of the path is increased by 1. We
define an optimal semi-matching as one that does not admit any degree-minimizing paths. It
was shown in [16] that such a semi-matching is also optimal with respect to a large set of cost
functions, including the minimization of the maximal degree as well as the minimization of the
total completion time.

Since an optimal semi-matching minimizes many convex cost functions, there is not only
one meaningful definition of what an approximation to the semi-matching problem should be.
We will consider a notion that has already been used in [4]. We say that an algorithm is a
c-approximation algorithm to the semi-matching problem if for any input graph, it outputs a
semi-matching S such that deg maxS ≤ c deg maxS∗, where S∗ is an optimal semi-matching
and deg maxT denotes the maximal degree of a vertex with respect to the set T . This notion
of approximation corresponds to approximating the makespan when the semi-matching is seen
as a scheduling problem. This setting was already studied in e.g. [4]. In [9], the semi-matching
problem is studied in the distributed setting, and the cost function

∑
b∈B

(
degS(b)+1

2

)
is used.

These notions are not comparable.

Streaming Algorithms and Communication Complexity. Streaming Algorithms fall
into the category of massive data set algorithms. In many applications, the data that an algo-
rithm is called upon to process is too large to fit into the computer’s memory. In order to cope
with this problem, a streaming algorithm sequentially scans the input while using a random
access memory of size sublinear in the length of the input stream. Multiple passes often help to
further decrease the size of the random access memory. Graph streams are widely studied in the
streaming model (see [24] for a survey), and in the last years matching problems have received
particular attention (e.g. [14, 22, 18, 2, 8, 15, 3, 7, 20, 19, 10]). A graph stream is a sequence of the
edges of the input graph with a priori no assumption on the order of the edges. Particular
arrival orders of the edges are studied in the literature and allow the design of algorithms that
depend on that order. Besides uniform random order [22, 19], the vertex arrival order [14, 18] of
edges of a bipartite graph is studied where edges incident to the same A node arrive in blocks.
Deciding basic graph properties such as connectivity already requires Ω(|V |) space [12], where
V denotes the vertex set of a graph. Many works considering graph streams allow an algorithm
to use O(|V | polylog |V |) space. This setting is usually called the semi-streaming setting.

Space lower bounds for streaming algorithms are often obtained via Communication Com-
plexity. There is an inherent link between streaming algorithms and one-way k-party communi-
cation protocols. A streaming algorithm for a problem P with space s also serves as a one-way
k-party communication protocol for P with communication cost O(sk). Conversely, a lower
bound on the size of any message of such a protocol is also a lower bound on the space re-
quirements of a streaming algorithm. Determining the communication complexity of problems
is in itself an important task, however, the previously discussed link to streaming algorithms
provides an additional motivation.

Our Contributions. We initiate the study of the semi-matching problem in the streaming
and the communication settings. We present a deterministic one-pass streaming algorithm that
for any 0 ≤ ε ≤ 1 uses space Õ(n1+ε) and computes an O(n(1−ε)/2) approximation to the semi-
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matching problem (Theorem 1)3. Furthermore, we show that with O(log n) passes we can
compute an O(log n) approximation with space Õ(n) (Theorem 2).

In the one-way two-party communication setting, we show that for any ε > 0, deterministic

communication protocols that compute an O(n
1

(1+ε)c+1 ) approximation to the semi-matching
problem require a message of size at least cn bits (Theorem 5). We present two deterministic
protocols communicating n and 2n edges that compute an O(

√
n) approximation and an O(n1/3)

approximation, respectively (Theorem 3).

While it was known that an optimal semi-matching contains a maximum matching [16], we
show that there is a hierarchical decomposition of an optimal semi-matching into maximum
matchings (Lemma 14). Similarly, we show that semi-matchings that do not admit length-two
degree-minimizing paths can be decomposed into maximal matchings (Lemma 13). The latter
result allows us to prove that the maximal degree of a semi-matching that does not admit
a length-two degree-minimizing path is at most dlog(n + 1)e times the maximal degree of an
optimal semi-matching (Theorem 6).

Related Work on the Semi-matching Problem. The semi-matching problem was firstly
studied by Horn [17] and independently by Bruno et al. [6], and both designed an O(|V |3) al-
gorithm. At present, the best existing algorithm for computing an optimal semi-matching runs
in time O(

√
|V ||E| log |V |) [11, 13] where V = A ∪ B. Furthermore, in [13] a randomized al-

gorithm with time complexity O(|V |ω log1+o(1) |V |) is given, where ω is the exponent of the
best known matrix multiplication algorithm. Since ω ≤ 2.38, this algorithm improves on the
O(
√
|V ||E| log |V |) time algorithm for dense graphs. To the best of our knowledge, the semi-

matching problem has not yet been studied in the streaming setting and the communication
setting prior to our work. In the online setting, a dlog(n) + 1e-approximation online algorithm
is given in [4], where the maximal degree is approximated. In this model, an A vertex comes
in together with its incident edges, and the A vertex has to be matched to a B node imme-
diately and irrevocably. It is shown that the greedy algorithm matching an A node to the B
node that currently has the smallest degree is dlog(n+ 1)e competitive, and that this result is
tight. This algorithm can also be seen as a one-pass dlog(n+ 1)e approximation semi-streaming
algorithm (meaning Õ(n) space) for the semi-matching problem when the input stream is in
vertex arrival order. Note that our one-pass algorithm does not assume any order on the in-
put sequence, and when allowing Õ(n) space it achieves an O(

√
n)-approximation. Recently,

the semi-matching problem was studied in the distributed setting [9]. They show that a 2-
approximation to the semi-matching problem can be computed in O(∆5) time, where ∆ is the
maximal degree in the graph. They consider the notion of approximation with respect to the cost
function

∑
b∈B

(
degS(b)+1

2

)
. It can be shown that their algorithm is a dlog(n+ 1)e-approximation

if the cost function deg maxS for a semi-matching S is considered.

Techniques. Our streaming algorithms are based on the following greedy algorithm. Fix a
maximal degree dmax (for instance dmax = n1/4) and greedily add edges to a set S1 such that
the maximal degree of a B node in S1 does not exceed dmax, and the degree of any A node
in S1 is at most 1. This algorithm leaves at most O(n/dmax) A vertices unmatched in S1. To
match the yet unmatched vertices, we use a second greedy algorithm that we run in parallel to
the first one. We fix a parameter d′ appropriately (if dmax = n1/4 then we set d′ = n1/2) and for
all vertices a ∈ A we store arbitrary d′ edges incident to a in a set E′. Then, we compute an
optimal semi-matching S2 of the unmatched vertices in S1 and the B nodes only considering the
edges in E′. We prove that such a semi-matching has bounded maximal degree (if dmax = n1/4

and d′ = n1/2 then this degree is n1/4). The set S1 ∪ S2 is hence a semi-matching of maximal
degree dmax + deg maxS2 and the space requirement of this algorithm is Õ(nd′). In Section 3

3 We write Õ(n) to denote O(npolylogn).
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we generalize this idea for any 0 ≤ ε ≤ 1 to obtain one-pass algorithms with approximation
factors O(n(1−ε)/2) using space Õ(n1+ε), and a log(n)-pass algorithm with approximation factor
O(log n) using space Õ(n).

In the one-way two-party communication setting, the edge set E of a bipartite graph
G = (A,B,E) is split among two players, Alice and Bob. Alice sends a message to Bob
and Bob outputs a semi-matching of G. Our communication upper bounds make use of what
we call a c-semi-matching skeleton (or simply c-skeleton). A c-skeleton of a bipartite graph
G = (A,B,E) is a subset of edges S ⊆ E such that for any A′ ⊆ A : deg max semi(A′, B, S) ≤
c · deg max semi(A′, B,E) where semi(A′, B,E′) denotes an optimal semi-matching between A′

and B using edges in E′. We show that if Alice sends a c-skeleton S of her subgraph to Bob, and
Bob computes an optimal semi-matching using his edges and the skeleton, then the resulting
semi-matching is a c+1 approximation. We show that there is an O(

√
n)-skeleton consisting of n

edges, and that there is an O(n1/3)-skeleton consisting of 2n edges. It turns out that an optimal
semi-matching is an O(

√
n)-skeleton, and we show how an O(n1/2)-skeleton can be improved

to an O(n1/3)-skeleton by adding additional n edges. These skeletons are almost optimal: we

show that for any ε > 0, an O(n
1

(1+ε)c+1 )-skeleton has at least cn edges. Inspired by the prior
lower bound, we prove that for any ε > 0, the deterministic one-way two-party communication

complexity of approximating semi-matchings within a factor O(n
1

(1+ε)c+1 ) is at least cn bits.
In order to prove our structure lemmas on semi-matchings, we make use of degree-minimizing

paths. Our results on the decomposition of semi-matchings into maximum and maximal match-
ings directly relate the absence of degree-minimizing paths to the absence of augmenting paths
in matchings. See Section 5 for details.

Organization. After presenting notations and definitions in Section 2, we present our
streaming algorithms in Section 3. We then discuss the one-way two-party communication set-
ting in Section 4. We conclude with Section 5, where we present our results on the structure of
semi-matchings.

2 Notations and Definitions

Let G = (A,B,E) be a bipartite graph and let n = |A|. We assume that the graph does not have
isolated A-vertices in order to guarantee that the graph has a semi-matching. Furthermore, we
assume that |B| = poly(n). Let e ∈ E be an edge connecting nodes a ∈ A and b ∈ B. Then, we
write A(e) to denote the vertex a, B(e) to denote the vertex b, and ab to denote e. Furthermore,
for a subset E′ ⊆ E, we define A(E′) =

⋃
e∈E′{A(e)} (respectively B(E′)). For subsets A′ ⊆ A

and B′ ⊆ B we write E′|A′×B′ to denote the subset of edges of E′ whose endpoints are all in
A′ ∪B′. We denote by E′(a) the set of edges of E′ ⊆ E that have an endpoint in vertex a, and
E′(A′) the set of edges that have endpoints in vertices of A′, where A′ ⊆ A (similarly we define
E′(B′) for B′ ⊆ B).

For a node v ∈ A ∪ B, the neighborhood of v is the set of nodes that are adjacent to v and
we denote it by Γ (v). For a subset E′ ⊆ E, we write ΓE′(v) to denote the neighborhood of v in
the graph induced by E′. Note that by this definition Γ (v) = ΓE(v). For a subset E′ ⊆ E, we
denote by degE′(v) the degree in E′ of a node v ∈ V , which is the number of edges of E′ with
an endpoint in v. We define deg maxE′ := maxv∈A∪B degE′(v).

Furthermore, for two setsX,Y , we denote byX⊕Y the symmetric difference (X\Y )∪(Y \X).

Definition 1 (Semi-matching). A semi-matching in a bipartite graph G = (A,B,E) is a
subset S ⊆ E such that ∀a ∈ A : degS(a) = 1.

An important notion for the computation of semi-matchings are degree-minimizing-paths.
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Definition 2 (Degree-minimizing-path). A degree-minimizing path P with respect to a
semi-matching S is a path P = (b1, a1, . . . , bk−1, ak−1, bk) of length 2k (k ≥ 1) such that for all
i ≤ k : (ai, bi) ∈ S, for all i ≤ k − 1 : (ai, bi+1) /∈ S, and degS(b1) > degS(b2) ≥ degS(b3) ≥
· · · ≥ deg(bk−1) > deg(bk).

We define optimality of a semi-matching by means of degree-minimizing-paths.

Definition 3 (Optimal Semi-matching). An optimal semi-matching S∗ ⊆ E is a semi-
matching that does not admit any degree-minimizing-paths.

As previously mentioned, it is shown in [16] that an optimal semi-matching also minimizes
the maximum degree of a B-node.

The previous notions are illustrated in Figure 1.

semi-matching S deg.-min. path P S ⊕ P

Fig. 1. Illustration of a semi-matching S. P is a degree-minimizing path of length 4 starting at node b1 and
ending at node b3. Initially, the degree of b1 in S is 3 and the degree of b3 in S is 1. Removing the edges P ∪ S
from S and inserting the edges P \ S into S decreases the degree of b1 by 1 and increases the degree of b3 by 1.
Here, S ⊕ P is an optimal semi-matching.

The Semi-Matching problem consists of computing an optimal semi-matching in a bipartite
graph.

For subsets A′ ⊆ A,B′ ⊆ B,E′ ⊆ E, we denote by semi(A′, B′, E′) an optimal semi-matching
in the graph G′ = (A′, B′, E′), and we denote by semi2(A

′, B′, E′) a semi-matching that does
not admit degree-minimizing paths of length 2 in G′.

Our algorithms for semi-matchings require the notion of incomplete d-bounded semi-matchings.
These are semi-matchings that do not match all A-vertices and have a bounded maximal degree.

Definition 4 (Incomplete d-bounded Semi-matching). Let d be an integer. Then an in-
complete d-bounded semi-matching of G is a subset S ⊆ E such that ∀a ∈ A : degS(a) ≤ 1 and
∀b ∈ B : degS(b) ≤ d.

For subsets A′ ⊆ A,B′ ⊆ B,E′ ⊆ E, we write isemid(A
′, B′, E′) to denote an incomplete

d-bounded semi-matching of maximal size in the graph G′ = (A′, B′, E′).
We say that an algorithm (or communication protocol) is a c-approximation algorithm

(resp. communication protocol) to SM if it outputs a semi-matching S such that deg maxS ≤
c · deg maxS∗, where S∗ denotes an optimal semi-matching. We note that this measure was
previously used for approximating semi-matching, e.g, in [4].

3 Streaming Algorithms

To present our streaming algorithms, we describe an algorithm, asemi(G, s, d, p) (Algorithm 1),
that computes an incomplete 2dp-bounded semi-matching in the graph G using space Õ(s),
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and makes at most p ≥ 1 passes over the input stream. If appropriate parameters are chosen,
then the output is not only an incomplete semi-matching, but also a semi-matching. We run
multiple copies of this algorithm with different parameters in parallel in order to obtain a one-
pass algorithm for the semi-matching problem (Theorem 1). Using other parameters, we also
obtain a logn-pass algorithm (Theorem 2).

Algorithm 1 Skeleton for approximating semi-matchings: asemi(G, s, d, p)

Require: G = (A,B,E) is a bipartite graph
S ← ∅
repeat at most p times or until |A(S)| = |A|
S ← S ∪ incomplete(G|(A\A(S))×B , s, d) {requires one pass}

end repeat
return S

Algorithm 2 Computing incomplete semi-matchings: incomplete(G, s, d)

Require: G = (A,B,E) is a bipartite graph
k ← s/|A|, S1 ← ∅, E′ ← ∅
while ∃ an edge ab in stream do

if ab /∈ A×B then continue
if degS1

(a) = 0 and degS1
(b) < d then S1 ← S1 ∪ {ab}

if degE′(a) < k then E′ ← E′ ∪ {ab}
end while
S2 ← isemid(E

′|(A\A(S1))×B)
S ← S1 ∪ S2

return S

asemi(G, s, d, p) starts with an empty incomplete semi-matching S and adds edges to S by
invoking incomplete(G, s, d) (Algorithm 2) on the subgraph of the yet unmatched A vertices
in S and all B vertices. Each invocation of incomplete(G, s, d) makes one pass over the input
stream and returns a 2d-bounded incomplete semi-matching while using space Õ(s). Since we
make at most p passes, the resulting incomplete semi-matching has a maximal degree of at most
2dp.

incomplete(G, s, d) collects edges greedily from graph G and puts them into an incomplete
d-bounded semi-matching S1 and a set E′. An edge e from the input stream is put into S1 if
S1 ∪ {e} is still an incomplete d-bounded semi-matching. An edge e = ab is added to E′ if the
degree of a in E′ ∪ {e} is less or equal to a parameter k which is chosen to be s/|A| in order
to ensure that the algorithm does not exceed space Õ(s). The algorithm returns an incomplete
2d-bounded semi-matching that consists of S1 and S2, where S2 is an optimal incomplete d-
bounded semi-matching between the A vertices that are not matched in S1 and all B vertices,
using only edges in E′.

We lower-bound the size of S2 in Lemma 1. We prove that for any bipartite graph G =
(A,B,E) and any k > 0, if we store for each a ∈ A any max{k, degG(a)} incident edges to a,
then we can compute an incomplete d-bounded semi-matching of size at least min{kd, |A|} using
only those edges, where d is an upper-bound on the maximal degree of an optimal semi-matching
between A and B in G.

Lemma 1 is then used in the proof of Lemma 2. In Lemma 2, we apply Lemma 1 in order
to obtain a lower bound on the size of S2 which in turn is used to obtain a lower bound on the
size of the output S1 ∪ S2 of incomplete(G, s, d).
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Lemma 1. Let G = (A,B,E) be a bipartite graph, let k > 0 and let d ≥ deg max semi(A,B,E).
Furthermore, let E′ ⊆ E be a subset of edges such that for all a ∈ A : degE′(a) = min{k,degE(a)}.
Then there is an incomplete d-bounded semi-matching S ⊆ E′ such that |S| ≥ min{kd, |A|}.

Proof. Let d∗ = deg max semi(A,B,E). We explicitly construct an incomplete semi-matching
S. Let A0 ⊆ A such that for all a ∈ A0 : degE′(a) = degE(a), and let A1 = A \ A0. Let
S0 = semi(A0, B,E). Clearly, deg maxS0 ≤ d∗. We construct now S as follows.

Start with S = S0, and then add greedily edges in any order from E′|A1×B to S such that
S remains an incomplete semi-matching with maximal degree d. Stop as soon as there is no
further edge that can be added to S.

We prove that S contains at least min{kd, |A|} edges. To see this, either all nodes of A are
matched in S, or there is at least one node a ∈ A1 that is not matched in S (note that all nodes
in A0 are matched in S). Since degE′(a) = k, all nodes b ∈ ΓE′(a) have degree d since otherwise
a would have been added to S. This implies that there are at least k · d nodes matched in S
which proves the lemma. ut

Lemma 2. Let G = (A,B,E) be a bipartite graph, let s ≥ |A| and let d ≥ deg max semi(A,B,E).
Then incomplete(G, s, d) (see Algorithm 2) uses Õ(s) space and outputs an incomplete 2d-
bounded semi-matching S such that |S| ≥ min{|A| d

d+d∗ + ds
|A| , |A|}, where d∗ is the maximum

degree in an optimal semi-matching.

Proof. The proof refers to the variables of Algorithm 2 and the values they take at the end of
the algorithm. Furthermore, let S∗ = semi(A,B,E), d∗ = deg maxS∗, and let A′ = A \A(S1).

Firstly, we lower-bound |S1|. Let a ∈ A′ and b = S∗(a). Then degS1
(b) = d since otherwise a

would have been matched in S1. Hence, we obtain |A(S1)| ≥ d|B(S∗(A′))| ≥ d|A′|/d∗, where the
second inequality holds since the maximal degree in S∗ is d∗. Furthermore, since A′ = A\A(S1)
and |S1| = |A(S1)|, we obtain |S1| ≥ |A| d

d+d∗ . We apply Lemma 1 on the graph induced by the
edge set E′|A′×B. We obtain that |S2| ≥ min{ds/|A|, |A′|} and consequently |S| = |S1|+ |S2| ≥
min{|A| d

d+d∗ + ds
|A| , |A|}.

Concerning space, the dominating factor is the space required for storing the at most k + 1
edges for every A vertex. Hence, space is bounded by Õ(k|A|) = Õ(s). ut

In the proof of Theorem 1, for 0 ≤ ε ≤ 1 we show that asemi(G, n1+ε, n(1−ε)/2d′, 1) returns a
semi-matching if d′ is at least the maximal degree of an optimal semi-matching. Using a standard
technique, we run log(n) + 1 copies of asemi for all d′ = 2i with 0 ≤ i ≤ log n and we return the
best semi-matching, obtaining a 1-pass algorithm. We use the same idea in Theorem 2, where
we obtain a O(log n) approximation algorithm that makes log n passes and uses space Õ(n).

Theorem 1. Let G = (A,B,E) be a bipartite graph with n = |A|. For any 0 ≤ ε ≤ 1 there
is a one-pass streaming algorithm for Semi-Matching using Õ(n1+ε) space that computes a
4n(1−ε)/2 approximation.

Proof. We run log(n) + 1 copies of Algorithm 1 in parallel as follows. For 0 ≤ i ≤ dlog ne
let Si = asemi(G,n1+ε, n(1−ε)/22i, 1) and choose among the Si a semi-matching Sk such that
|Sk| = n (this guarantees that Sk is a valid semi-matching), and for any other Sl with |Sl| =
n : deg maxSk ≤ deg maxSl (this guarantees that the approximation factor of Sk is best among
the computed semi-matchings).

We show now that there is a Sj which is a semi-matching that fulfills the desired approx-
imation guarantee. Let S∗ = semi(A,B,E) and d∗ = deg max(S∗). Then define j to be such
that d∗ ≤ 2j < 2d∗ and let d = n(1−ε)/22j . Sj is the output of a call to incomplete(G,n1+ε, d).
By Lemma 2, Sj is of size at least min{n d

d+d∗ + dnε, |A|} which equals |A| for our choice of d.
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This proves that all a ∈ A are matched in Sj . By Lemma 2, deg maxSj ≤ 2d which is less or
equal to 4n(1−ε)/2d∗. Hence, Sj is a 4n(1−ε)/2 approximation.

The space requirement is log n times the space requirement for the computation of a single
Si which is dominated by the space requirements of Algorithm 2. By Lemma 2, this is Õ(n1+ε),
and hence the algorithm requires Õ(n1+ε log n) = Õ(n1+ε) space. ut

Theorem 2. Let G = (A,B,E) be a bipartite graph with n = |A|. There is a log n-pass stream-
ing algorithm for Semi-Matching using space Õ(n) that computes a 4 log n approximation.

Proof. As in the proof of Theorem 1, we run log(n) + 1 copies of Algorithm 1 in parallel. For
0 ≤ i ≤ dlog ne let Si = asemi(G,n, 2i, log n) and choose among the Si a semi-matching Sk
such that |Sk| = n and for any other Sl with |Sl| = n : deg maxSk ≤ deg maxSl.

We show now that there is a Sj which is a semi-matching that fulfills the desired approx-
imation guarantee. Let S∗ = semi(A,B,E) and d∗ = deg max(S∗). Then define j to be such
that d∗ ≤ 2j < 2d∗ and let d = 2j . Sj is the output of a call to asemi(G,n, d, log n). In each
iteration, the algorithm calls incomplete(G′, n, d), where G′ is the subgraph of G of the not
yet matched A vertices and the B vertices. By Lemma 2, at least a d

d+d∗ ≥ 1/2 fraction of
the unmatched A vertices is matched since d ≥ d∗, and the maximal degree of the incomplete
semi-matching returned by incomplete(G′, n, d) is at most 2d. Hence, after log n iterations,
all A vertices are matched. Since d < 2d∗ and the algorithm performs at most log n iterations,
the algorithm returns a 4 log n approximation.

Each copy of Algorithm 1 uses space Õ(n) and since we run O(log n) the required space is
Õ(n). ut

4 One-Way Two-Party Communication

We now consider deterministic one-way two-party protocols which are given a bipartite graph
G = (A,B,E) as input, such that E1 ⊆ E is given to Alice and E2 ⊆ E is given to Bob. Alice
sends a single message to Bob, and Bob outputs a valid semi-matching S for G. A central idea
for our upper and lower bounds is what we call a c-semi-matching skeleton which we define as
follows:

Definition 5. Given a bipartite graph G = (A,B,E), a c-semi-matching skeleton (or c-skeleton)
is a subset of edges S ⊆ E such that ∀A′ ⊆ A:

deg max semi(A′, B, S) ≤ c · deg max semi(A′, B,E).

We show how to construct an O(
√
n)-skeleton of size n, and an O(n1/3)-skeleton of size 2n. We

show that if Alice sends a c-skeleton of her subgraphG = (A,B,E1) to Bob, then Bob can output
a c+ 1-approximation to the semi-matching problem. Using our skeletons, we thus obtain one-
way two-party communication protocols for the semi-matching problem with approximation
factors O(

√
n) and O(n1/3), respectively (Theorem 3). Then we show that for any ε > 0,

an O(n
1

(1+ε)c+1 )-skeleton requires at least cn edges. This renders our O(
√
n)-skeleton and our

O(n1/3)-skeleton tight up to a constant.

4.1 Upper Bound

Firstly, we discuss the construction of two skeletons. In Lemma 5, we show that an optimal semi-
matching is an O(

√
n)-skeleton, and in Lemma 8, we show how to obtain a O(n1/3)-skeleton. In

these constructions, we use the following key observation: Given a bipartite graphG = (A,B,E),
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let A′ ⊆ A be such that A′ has minimal expansion, meaning that A′ = arg minA′′⊆A
|Γ (A′′)|
|A′′| .

The maximal degree in a semi-matching is then clearly at least d |A
′|

|Γ (A′)|e since all vertices of A′

have to be matched to its neighborhood. However, it is also true that the maximal degree of a

semi-matching equals d |A
′|

|Γ (A′)|e. A similar fact was used in [14] for fractional matchings, and also

in [21]. We are going to prove this fact in Lemma 4. This proof requires the following technical
lemma, Lemma 3.

Lemma 3. Let G = (A,B,E) be a bipartite graph and let A′ ⊆ A such that |Γ (A′)| ≤ |A′|.
Then:

∀A′′ ⊆ A′ : |Γ (A′′)|
|A′′|

≥ |Γ (A′)|
|A′|

⇒ deg max semi(A′, B,E) ≤ d |A
′|

|Γ (A′)|
e.

Proof. The proof is by contradiction. Let d = d |A
′|

|Γ (A′)|e, S = semi(A′, B,E) and suppose that

deg maxS ≥ d+ 1. We construct now a set Ã ⊂ A′ such that |Γ (Ã)||Ã| < |Γ (A′)|
|A′| contradicting the

premise of the lemma.
To this end, we define two sequences (Ai)i with Ai ⊆ A′ and (Bi)i with Bi ⊆ Γ (A′). Let

b ∈ Γ (A′) be a node with degS(b) ≥ d+ 1 and let B1 = {b}. We define

Ai = ΓS(Bi),

Bi+1 = Γ (Ai) \ ∪j≤iBj . (1)

This setting is illustrated in Figure 2. Note that all Ai and all Bi are disjoint. Let k be such
that |Ak| > 0 and |Ak+1| = 0. Then we set Ã =

⋃k
i=1Ai.

By construction of the sequence (Bi)i, it is clear that for any b′ ∈ ∪Bi : degS(b′) ≥ degS(b)−
1, since otherwise there is a degree-minimizing path from b to b′ contradicting the definition of
S. Then, by Equation 1, we obtain for all i that |Ai| ≥ |Bi|(degS(b) − 1) which implies that
|Ai| ≥ d|Bi| since degS(b) ≥ d+ 1. Recall that |A1| ≥ d+ 1. We compute

|Γ (Ã)|
|Ã|

=
|B1|+

∑
2≤i≤k |Bi|

|A1|+
∑

2≤i≤k |Ai|
≤

1 +
∑

2≤i≤k |Bi|
(d+ 1) +

∑
2≤i≤k |Bi|d

<
1

d
≤ |Γ (A′)|
|A′|

,

and we obtain a contradiction to the premise of the lemma. ut

Fig. 2. Illustration of the proof of Lemma 3. All nodes b′ ∈
⋃
i≥2Bi have degS(b′) ≥ degS(b)− 1 since otherwise

there is a degree-minimizing path. To keep the figure simple, only those edges of E \ S are drawn that connect
the Ai to Bi+1. Note that in general there are also edges outside S from Ai to

⋃
j<iBj . However, there are no

edges in the graph from Ai to
⋃
j≥i+2Bj .
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Lemma 4. Let G = (A,B,E) with |A| = n, and let d = deg max semi(A,B,E). Let A′ be a
subset of A with minimal expansion α, that is

A′ = arg min
A′′⊆A

|Γ (A′′)|
|A′′|

,

and let α = |Γ (A′)|
|A′| . Then:

d = dα−1e.

Proof. We show that d ≥ dα−1e and d ≤ dα−1e separately.

1. d ≥ dα−1e: The set A′ has to be matched entirely to vertices in its neighborhood. Therefore,

there is a node b ∈ Γ (A′) with degree at least d |A
′|

|Γ (A′)|e = dα−1e.
2. d ≤ dα−1e: We construct a semi-matching explicitly with maximal degree d. Since an

optimal semi-matching has at most this degree, the claim follows.

Consider a decomposition of A into sets A1, A2, . . . as follows. A1 ⊆ A is a set with min-
imal expansion, and for i > 1, Ai ⊆ A \ (

⋃
j<iAj) is the set with minimal expansion in

G|(A\⋃j<i Aj)×(B\Γ (⋃j<i Aj)).
We construct a semi-matching S̃ = S1 ∪S2 . . . as follows. Firstly, match A1 to Γ (A1) in S1.

By Lemma 3, the maximal degree in S1 is at most d |A1|
|Γ (A1)|e = dα−1e.

For a general Si, we match Ai to vertices in Γ (Ai) \Γ (
⋃
j<iAj). By Lemma 3, the maximal

degree in Si is at most d |Ai|
|Γ (Ai)\Γ (

⋃
j<i Aj)|

e.
This decomposition is illustrated in Figure 3. Furthermore, it holds

|Ai|
Γ (Ai) \ Γ (

⋃
j<iAj)|

≤ |Ai+1|
Γ (Ai+1) \ Γ (

⋃
j<i+1Aj)|

,

since if this was not true, then the set Ai ∪Ai+1 would have smaller expansion in the graph
G|(A\⋃j<i Aj)×(B\Γ (⋃j<i Aj)) than Ai. This implies that deg max S̃ = deg maxS1 which in

turn is dα−1e.
ut

Fig. 3. Illustration of the graph decomposition used in the proof of Lemma 4. Here, Bi is the set Γ (Ai) \
Γ (

⋃
j<iAj). The neighborhood of Ai in G is a subset of

⋃
j≤iBi. In S, however, Ai is matched entirely to

vertices in Bi.

We prove now that an optimal semi-matching is a O(
√
n)-skeleton.

10



Lemma 5. Let G = (A,B,E) with n = |A|, and let S = semi(A,B,E). Then:

∀A′ ⊆ A : deg max semi(A′, B, S) <
√
n (deg max semi(A′, B,E))1/2 + 1.

Proof. Let A′ ⊆ A be an arbitrary subset. Let A′′ = arg minA′′′⊆A′
|ΓS(A′′′)|
|A′′′| , and let k =

|ΓS(A′′)|. Let d = deg max semi(A′, B, S). Then by Lemma 4, d = d |A
′′|
k e. Furthermore, since

A′′ is the set of minimal expansion in S, for all b ∈ ΓS(A′′) : degS(b) = d, and hence |A′′| = kd.
Let d∗ = deg max semi(A′′, B,E). Then d∗ ≤ deg max semi(A′, B,E), since A′′ ⊆ A′. It holds

that ∀x ∈ ΓE(A′′)\ΓS(A′′) : degS(x) ≥ d−1 since otherwise there was a degree-minimizing path
of length 2 in S. Figure 4 illustrates this setting. The sum of the degrees of the vertices in ΓE(A′′)
is upper-bounded by the number of A nodes. We obtain hence (|ΓE(A′′)| − k)(d− 1) + kd ≤ n,
and this implies that |ΓE(A′′)| ≤ n−k

d−1 . Clearly, d∗ ≥ |A′′|/|ΓE(A′′)|, and using the prior upper

bound on |ΓE(A′′)| and the equality |A′′| = kd, we obtain d∗ ≥ kd(d−1)
n−k which implies that

d <
√
n
√
d∗ + 1 for any k ≥ 1. ut

A′′ ΓS(A′′)

A \A′′ ΓE(A′′) \ ΓS(A′′)

Fig. 4. Illustration of the proof of Lemma 5. All nodes b ∈ ΓS(A′′) have degS(b) = d, and all nodes b′ ∈
ΓE(A′′) \ ΓS(A′′) have degS(b) ≥ d− 1.

In order to obtain an O(n1/3)-skeleton, for each a ∈ A we add one edge to the O(
√
n)-

skeleton. Let S = semi(A,B,E) be the O(
√
n)-skeleton, let B′ = B(S) be the B nodes that

are matched in the skeleton, and for all b ∈ B′ let Ab = ΓS(b) be the set of A nodes that are
matched to b in S. Intuitively, in order to obtain a better skeleton, we have to increase the size
of the neighborhood in the skeleton of all subsets of A, and in particular of the subsets Ab for
b ∈ B′. We achieve this by adding additional optimal semi-matchings Sb = semi(Ab, B,E) for all
subsets Ab with b ∈ B′ to S, see Lemma 8. We firstly prove a technical lemma, Lemma 6, that
points out an important property of the interplay between the matchings S and the matchings
Sb for b ∈ B′. Then, we state in Lemma 7 an inequality that is an immediate consequence
of Hölder’s inequality. Lemma 7 is then used in the proof of Lemma 8, which proves that our
construction is an O(n1/3)-skeleton.

Lemma 6. Let G = (A,B,E), A′ ⊆ A, A′′ ⊆ A′, and let S = semi(A′, B,E). Furthermore, let
ΓS(A′) = {b1, . . . , bk}, and ∀bi ∈ ΓS(A′) : let A′i = ΓS(bi) ∩A′, and A′′i = ΓS(bi) ∩A′′. Then:

deg max semi(A′′, B,E)−1
∑

i:bi∈ΓS(A′′)

|A′′i |(|A′i| − 1) ≤ |A′|.
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Proof. Let S′′ = semi(A′′, B,E), and denote d = deg maxS′′. Clearly,∑
b′′∈B(S′′)

degS(b′′) ≤ |A′|. (2)

Consider any b′′ ∈ B(S′′). We bound degS(b′′) from above as follows

degS(b′′) ≥ max{|A′i| − 1 : ∃a ∈ A′′i with b′′ ∈ ΓE(a)}. (3)

Let j be such that |A′j |−1 poses the maximum of the set in the right hand side of Inequality 3.
Note that if Inequality 3 was not true, then there would be a length two degree minimizing path
in S connecting b′′ and bj . The setup is visualized in Figure 5. We bound now the right hand
side of Inequality 3 as follows

(|A′j | − 1) = max{|A′i| − 1 : ∃a ∈ A′′i with b′′ ∈ ΓE(a)}

≥
∑

a∈ΓS′′ (b′′)

1

degS′′(b
′′)

(|A′B(S(a))| − 1). (4)

We used here that |A′B(S(a))| ≤ |A
′
j | for any a ∈ ΓS′′(b′′), and |a ∈ ΓS′′(b′′)| = degS′′(b

′′).

Since d = deg maxS′′, and using Inequalities 3 and 4 we obtain

degS(b′′) ≥
∑

a∈ΓS′′ (b′′)

1

d
(|A′B(S(a))| − 1). (5)

We combine Inequalities 2 and 5, and the result follows

|A′| ≥
∑

b′′∈B(S′′)

degS(b′′) ≥
∑

b′′∈B(S′′)

∑
a∈ΓS′′ (b′′)

1

d
(|A′B(S(a))| − 1)

=
1

d

∑
A′′i

|A′′i ||A′i − 1|.

ut

In the proof of Lemma 8, we also need the following inequality.

Lemma 7. Let x1, . . . , xk ≥ 0, and let p > 0 be an integer. Then:

(
∑k

i=1 xi)
p

kp−1
≤

k∑
i=1

xpi .

Proof. This is an immediate consequence of Hölder’s inequality:

k∑
i=1

xi ≤ (
k∑
i=1

xpi )
1/pk

p−1
p .

ut

Lemma 8. Let G = (A,B,E) be a bipartite graph with n = |A|. Let S = semi(A,B,E), and
for all b ∈ B(S) : Sb = semi(ΓS(b), B,E). Then:

∀A′ ⊆ A : deg max semi(A′, B, S ∪
⋃

b∈B(S)

Sb) ≤ d2n1/3 deg max semi(A′, B,E)e.
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Fig. 5. Illustration of the proof of Lemma 6. The degree of b′′ in S is at least |A′j | − 1. Otherwise there would be
a length two degree-minimizing path between b′′ and bj .

Proof. Let A′ ⊆ A. Let S̃ = S ∪
⋃
b∈B(S) Sb. Let A′′ = arg minA′′′⊆A′

|ΓS̃(A
′′′)|

|A′′′| and let k =

|ΓS̃(A′′)|. From Lemma 4 it follows that deg max semi(A′, B, S̃) = d |A
′′|
k e. Furthermore, let

d = deg max semi(A′′, B,E). For a node b ∈ ΓS̃(A′′), let A′′b = {a ∈ A : S̃(a) = b}. For two
nodes bi, bj ∈ ΓS̃(A′′), let A′′bi,bj = {a ∈ A′′ : S(a) = bi, Sbi(a) = bj}.

We consider the cases k ≥ n1/3 and k < n1/3 separately.

1. k ≥ n1/3. Consider the semi-matching S. From Lemma 6 we obtain the condition

1/d
k∑
i=1

|A′′i |(Ai − 1) ≤ n,

and since A′′i ≤ Ai we obtain from the prior Inequality that

1/d
k∑
i=1

(|A′′i | − 1)2 < n.

Using
∑k

i=1 |A′′i | = |A′′| and Lemma 7, we obtain

1

d

1

k
(|A′′| − k)2 < n, ⇒

|A′′| <
√
ndk + k. (6)

Then, since deg max semi(A′′, B, S̃) = d |A
′′|
k e, we obtain from Inequality 6 deg max semi(A′′, B, S̃) ≤

d
√
nd√
k
e+ 1. Since k ≥ n1/3, we conclude that

deg max semi(A′′, B, S̃) ≤ n1/3
√
d+ 2.

2. k < n1/3. We consider here the two subcases |A′′| < 2dk2 and |A′′| ≥ 2dk2.

(a) |A′′| < 2dk2. Then since deg max semi(A′′, B, S̃) = d |A
′′|
k e, we conclude that

deg max semi(A′′, B, S̃) ≤ d2dke < d2dn1/3e.
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(b) |A′′| ≥ 2dk2. Let b ∈ B(S) and consider the semi-matching Sb matching A′′b to B. From
Lemma 6 and the fact that A′′b,bi ⊆ A

′
b,bi

we obtain

1

d

k∑
i=1

|A′′b,bi |(|A
′′
b,bi
| − 1) ≤ |Ab|,(

1

d

k∑
i=1

|A′′b,bi |
2

)
− 1

d
|A′′b | ≤ |Ab|.

By Lemma 7, we obtain
1

dk
|A′′b |2 −

1

d
|A′′b | ≤ |Ab|. (7)

Consider now the semi-matching S. From Lemma 6 we obtain the condition

1

d

k∑
i=1

|A′′i |(|Ai| − 1) ≤ n. (8)

Using Inequality 7 in Inequality 8 and simplifying, we obtain

1

d

k∑
i=1

|A′′i |
(

(
1

dk
|A′′i |2 −

1

d
|A′′i |)− 1

)
≤ n,

1

d2k

k∑
i=1

|A′′i |3 −
k∑
i=1

1

d2
|A′′i |2 −

k∑
i=1

1

d
|A′′i | ≤ n,

1

d2k3
|A′′|3 − 1

d2k
|A′′|2︸ ︷︷ ︸
I

− 1

d
|A′′|︸ ︷︷ ︸
II

≤ n. (9)

Since |A′′| ≥ 2dk2, we can upper bound the terms I and II from Inequality 9 as follows

1

2d3k3
|A′′|3 ≥ I, and (10)

1

4d3k4
|A′′|3 ≥ II. (11)

Using bounds 10 and 11 in Inequality 9 and simplifying, we obtain

1

4d2k3
|A′′|3 < n,⇒

|A′′| < 22/3n1/3d2/3k. (12)

Since deg max semi(A′′, B, S̃) = d |A
′′|
k e, and using Inequality 12, we conclude that

deg max semi(A′′, B, S̃) ≤ d22/3n1/3d2/3e.

Combining the bounds from cases 1, 2a and 2b, the result follows. ut

We mention that there are graphs for which adding further semi-matchings Sb1b2 = semi(Ab1b2 , B,E)
to our O(n1/3)-skeleton, where Ab1b2 is the set of A vertices whose neighborhood in our O(n1/3)-
skeleton is the set {b1, b2}, does not help to improve the quality of the skeleton. Before stating
our main theorem, Theorem 3, we show in Lemma 9 that if Alice sends a c-matching skeleton,
then Bob can compute a c+ 1 approximation. Then, we state our main theorem.
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Lemma 9. Let G = (A,B,E) be a bipartite graph and let E1, E2 be a partition of the edge set
E. Furthermore, let E′1 ⊆ E1 such that for any A′ ⊆ A(E1):

deg max semi(A(E1), B,E
′
1) ≤ cdeg max semi(A(E1), B,E

′
1).

Then:

deg max semi(A,B,E′1 ∪ E2) ≤ (c+ 1) deg max semi(A,B,E).

Proof. We construct a semi-matching S between A and B with edges from E′1∪E2 explicitly and
we show that deg maxS ≤ (c+ 1) deg max semi(A,B,E). Since deg max semi(A,B,E′1 ∪ E2) ≤
deg maxS, the result then follows.

Let S2 = semi(A,B,E) ∩ E2, and let S1 = semi(A \ A(S2), B,E1). Then S = S1 ∪ S2.
Clearly, deg maxS2 ≤ deg max semi(A,B,E). Furthermore, by the premise of the lemma we
obtain deg maxS1 ≤ cdeg max semi(A,B,E). Since deg maxS ≤ deg maxS1 + deg maxS2 and
deg maxS1 + deg maxS2 ≤ (c+ 1) deg max(A,B,E) the result follows. ut

Theorem 3. Let G = (A,B,E) with n = |A| and m = |B|. Then there are one-way two-party
deterministic communication protocols for Semi-Matching, one with

1. message size n logm and approximation factor n1/2 + 2, and another one with

2. message size 2n logm and approximation factor 2n1/3 + 2.

Proof. Alice computes the skeletons as in Lemma 5 or in Lemma 8 and sends them to Bob. Bob
computes an optimal semi-matching considering his edges and the edges received from Alice.
By Lemma 9 the results follow. ut

4.2 Lower Bounds for Semi-matching-skeletons

We present now a lower bound that shows that the skeletons of the previous subsection are
essentially optimal. For an integer c, we consider the complete bipartite graph Kn,m where m
is a carefully chosen value depending on c and n. We show in Lemma 10 that for any subset of
edges E′ of Kn,m such that for all a ∈ A : degE′(a) ≤ c, there is a subset A′ ⊆ A with |A′| ≤ m
such that an optimal semi-matching that matches A′ using edges in E′ has a maximal degree

of Ω(n
1
c+1 ). Note that since |A′| ≤ m, there is a matching in Kn,m that matches all A′ vertices.

This implies that such an E′ is only an Ω(n
1
c+1 )-skeleton.

Lemma 10. Let G = (A,B,E) be the complete bipartite graph with |A| = n and |B| =

(c!)
1
c+1n

1
c+1 for an integer c. Let E′ ⊆ E be an arbitrary subset such that ∀a ∈ A : degE′(a) ≤ c.

Then there exists an A′ ⊆ A with |A′| ≤ |B| and

deg max semi(A′, B,E′) ≥ (c!)
1
c+1

c
n

1
c+1 > e−1.3n

1
c+1 . (13)

Proof. Let E′ ⊆ E be as in the statement of the lemma. Let E′′ be an arbitrary superset of
E′ such that ∀a ∈ A : degE′′(a) = c. Since deg max semi(A′, B,E′′) ≤ deg max semi(A′, B,E′)
it is enough to show the lemma for E′′. Denote by A{i1,...,ic} the subset of A such that ∀a ∈
A{i1,...,ic} : ΓE′′(a) = {bi1 , . . . , bic}. Then

|A| =
∑

Ai:i={i1,...,ic} and
{bi1 ,...,bic} is a c-subset of B

|Ai|, (14)
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since ∀a ∈ A : degE′′(a) = c. Suppose for the sake of a contradiction that Inequality 13 is not

true. Then for all Ai on the right side of Inequality 14 we have |Ai| < (c!)
1
c+1n

1
c+1 . There are at

most
(|B|
c

)
such sets. This implies that:

|A| ≤
(
|B|
c

)
· (c!)

1
c+1n

1
c+1 <

|B|c

c!
(c!)

1
c+1n

1
c+1 <

(c!)
c
c+1n

c
c+1

c!
(c!)

1
c+1n

1
c+1 = n.

This is a contradiction to the fact that |A| ≥ n and proves the first inequality in Inequality 13.
To proof the second, we apply Stirling’s formula, and we obtain

(c!)
1
c+1

c
>

(
√

2πcc+1/2e−c)
1
c+1

c
= e

1/2 ln(2π)−1/2 ln(c)−c
c+1 .

It can be shown that for any c > 0, 1/2 ln(2π)−1/2 ln(c)−c
c+1 > −1.3 which proves the result. ut

We extend Lemma 10 now to edge sets of bounded cardinality without restriction on the
maximal degree of an A node, and we state then our lower-bound result in Theorem 4.

Lemma 11. Let c > 0 be an integer, let ε > 0 be a constant, and let c′ = (1 + ε)c. Let

G = (A,B,E) be the complete bipartite graph with |A| = n and |B| = (c′!)
1

c′+1 ( ε
1+ε · n)

1
c′+1 . Let

E′ ⊆ E be an arbitrary subset of size at most c · n. Then there exists an A′ ⊆ A with |A′| ≤ |B|
and

deg max semi(A′, B,E′) > e−1.3
(

ε

1 + ε
n

) 1
c′+1

. (15)

Proof. Split A into A> and A≤ such that for all a ∈ A> : degS′(a) > c′, and for all a ∈ A≤ :
degS′(a) ≤ c′. Then |A>|c′ + |A≤| ≤ cn which implies that |A≤| ≥ ε

1+εn. Let G′ = G|A≤×B.
Then by Lemma 10 applied on G′ there is a subset A′ ⊆ A≤ with |A′| ≤ |B| such that

deg max semi(A′, B,E′|A≤×B) > e−1.3|A≤|
1

c′+1 ,

and since deg max semi(A′, B,E′|A≤×B) = deg max semi(A′, B,E′), the result follows. ut

Theorem 4. Let c > 0 be an integer. Then for all ε > 0, an O(n
1

(1+ε)c+1 )-semi-matching
skeleton requires at least cn edges.

4.3 One-way Two-party Communication Lower Bound

To prove a lower bound on the deterministic communication complexity we define a family of
bipartite graphs. For given integers n and m, let G1 = {G1(x)|x ∈ {0, 1}n×m} be defined as
follows. Let B0 = {b01, . . . , b0m}, B1 = {b11, . . . , b1m} and A = {a1, . . . , an}. Given x ∈ {0, 1}n×m,
let Ex = {(ai, b

xi,j
j ) | 1 ≤ i ≤ n, 1 ≤ j ≤ m} (i.e, the entries of the matrix x determine if there is

an edge (ai, b
0
j ) or an edge (ai, b

1
j ) for all i, j). Then, we define G1(x) = (A,B0 ∪B1, Ex). From

Lemma 11 we immediately obtain the following lemma.

Lemma 12. Let c > 0 be an integer, let ε > 0 be a constant, and let c′ = (1 + ε)c. Let n be a

sufficiently large integer, and let m = (c′!)
1

c′+1 ( ε
1+ε · n)

1
c′+1 . Let G = (A,B0 ∪B1, E) be a graph

G ∈ G1, and let E′ ⊆ E be such that |E′| ≤ cn. Then there exists a set of nodes A′ ⊆ A with

|A′| ≤ m and deg max semi(A′, B0 ∪B1, E
′) > 1/2e−1.3( ε

1+εn)
1

c′+1 .
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We further define a second family of bipartite graphs G2 on the sets of nodes A and C,
|A| = |C| = n. For a set A′ ⊆ A we define the graph G2(A

′) to be an arbitrary matching from
all the nodes of A′ to nodes of C. The family of graphs G2 is defined as G2 = {G2(A

′)|A′ ⊆ A}.
Our lower bound will be proved using a family of graphs G. Slightly abusing notation,

the family of graphs G is defined as G = G1 × G2. That is, the graphs in G are all graphs
G = (A,B0 ∪ B1 ∪ C,E1 ∪ E2) built from a graph G1 = (A,B0 ∪ B1, E1) ∈ G1 and a graph
G2 = (A,C,E1) ∈ G2 where the set of nodes A is the same for G1 and G2. We now prove our
lower bound.

Theorem 5. Let c > 0 be an integer and let ε > 0 be an arbitrarily small constant. Let P
be a β-approximation one-way two-party protocol for semi matching that has communication

complexity at most α. If β ≤ γ = 1/2 1
e1.3

( ε
ε+1n)

1
(1+ε)c+1 , then α > cn, where n is the number of

nodes to be matched.

Proof. Take n sufficiently large. Let c′ = (1 + ε)c and let m = (c′!)
1

c′+1 ( ε
1+ε ·n)

1
c′+1 . We consider

as possible inputs the graphs in G (for n and m). Given an input graph, Alice will get as input
all edges between A and B0 ∪B1 (i.e., a graph in G1) and Bob will get all edges between A and
C (i.e., a graph in G2)

Assume towards a contradiction that the communication complexity of P is at most cn.
Then there is a set of graphs G∗ ⊆ G1, |G∗| ≥ 2nm−cn, such that on all graphs in G∗ Alice sends
the same message to Bob. Consider the set X∗ ⊆ {0, 1}n×m such that G∗ = {G1(x) |x ∈ X∗},
Since there is a one-to-one correspondence between G∗ and X∗, |X∗| ≥ 2nm−cn, and there are
at most cn entries which are constant over all matrices in X∗, otherwise |X∗| < 2nm−cn. This
means that there are at most cn edges that exist in all graphs in G∗. Let E′ be the set of all
these edges.

Consider now the graph G = (A,B0 ∪B1, E
′). Since |E′| ≤ cn, by Lemma 12 there exists a

set A′ ⊆ A with |A′| ≤ m and deg max semi(A′, B0 ∪B1, E
′) > γ. We now define G∗2 ∈ G2 to be

G∗2 = G2(A \A′).
Now observe that on any of G ∈ G∗ × {G∗2} ⊆ G, P gives the same output semi-matching

S. S can include, as edges matching the nodes in A′, only edges from E′, since for any other
edge there exists an input in G∗ × {G∗2} in which that edge does not exist and P would not be
correct on that input. It follows (by Lemma 12) that the maximum degree of S is greater than
γ. On the other hand, since |A′| ≤ m, there is a perfect matching in any graph in G∗ × {G∗2}.
The approximation ratio of P is therefore greater than γ. A contradiction. ut

Finally, the previous communication lower bound immediately implies a lower bound on the
space of every one-pass streaming algorithm.

Corollary 1. For an integer c and an arbitrary small constant ε > 0, every one-pass streaming

algorithm for the semi-matching problem with approximation factor O(n
1

(1+ε)c+1 ) uses space
Ω(cn).

5 The Structure of Semi-Matchings

We now present our results concerning the structure of semi-matchings. Firstly, we show in
Lemma 13 that a semi-matching that does not admit length 2 degree-minimizing paths can
be decomposed into maximal matchings. In Lemma 14, we show that if a semi-matching does
not admit any degree-minimizing paths, then there is a similar decomposition into maximum
matchings.
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Lemma 13 is then used to prove that semi-matchings that do not admit length 2 degree-
minimizing paths approximate optimal semi-matchings within a factor dlog(n + 1)e. To this
end, we firstly show in Lemma 15 that the first d∗ maximal matchings of the decomposition of
such a semi-matching match at least 1/2 of the A vertices, where d∗ is the maximal degree of
an optimal semi-matching. In Theorem 6, we then apply this result dlog(n+ 1)e times, showing
that the maximal degree of a semi-matching that does not admit length 2 degree-minimizing
paths is at most dlog(n+ 1)e times the maximal degree of an optimal semi-matching.

Lemma 13. Let S = semi2(A,B,E) be a semi-matching in G that does not admit a length
2 degree-minimizing path, and let d = deg maxS. Then S can be partitioned into d matchings
M1, . . . ,Md such that

∀i : Mi is a maximal matching in G|Ai×Bi ,

where A1 = A, B1 = B, and for i > 1 : Ai = A \
⋃

1≤j<iA(Mj) and Bi = B(Mj−1).

Proof. The matchings M1, . . . ,Md can be obtained as follows. For each b ∈ B(S), label its
incident edges in S by 1, 2, . . . ,degS(b) arbitrarily. Matching Mi is then the subset of edges of
S that are labeled by i.

We prove the statement by contradiction. Let i be the smallest index such that Mi is not
maximal in G|Ai×Bi . Then there exists an edge e = ab ∈ E with a ∈ Ai and b ∈ Bi such that
Mi∪{e} is a matching in G|Ai×Bi . Note that degS(b) < i since b is not matched in Mi. Consider
now the edge e′ ∈ S matching the node a to b′ in S. Since a ∈ Ai and a is not matched in Mi,
e′ is in a matching Mj with j > i and hence degS(b′) ≥ j > i. Then P = (b′, a, b) is a length 2
degree-minimizing path since degS(b′) > i and degS(b) < i contradicting our assumption. ut

Lemma 14. Let S∗ = semi(A,B,E) be a semi-matching in G that does not admit degree-
minimizing paths of any length, and let d∗ = deg maxS∗. Then S∗ can be partitioned into d∗

matchings M1, . . . ,Md∗ such that

∀i : Mi is a maximum matching in G|Ai×Bi ,

where A1 = A, B1 = B, and for i > 1 : Ai = A \
⋃

1≤j<iA(Mj) and Bi = B(Mj−1).

Proof. The proof is similar to the proof of Lemma 13. The matchings M1, . . . ,Md∗ can be
obtained as follows. For each b ∈ B(S), label its incident edges in S by 1, 2, . . . ,degS∗(b)
arbitrarily. Matching Mi is then the subset of edges of S that are labeled by i.

We prove the statement by contradiction. Let i be the smallest index such that Mi is not
a maximum matching in G|Ai×Bi . Then there exists an augmenting path A = (a1, b1, . . . al, bl)
such that for all j < l : (aj+1, bj) ∈ Mi and ∀i : (ai, bi) /∈ Mi. Let b′ be the match of a1 in S∗.
Since a1 ∈ Al, degS∗(b

′) > i. Since bl ∈ Bi and bl is not matched in M∗i , degS∗(bl) < i. Then
P = (b′, a1, b1, . . . , al, bl) is a degree-minimizing path contradicting our assumption. ut

We firstly prove a lemma that is required in the proof of Theorem 6.

Lemma 15. Let A′ ⊆ A, let S = semi2(A
′, B,E) be a semi-matching in G|A′×B that does not

admit length 2 degree-minimizing paths and let S∗ = semi(A′, B,E) be an optimal semi-matching
in G|A′×B. Then ∃A′′ ⊆ A′ with |A′′| ≥ |A′|/2 such that

1. deg maxS|A′′×B ≤ deg maxS∗,
2. S|A′\A′′×B is a semi-matching of G|A′\A′′×B and it does not admit length 2 degree-minimizing

paths.
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Proof. Let d = deg maxS and let d∗ = deg maxS∗. Partition S into matchings M1, . . . ,Md as
in Lemma 13. We will show that A′′ =

⋃
i≤d∗ A(Mi) fulfills Item 1 and Item 2 of the Lemma.

We have to show that |A′′| ≥ |A′|/2. Let A′′′ = A′ \ A′′ and let (a, b) ∈ S∗ be an edge such
that a ∈ A′′′. We argue now, that degS(b) ≥ d∗.

Suppose for the sake of a contradiction that degS(b) < d∗. Then (a, b) could have been
added to some matching Mj with j ≤ d∗. Since by Lemma 13 all Mi are maximal, we obtain a
contradiction and this proves that degS(b) ≥ d∗.

This implies further that |A′′| ≥ d∗ · |B(S∗|A′′′×B)| ≥ d∗ · |A′′′|/d∗ = |A′′′|, where the last
inequality comes from the fact that a node b ∈ B(S∗|A′′′×B) has at most d∗ edges incident in
S∗. Since A′′′ and A′′ form a partition of A′, we obtain |A′′| ≥ |A′|/2.

Since A′′ = A(S|A′′×B) and S|A′′×B is a set of d∗ matchings, Item 1 is trivially true. Con-
cerning Item 2, note that if S|A′\A′′×B admitted a length 2 degree-minimizing path, then that
path would also be a degree-minimizing path in S contradicting the premise that S does not
admit a length 2 degree-minimizing path. ut

Theorem 6. Let S = semi2(A,B,E) be a semi-matching of G that does not admit a length 2
degree-minimizing path. Let S∗ be an optimal semi-matching in G. Then:

deg maxS ≤ dlog(n+ 1)edeg maxS∗.

Proof. We construct a sequence of vertex sets (Ai) and a sequence of semi-matchings (Si) as
follows. Let A1 = A, and let S1 = S. For any i, Si will be a semi-matching in the graph G|Ai×B
and it will not admit length 2 degree-minimizing paths.

We construct Ai+1 and Si+1 from Ai and Si as follows. By Item 1 of Lemma 15, there is
a subset A′i ⊆ Ai of size at least |Ai|/ such that Si|A′i×B has maximal degree at most d∗. Let
Ai+1 = Ai \ A′i, and let Si+1 = Si|Ai+1×B. By Item 2 of Lemma 15, Si+1 does not comprise
length 2 degree-minimizing paths in the graph G|Ai+1×B. We stop this construction at iteration
l when A′l = Al occurs.

Note that S =
⋃
i Si|A′i×B and hence deg maxS ≤

∑l
i=1 deg maxSi|A′i×B ≤ l · d

∗. It remains
to argue that l ≤ log(n) + 1. Since |A′i| ≥ |Ai|/2 and Ai+1 = Ai \ A′i, we have |Ai+1| ≤ |Ai|/2.
Since |A1| = n, we have |Ai| ≤ (12)i−1n. Then, |Adlog(n+1)e| < 1 which implies that |Adlog(n+1)e| =
0. We obtain hence l ≤ dlog(n+ 1)e, which proves the theorem. ut

6 Conclusion and Open Problems

In this paper, we presented a one-pass streaming algorithm for the semi-matching problem that
computes a O(n(1−ε)/2)-approximation using Õ(n1+ε) space, for any 0 ≤ ε ≤ 1, and we com-
plemented this algorithm with results in the related one-way two-party communication setting.
Specifically, we showed that any one-way two-party communication protocol with approximation

factor O(n
1

(1+ε)c+1 ) uses a message of size Ω(cn) bits, for arbitrary small ε > 0. Furthermore, we
showed that there are essentially tight one-way two-party protocols that compute an O(n1/2)-
approximation and an O(n1/3)-approximation communicating n and 2n edges, respectively. Last,
we provided structural results on optimal semi-matchings and on semi-matchings that do not
admit length two degree-minimizing paths that establish new ties between the semi-matching
problem and the matching problem.

We leave the problem in an interesting state. For ε = 0, our streaming algorithm runs in
the semi-streaming model (i.e., it uses Õ(n) space) and computes a O(

√
n)-approximation, and

we are interested in whether this is best possible. Suppose it is. Then, our one-way two-party
communication protocol with approximation factor O(n1/3) and communication complexity
Õ(n) shows that in order to prove a space lower bound in the one-way communication setting

19



that matches the space required by our streaming algorithm, one-way protocols with at least
three parties have to be considered. Suppose it is not. As our one-way two-party communication
protocol with approximation factor O(n1/3) only stores 2n edges and is essentially best possible,
it provides a characterization of optimal edges that a streaming algorithm should retain. This
characterization may inspire streaming algorithms with improved space complexity.

Determining the precise trade-off between space complexity and approximation factor for
one-pass streaming algorithms is the most intriguing open question.
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