
The Minimum Vulnerability Problem on Graphs

Yusuke Aoki1, Bjarni V. Halldórsson2, Magnús M. Halldórsson2⋆,
Takehiro Ito1⋆⋆, Christian Konrad2, and Xiao Zhou1

1 Graduate School of Information Sciences, Tohoku University, Japan.
{y.aoki, takehiro, zhou}@ecei.tohoku.ac.jp

2 School of Computer Science, Reykjav́ık University, Iceland.
{mmh, bjarnivh, christiank}@ru.is

Abstract. Suppose that each edge e of an undirected graph G is asso-
ciated with three nonnegative integers cost(e), vul(e) and cap(e), called
the cost, vulnerability and capacity of e, respectively. Then, we consider
the problem of finding k paths in G between two prescribed vertices with
the minimum total cost; each edge e can be shared without cost by at
most vul(e) paths, and can be shared by more than vul(e) paths if we pay
cost(e), but cannot be shared by more than cap(e) paths even if we pay
the cost of e. This problem generalizes the disjoint path problem, the
minimum shared edges problem and the minimum edge cost flow prob-
lem for undirected graphs, and it is known to be NP-hard. In this paper,
we study the problem from the viewpoint of specific graph classes, and
give three results. We first show that the problem remains NP-hard even
for bipartite series-parallel graphs and for threshold graphs. We then
give a pseudo-polynomial-time algorithm for bounded treewidth graphs.
Finally, we give a fixed-parameter algorithm for chordal graphs when
parameterized by the number k of required paths.

1 Introduction

In this paper, we study the minimum vulnerability problem on undirected graphs,
originally introduced by Assadi et al. [1]. This problem has strong relationships
to several well-known problems such as the disjoint path problem [6], the mini-
mum shared edges problem [1, 9, 10] and the minimum edge cost flow problem [6,
8]. It is defined as follows.

Let G = (V,E) be an undirected and connected graph; we sometimes denote
by V (G) and E(G) the vertex set and edge set of G, respectively. Suppose that
each edge e ∈ E(G) is associated with three nonnegative integers cost(e), vul(e)
and cap(e), called the cost, vulnerability and capacity of e, respectively. (See
Fig. 1(a) as an example.) Let P be a multi-set of paths in G. Then, for each

⋆ Magnús M. Halldórsson and Christian Konrad are supported by Icelandic Research
Fund grant-of-excellence no. 120032011.

⋆⋆ This work is partially supported by JSPS KAKENHI 25106504 and 25330003.

(3, 1, 5)

v1

v2

v3

v4

v5

v6

vtvs

(3, 5, 5)

(1, 5, 5)

(3, 1, 2)

(4, 2, 5)

(2, 1, 2)

(4, 0, 5)

(3, 2, 3)

(2, 1, 4)

(a)

v1

v2

v3

v4

v5

v6

vtvs

2

2

2

2

2

2

1 1 1

(b)

v1

v2

v3

v4

v5

v6

vtvs

5

5

5

(c)

Fig. 1. (a) An instance for the minimum vulnerability problem, where the triple at-
tached to each edge e represents the three weights (cost(e), vul(e), cap(e)). (b) A feasible
solution for k = 5 such that λ(P) = 12, where the bold number attached to each edge e
represents µ(e,P) and we have to pay the cost for the (red) thick edges. (c) An optimal
solution P∗ for k = 5, where λ(P∗) = OPT5(G) = 7.

edge e ∈ E(G), we define µ(e,P) to be the number of paths in P that contain
e, and define the penalty λ(e,P) of e on P as follows:

λ(e,P) =


0 if 0 ≤ µ(e,P) ≤ vul(e);

cost(e) if vul(e) < µ(e,P) ≤ cap(e);

+∞ otherwise,

that is, each edge e can be shared without cost by at most vul(e) paths in P,
and cannot be shared by more than cap(e) paths even if we pay the cost of e.
Then, the penalty of P, denoted by λ(P), is defined as λ(P) =

∑
e∈E(G) λ(e,P).

See Fig. 1(b) and (c) for an example.
Given an edge-weighted graph G with two specified vertices vs, vt ∈ V (G)

and a nonnegative integer k, the minimum vulnerability problem is to find a set
P consisting of exactly k (not necessarily distinct) paths in G between vs and
vt, called vsvt-paths in short, such that the penalty λ(P) of P is minimized.
We denote by OPTk(G, vs, vt), in short by OPTk(G), the optimal value of the
minimum vulnerability problem for a given graph G.

This problem arises in the context of communication network design, reliable
multicast communications, and distributed communication protocols [1, 9]. For
example, consider the data transfer of some important data from a server vs to
another one vt via a computer network formulated as a graph G. To avoid the
attack of hackers, we first divide the data into k smaller chunks of data, and we
wish to send them along disjoint paths in G. If G does not have k disjoint vsvt-
paths, then some data must share edges (i.e., links in the network); assume that
links use different security protocols, and hence they have different capacities,
vulnerabilities and costs to be shared. Thus, the minimum vulnerability problem

2

formulates this situation, and an optimal solution provides a way to send the
data at minimum cost while satisfying given security requirements.

1.1 Known and related results

The minimum vulnerability problem was originally defined on digraphs (i.e.,
directed graphs) [1], in which we wish to find k directed paths from vs to vt.
The problem on digraphs generalizes the minimum shared edges problem [1, 9,
10] and the minimum edge cost flow problem [6, 8] as follows: (In the following,
we denote by n the number of vertices in a graph G, and by m the number of
edges or arcs in G.)

• The minimum shared edges problem:
This problem corresponds to the minimum vulnerability problem on digraphs

restricted to the case where cost(e) = 1, vul(e) = 1 and cap(e) = k for all arcs e
in a given digraph. The problem is known to be NP-hard [9], and even hard to

approximate within a factor of 2log
1−ε

n for any constant ε > 0 [9]. On the other
hand, Assadi et al. [1] showed that the minimum shared edges problem can be

approximated in polynomial time within a factor of min{n 3
4 ,m

1
2 }, or a factor of

⌊k/2⌋.
Furthermore, there exists a pseudo-polynomial-time algorithm for the mini-

mum shared edges problem when restricted to undirected graphsG with bounded

treewidth [10]. Its running time is O
(
n(k+1)2

(t(t+1)/2)

+n(k+1)(t+4)(2t+8)
)
, where

t is the treewidth of G. (The definition of treewidth will be given in Section 3.)

• The minimum edge cost flow problem:
This problem corresponds to the minimum vulnerability problem on digraphs

restricted to the case where vul(e) = 0 for all arcs e in a given digraph. This
problem is known to be strongly NP-hard even for bipartite digraphs [8], and

hard even to approximate within a factor of 2log
1−ε

n for any constant ε > 0 [5].
The minimum edge cost flow problem remains NP-hard even for series-

parallel digraphs [8], but it admits a fully polynomial-time approximation scheme
(FPTAS) for series-parallel digraphs [8].

The minimum vulnerability problem.
We now explain known results for our problem. Since the minimum vulnera-

bility problem on digraphs is a generalization of the minimum shared edges prob-
lem and the minimum edge cost flow problem, all hardness results obtained for
the latter two problems hold for the problem on digraphs, too. Furthermore, the
strong NP-hardness proof given in [8] can easily be extended to bipartite undi-
rected graphs, and hence the minimum vulnerability problem remains strongly
NP-hard even for bipartite undirected graphs.

However, this relation does not hold in the other direction, that is, algorithms
obtained for the two problems above do not always work for the minimum vul-
nerability problem even on undirected graphs. Thus, Assadi et al. [1] developed
an O

(
n3m2(k−1)

)
-time algorithm which exactly solves the minimum vulnerabil-

ity problem on any digraph for the case where all arcs e have identical positive

3

vulnerability vul(e) = r ≥ 1. They also gave an approximation result for the
case where r ≥ 0: The best known approximation ratio is ⌊ k

r+1⌋ for general di-
graphs [1]. As far as we know, these are the only positive results known for the
minimum vulnerability problem on digraphs.

1.2 Our contributions

In this paper, we study the minimum vulnerability problem on undirected graphs
from the viewpoint of specific graph classes, and mainly give the following three
results. (We will later define the graph classes mentioned below.)

First, we show that the problem remains NP-hard for undirected graphs,
more specifically, for bipartite series-parallel graphs and for threshold graphs,
even if cap(e) ≥ 1 and vul(e) ≥ 1 holds for all edges e in a graph G. Therefore,
it is very unlikely that the problem can be solved in polynomial time even for
these very restricted graph classes. It is important that the result holds under
the condition that cap(e) ≥ 1 and vul(e) ≥ 1 holds for all edges e ∈ E(G),
because otherwise any graph can be represented as a complete graph (which is
a threshold graph) by appropriately choosing edge-costs.

Second, we give a pseudo-polynomial-time algorithm for bounded treewidth
graphs, which form a super-class of series-parallel graphs; note that our algorithm
works also for the case where cap(e) = 0 or vul(e) = 0 holds for some edges e.
Thus, this algorithm solves the minimum shared edges problem and the minimum
edge cost flow problem for undirected graphs, too. Furthermore, our algorithm
improves the best running time known for the minimum shared edges problem
on undirected graphs with bounded treewidth [10].

Third, by taking the number k of required vsvt-paths as a parameter, we
give a fixed-parameter algorithm for chordal graphs G such that vul(e) ≥ 1
holds for all edges e ∈ E(G). Note that the problem is NP-hard for chordal
graphs, because chordal graphs form a super-class of threshold graphs.

2 Computational Hardness

In this section, we clarify the complexity status of the minimum vulnerability
problem. First, we give a reduction showing that the problem is NP-hard for bi-
partite series-parallel graphs. We then show that this reduction can be extended
to an NP-hardness proof for threshold graphs.

2.1 Bipartite series-parallel graphs

Subdividing an edge (u, v) of a graph is the operation of deleting the edge (u, v)
and adding a path between u and v through several newly added vertices of
degree two. A graph G is said to be a subdivision of a graph G′ if G is obtained
from G′ by subdividing some of the edges of G′. A graph is series-parallel if
it does not contain a subdivision of a complete graph K4 on four vertices as a
subgraph [4].

4

Fig. 2. A series-parallel graph
used in the reduction.

Fig. 3. A threshold graph used in
the reduction.

Theorem 1. The minimum vulnerability problem is NP-hard for bipartite series-
parallel graphs, even if cap(e) ≥ 1 and vul(e) = r hold for all edges e ∈ E(G),
where r ≥ 1 is any fixed constant.

Proof. We give a polynomial-time reduction from Knapsack [6]. In an instance
of Knapsack, we are given a set A of n items a1, a2, . . . , an, a positive integer
weight w(ai) and a positive integer profit p(ai) for each item ai ∈ A, and two
positive integers c and d. Then, the Knapsack problem is to determine whether
there exists a subset A′ ⊆ A such that the total weight of A′ is at most c and
the total profit of A′ is at least d. This problem is known to be NP-complete [6].

We indeed prove that the following decision version of the minimum vul-
nerability problem is NP-hard: Given a graph G with two specified vertices
vs, vt ∈ V (G) associated with three nonnegative integers cost(e), vul(e) and
cap(e), and two nonnegative integers k and c, is there a set P consisting of
exactly k vsvt-paths on G such that the penalty λ(P) of P is at most c?

We first construct the corresponding graph G associated with three integers
cost(e), vul(e) and cap(e). For each item ai, 1 ≤ i ≤ n, we add a vertex vi to
V (G) corresponding to ai. Then, we add two vertices vs and vt to V (G), and
for each i, 1 ≤ i ≤ n, we add two edges (vs, vi) and (vi, vt) to E(G). We set
three integers cost(e), vul(e) and cap(e) for each edge e ∈ E(G) as follows: Let
r ≥ 1 be any fixed constant. For each i, 1 ≤ i ≤ n, we set cost((vs, vi)) =
0, cost((vi, vt)) = w(ai), vul((vs, vi)) = vul((vi, vt)) = r, and cap((vs, vi)) =
cap((vi, vt)) = r + p(ai). Clearly, G is a bipartite series-parallel graph with
cap(e) ≥ 1 and vul(e) = r for all edges e ∈ E(G), as shown in Fig. 2. Finally, we
set the number k of required vsvt-paths as k = nr + d, and the upper bound c
on the penalty as the same upper bound on the total weight (i.e., capacity) of
Knapsack. This corresponding instance can be constructed in polynomial time.

We show that a given instance of Knapsack is a yes-instance if and only
if the corresponding instance of the minimum vulnerability problem is a yes-
instance.

Suppose that a given instance of Knapsack is a yes-instance. Then, there
exists a set A′ ⊆ A such that

∑
ai∈A′ w(ai) ≤ c and

∑
ai∈A′ p(ai) ≥ d. In this

case, a feasible solution of the minimum vulnerability problem can be obtained by
the following steps. First, for each vertex vi, 1 ≤ i ≤ n, we choose the number r

5

of vsvt-paths that pass through two edges (vs, vi) and (vi, vt). Since the threshold
for each edge in E(G) is set to r, there is no penalty for these nr paths. Then,
for each item ai ∈ A′, we additionally choose the number p(ai) of vsvt-paths via
the corresponding vertex vi, and pay the penalty for each of the edges (vs, vi)
and (vi, vt). Thus, the total penalty is

∑
ai∈A′{cost((vs, vi)) + cost((vi, vt))} =∑

ai∈A′ w(ai) ≤ c. Since
∑

ai∈A′ p(ai) ≥ d, the total number of chosen vsvt-paths
is at least nr+ d = k. Therefore, the chosen vsvt-paths form a feasible solution,
and hence the corresponding instance of the minimum vulnerability problem is
a yes-instance.

Conversely, suppose that the corresponding instance of the minimum vul-
nerability problem is a yes-instance. Then, there exists a set P consisting of
k = nr + d of vsvt-paths on G such that the penalty λ(P) of P is at most c.
Let B ⊆ V (G) be the set of all vertices vi in G such that the edges (vs, vi) and
(vi, vt) incident to vi are passed through by more than r paths in P. Namely, we
have to pay the penalties for the edges (vs, vi) and (vi, vt) if and only if vi ∈ B.
Let A′ be the set of all items in A that correspond to the vertices in B. Then,
we clearly have

∑
ai∈A′ w(ai) =

∑
vi∈B{cost((vs, vi))+ cost((vi, vt))}, and hence∑

ai∈A′ w(ai) ≤ c. Since we pay the penalties for the edges (vs, vi) and (vi, vt)
such that vi ∈ B, the total number of vsvt-paths passing through these edges
is more than

∑
vi∈B vul((vs, vi)) and at most

∑
vi∈B cap((vs, vi)). On the other

hand, for the edges (vs, vi) and (vi, vt) such that vi ̸∈ B, we do not pay the
penalties for them, and hence the total number of vsvt-paths passing through
these edges is at most

∑
vi∈V (G)\B vul((vs, vi)). Therefore, we have∑

vi∈B

cap((vs, vi)) +
∑

vi∈V (G)\B

vul((vs, vi)) ≥ |P| = nr + d.

Since cap((vs, vi)) = r + p(ai) and vul((vs, vi)) = r,∑
vi∈B

cap((vs, vi)) +
∑

vi∈V (G)\B

vul((vs, vi)) =
∑

ai∈A′

p(ai) +
∑
ai∈A

r

=
∑

ai∈A′

p(ai) + nr.

Therefore,
∑

ai∈A′ p(ai) ≥ d holds for the subset A′ of items. Thus, the set A′

is a feasible solution for the given instance of Knapsack, and hence it is a yes-
instance. ⊓⊔

2.2 Threshold graphs

A graph G is a threshold graph if there exists a real number α and a mapping
w : V (G) → R such that (x, y) ∈ E(G) if and only if w(x) + w(y) ≥ α, where R
is the set of all real numbers [4].

Theorem 2. The minimum vulnerability problem is NP-hard for threshold
graphs, even if cap(e) ≥ 1 and vul(e) = r hold for all edges e ∈ E(G), where
r ≥ 1 is any fixed constant.

6

Proof. We modify the instance constructed in the proof of Theorem 1, as follows:
Add an edge e = (vs, vt) to the graph and set cost(e) = 1, vul(e) = r and
cap(e) = r. (See Fig. 3.) Then, reset the number k of required vsvt-paths to
k = (n + 1)r + d. Clearly, the graph is a threshold graph such that cap(e) ≥ 1
and vul(e) = r ≥ 1 hold for all edges e ∈ E(G).

Note that the edge (vs, vt) can be passed through by at most r paths, and
these r paths do not cause any extra penalty. Therefore, the same arguments in
the proof of Theorem 1 establish the theorem. ⊓⊔

3 Algorithm for Bounded Treewidth Graphs

In this section, we give an algorithm for bounded treewidth graphs.
A tree-decomposition of a graph G is a pair ⟨{Xi : i ∈ VT }, T ⟩, where T =

(VT , ET) is a rooted tree, such that the following four conditions (1)–(4) hold [2]:
(1) Each Xi is a subset of V (G), and is called a bag;
(2)

∪
i∈VT

Xi = V (G);
(3) for each edge (u, v) ∈ E(G), there is at least one node i ∈ VT such that

u, v ∈ Xi; and
(4) for each vertex v ∈ V (G), the set {i ∈ VT : v ∈ Xi} induces a connected

subgraph in T .
For example, Fig. 4(b) illustrates a tree-decomposition of the graphG in Fig. 4(a).
We will refer to a node in VT in order to distinguish it from a vertex in V (G).
The width of a tree-decomposition ⟨{Xi : i ∈ VT }, T ⟩ is defined as max{|Xi|−1 :
i ∈ VT }, and the treewidth of G is the minimum t such that G has a tree-
decomposition of width t. We denote by tw(G) the treewidth of G.

Recall that the minimum vulnerability problem is NP-hard even for series-
parallel graphs (Theorem 1), which are of treewidth at most two. In this section,
we thus give a pseudo-polynomial-time algorithm for bounded treewidth graphs.

Theorem 3. Let G be a graph whose treewidth is bounded by a fixed constant t.

Then, OPTk(G) can be computed in time (k + 1)O(t
t+1)n, where n = |V (G)|.

As a proof of Theorem 3, we give such an algorithm in the remainder of this
section. Our algorithm can easily be modified to actually find k vsvt-paths on G
with the minimum penalty OPTk(G).

3.1 Nice tree-decomposition

A tree-decomposition ⟨{Xi : i ∈ VT }, T ⟩ of G is called a nice tree-decomposition
if the following conditions (5)–(10) hold [2]:
(5) |VT | = O(t2n), where n = |V (G)| and t = max{|Xi| − 1 : i ∈ VT };
(6) every node in VT has at most two children in T ;
(7) if a node i ∈ VT has two children l and r, then Xi = Xl = Xr;
(8) if a node i ∈ VT has only one child j, then

• |Xi| = |Xj |−1 and Xi ⊂ Xj (such a node i is called a forget node); or

7

1 2

4

3
6

7

5

(a) G

1 2

3
6

5

(c) Gi

i

0

3, 5, 6

3, 5, 63, 5, 63, 5, 6

3, 5 5, 6 3, 5, 6, 7

3, 6, 7

3, 6, 7

3, 7

3, 6, 7

6, 7

3, 5, 6

2, 3, 5, 6

2, 3, 6

2, 3, 62, 3, 6

2, 3, 62, 3, 6

1, 2

2, 3

2 2, 6 2, 3

3, 5, 6, 73, 5, 6, 7

3, 5, 7

5, 7

3, 6

3, 5, 6

3, 5, 6 3

3, 4

3, 63, 6

3, 6 3, 6

(b) ⟨{Xi : i ∈ VT }, T ⟩
Fig. 4. (a) Graph G, (b) a nice tree-decomposition ⟨{Xi : i ∈ VT }, T ⟩ of G, and (c) the
subgraph Gi of G for the node i ∈ VT .

• |Xi| = |Xj | + 1 and Xi ⊃ Xj (such a node i is called an introduce
node);

(9) for each edge (u, v) ∈ E(G), there is a leaf node i ∈ VT such that u, v ∈ Xi;
and

(10) the bag of every leaf node in VT contains exactly two vertices.

Figure 4(b) illustrates a nice tree-decomposition ⟨{Xi : i ∈ VT }, T ⟩ of the graph
G in Fig. 4(a) whose treewidth is three. Let t be a fixed constant. Then, for a
given graph G, there is a linear-time algorithm which either outputs tw(G) > t
or gives a nice tree-decomposition of G whose width is at most t [2].

Given a graph G, we assume without loss of generality that (vs, vt) ∈ E(G).
If (vs, vt) ̸∈ E(G), then add (vs, vt) to E(G) and set cap((vs, vt)) = 0. The
treewidth of this graph is bounded by tw(G) + 2.

Let ⟨{Xi : i ∈ VT }, T ⟩ be a nice tree-decomposition with width at most t
of a graph G. We regard the node i with Xi = {vs, vt} as the root 0 of T . For
each edge e = (u, v) ∈ E(G), since there are some leaves whose bags contain
both u and v, we arbitrarily choose one of such bags, say Xi, which is called a
representation of e and denoted by rep(e) = i.

We recursively define a vertex set Vi ⊆ V (G) and an edge set Ei ⊆ E(G) for
each node i of T , similar to the way used in [7], as follows:

(a) If i is a leaf, then let Vi = Xi and Ei = {e ∈ E(G) : rep(e) = i}; and
(b) if i is an internal node having only one child j, then let Vi = Vj ∪Xi and

Ei = Ej , where Vj and Ej are the vertex and edge sets for j, respectively;
and

8

2 2

2

1 1

v v v v v1 2 3 4 5

Fig. 5. An example of an (s,a)-path set.

(c) if i is an internal node having two children l and r, then let Vi = Vl ∪ Vr

and Ei = El ∪ Er, where Vl and El are the vertex and edge sets for l,
respectively, and Vr and Er are the vertex and edge sets for r, respectively.

Then, for each node i of T , we denote by Gi the graph with vertex set Vi and
edge set Ei and hence Gi = (Vi, Ei). In this way, for any node i with the children
l and r, there exists no edge that is contained in both Er and El.

3.2 Definitions

Let S(Xi) be the set of all permutations of the vertices in Xi, and let A(Xi)
be the set of all |Xi|-tuples of nonnegative integers at most k. A path P in Gi

joining two vertices v, v′ ∈ Xi is inner if V (P) \ {v, v′} ⊆ Vi \ Xi. For a pair
of s = (v1, v2, . . . , v|Xi|) ∈ S(Xi) and a = (a1, a2, . . . , a|Xi|−1) ∈ A(Xi), a set

P of paths in Gi is called an (s,a)-path set if |P| =
∑|Xi|−1

j=1 aj and P has
exactly aj inner vjvj+1-paths for each j, 1 ≤ j ≤ |Xi| − 1. Figure 5 illustrates
an (s,a)-path set, where s = (v1, v3, v4, v5, v2) and a = (0, 2, 3, 0). Let π(Xi)
be a set of pairs (s,a) such that s ∈ S(Xi) and a ∈ A(Xi). Then the set
π(Xi) = {(s1,a1), (s2,a2), . . . , (s|π(Xi)|,a|π(Xi)|)} is active if there exists a set
P of inner paths in Gi and a partition P1,P2, . . . ,P|π(Xi)| of P such that each Pj ,
1 ≤ j ≤ |π(Xi)|, forms an (sj ,aj)-path set. Such a set P is called a π(Xi)-path
set. Finally, for a set π(Xi), we define

λ(π(Xi)) = min{λ(P) : P is a π(Xi)-path set}

if π(Xi) is active and hence there exists a π(Xi)-path set, otherwise we let
λ(π(Xi)) = +∞.

Our algorithm computes λ(π(Xi)) for all sets π(Xi) for each bag Xi of T ,
from the leaves of T to the root 0 of T , by means of dynamic programming.
Then, OPTk(G) can be computed at the root 0 from the values λ(π(X0)), as
described in Section 3.3.

3.3 Algorithm

In this subsection, we explain how to compute all values λ(π(Xi)) for each node
i ∈ VT of T and all sets π(Xi) for Xi. More specifically, we first compute all

9

values λ(π(Xi)) for each leaf i of T , and then compute λ(π(Xi)) for each internal
node i in T . Finally, after computing all λ(π(X0)) for the root 0 of T , we compute
OPTG(k).

[1. The node i is a leaf of T .]
In this case, by the definition (10) of a nice tree-decomposition, there are

exactly two vertices v1 and v2 in Xi, and e = (v1, v2) ∈ E(G). Then, a set
π(Xi) ∈ 2S(Xi)×A(Xi) is active if and only if the following two conditions hold:

(i) |π(Xi)| = 1; and
(ii) a1 ≤ cap(e) for the pair (s,a) ∈ π(Xi) with a = (a1).

For an active set π(Xi), we let

λ(π(Xi)) =

{
0 if 0 ≤ a1 ≤ vul(e);

cost(e) if vul(e) < a1 ≤ cap(e).

For the other sets π(Xi), we let λ(π(Xi)) = +∞.

[2. The node i is an internal node.]
Since ⟨{Xi : i ∈ VT }, T ⟩ is a nice tree-decomposition of G and the node i is

an internal node, either i has two children, is a forget node, or is an introduce
node. Therefore we have the following three cases to consider.

Case 1: The node i has two children l and r.
In this case, each set of paths in Gi can be obtained by merging two sets of

paths in Gl and Gr. Therefore, a set π(Xi) ∈ 2S(Xi)×A(Xi) is active if and only if
there exist two active sets π(Xl) ∈ 2S(Xl)×A(Xl) and π(Xr) ∈ 2S(Xr)×A(Xr) such
that for each (s,a) ∈ π(Xi), there exist (sl,al) ∈ π(Xl) and (sr,ar) ∈ π(Xr)
satisfying s = sl = sr and a = al +ar, where al +ar is defined as the addition
of each element of al and ar. Then, λ(π(Xi)) = min{λ(π(Xl)) + λ(π(Xr))},
where the minimum is taken over all pairs of such active π(Xl) and π(Xr).

Case 2: The node i is a forget node.
Let j be the child of the node i, and let v be the vertex such that Xj \Xi =

{v}. Then, a set π(Xi) ∈ 2S(Xi)×A(Xi) is active if and only if there exists an
active set π(Xj) ∈ 2S(Xj)×A(Xj) such that for each (s,a) ∈ π(Xi), there exists
some pair (s′,a′) ∈ π(Xj) with s′ = (v′1, v

′
2, . . . , v

′
|Xj |) and a′ = (a′1, a

′
2, . . . ,

a′|Xj |−1) satisfying the following two conditions:

(i) s = s′ \ v, where s′ \ v is the sequence obtained from s′ by deleting v; and
(ii) a′l−1 = a′l and a = (a′1, a

′
2, . . . , a

′
l−1, a

′
l+1, . . . , a

′
|Xj |−1) for the index l such

that v′l = v in s′.
Then, λ(π(Xi)) is the minimum value of λ(π(Xj)), taken over all such active
sets π(Xj).

Case 3: The node i is an introduce node.
Let j be the child of the node i. In this case, since |Xi \Xj | = 1, let v be the

vertex in Xi \Xj . Then, a set π(Xi) ∈ 2S(Xi)×A(Xi) is active if and only if the
following two conditions hold:

10

(i) al−1 = al = 0 for each pair (s,a) ∈ π(Xi) such that s = (v1, v2, . . . , v|Xi|)
with vl = v and a = (a1, a2, . . . , a|Xi|−1); and

(ii) there exists a set π(Xj) ∈ 2S(Xj)×A(Xj) which is active such that π(Xj) =
{(s \ v,a′) | (s,a) ∈ π(Xi)}, where vl = v in s = (v1, v2, . . . , v|Xi|),
a = (a1, a2, . . . , a|Xi|−1) and a′ = (a1, a2, . . . , al−1, al+1, . . . , a|Xi|−1).

Then, λ(π(Xi)) is the minimum value of λ(π(Xj)), taken over all such active
sets π(Xj).

[3. The node i is the root of T .]

In this case, i = 0. We first compute the values λ(π(X0)) for all sets π(X0) for
X0, according to one of the three cases 2–4 above. Then, our algorithm computes
OPTk(G) from the values λ(π(X0)) for all active sets π(X0) ∈ 2S(X0)×A(X0).
Since X0 = {vs, vt}, we only need to count the number of inner paths connecting
vs and vt. Therefore, OPTk(G) = minλ(π(X0)), where the minimum is taken
over all active sets π(X0) = {(s,a)} ∈ 2S(X0)×A(X0) such that a = (k).

3.4 Running time

Recall that |Xi| ≤ t + 1 for each node i ∈ VT , where t is an upper bound on
the treewidth of G. Then, |S(Xi)| = (t + 1)! = O

(
t(t+1)

)
. Furthermore, since

A(Xi) is the set of all |Xi|-tuples of nonnegative integers at most k, we have
|A(Xi)| ≤ (k + 1)(t+1). Thus, the number of all sets π(Xi) ∈ 2S(Xi)×A(Xi) for
each node i ∈ VT can be bounded by

(
(k + 1)(t+1)

)(t+1)! ≤ (k + 1)O(t
(t+1)).

Recall that |Xi| = 2 for each leaf i ∈ VT . Then, according to the case 1
above, one can compute the value λ(π(Xi)) in O(1) time for each set π(Xi).
Therefore, the values λ(π(Xi)) for all sets π(Xi) ∈ 2S(Xi)×A(Xi) can be computed

in (k+1)O(t
(t+1)) time. By the definition (5) of a nice tree-decomposition, T has

at most O(t2n) leaves; one can thus compute λ(π(Xi)) for all leaves of T in

n(k + 1)O(t
(t+1)) time.

Similarly, for each internal node i, each of the update formulas above can

be computed in (k + 1)O(t
(t+1)) time for each set π(Xi). Therefore, the values

λ(π(Xi)) for all sets π(Xi) ∈ 2S(Xi)×A(Xi) can be computed in (k + 1)O(t
(t+1))

time for each internal node i. By the definition (5) of a nice tree-decomposition,
T has at most O(t2n) internal nodes, and hence one can compute the values

λ(π(Xi)) for all internal nodes of T in n(k + 1)O(t
(t+1)) time.

Finally, for the root 0 of T , we can compute OPTk(G) in (k+1)O(t
(t+1)) time

from the values λ(π(X0)).

In this way, our algorithm runs in n(k + 1)O(t
(t+1)) time in total. This com-

pletes the proof of Theorem 3. ⊓⊔

11

4 Parameterized Algorithm for Chordal Graphs

A graph G is chordal if every cycle in G of length at least four has a chord, which
is an edge joining non-consecutive vertices in the cycle [4].

Recall that the minimum vulnerability problem is NP-hard for threshold
graphs, which form a subclass of chordal graphs, even when vul(e) ≥ 1 and
cap(e) ≥ 1 hold for all edges e ∈ E(G) (Theorem 2). In this section, we thus give
an FPT algorithm for chordal graphs when parameterized by the number k of
required vsvt-paths.

Theorem 4. Let G be a chordal graph with n vertices and m edges such that
vul(e) ≥ 1 and cap(e) ≥ 1 hold for all edges e ∈ E(G). Then, OPTk(G) can be

computed in time m+ (k + 1)O(k
(3k+2))n.

As a proof of Theorem 4, we give such an algorithm in the remainder of this
section. If a graph G is a chordal graph, then there exists a tree-decomposition
⟨{Xi : i ∈ VT }, T ⟩ such that each bag Xi forms a clique, and such a tree-
decomposition can be found in linear time [3].

For a vertex subset V ′ of a graph G, let G[V ′] be the subgraph of G induced
by V ′. First, we prove the following two lemmas.

Lemma 1. Let G be a graph with a cut-set X such that vul(e) ≥ 1 and cap(e) ≥
1 hold for all edges e ∈ E(G). Suppose that X is a clique and |X| ≥ 3k. If
there is a connected component C in G \ X such that vs, vt ∈ V (C) ∪ X, then
OPTk(G, vs, vt) = OPTk(G

′, vs, vt), where G′ = G[V (C) ∪X].

Proof. Since G′ is a subgraph of G, we have OPTk(G, vs, vt) ≤ OPTk(G
′, vs, vt).

Therefore, it suffices to prove that OPTk(G, vs, vt) ≥ OPTk(G
′, vs, vt).

Let GX be the graph obtained from G by contracting all vertices in X into
one vertex vX . Each resulting edge (v, vX) has the same values of vulnerability,
capasity and cost as its original edge. Note that if vs ∈ X then let vs = vX , and
if vt ∈ X then let vt = vX . Clearly OPTk(G, vs, vt) ≥ OPTk(GX , vs, vt), and
hence it suffices to prove that OPTk(GX , vs, vt) ≥ OPTk(G

′, vs, vt).
Let PX be a set of k vsvt-paths as an optimal solution in GX . Then we will

construct a set P ′ of k vsvt-paths in G′ from PX such that λ(P ′) = λ(PX) as
follows. For each path P ∈ PX , there are the following two cases to consider.

Case 1: The edges in G′ corresponding to the edges on P in GX form a vsvt-path
P ′ in G′.

In this case we add the path P ′ to P ′.

Case 2: The edges in G′ corresponding to the edges on P in GX form exactly
two paths in G′; one is a vsv1-path P1 and the other is a v2vt-path P2, where
v1, v2 ∈ X.

In this case, we choose an arbitrary vertex u ∈ X which is not on any path
in P ′ so far and is not an end of some edges corresponding to the edges on
some paths in PX . Since |PX | = k, there are at most 2k edges on paths in PX

adjacent to vertices in X. Furthermore |X| ≥ 3k. Therefore, there are at least

12

|X|−2k ≥ k vertices in X which can be chosen in total. After chosen, by adding
two edges e1 = (v1, u) and e2 = (u, v2) to join P1 to P2, the resulting path P ′ is
a vsvt-path in G′, and add it to P ′. Since vul(e1) ≥ 1, cap(e1) ≥ 1, vul(e2) ≥ 1,
cap(e2) ≥ 1, and these two edges e1 and e2 are not used by another path in P ′,
we have λ(P ′) = λ(PX).

We have completed to construct a set P ′ of k vsvt-paths in G′ from PX

such that λ(P ′) = λ(PX), and hence OPTk(G
′, vs, vt) ≤ λ(P ′) = λ(PX) =

OPTk(GX , vs, vt). ⊓⊔

Lemma 2. Let G be a graph with a cut-set X such that vul(e) ≥ 1 and cap(e) ≥
1 hold for all edges e ∈ E(G). Suppose that X is a clique and |X| ≥ 3k. If there
are two connected components C1 and C2 in G \ X, then OPTk(G, vs, vt) =
OPTk(G1, vs, v)+OPTk(G2, v, vt), where v is an arbitrary vertex in X \{vs, vt},
G1 = G[V (C1) ∪X] and G2 = G[V (C2) ∪X].

Proof. Since G1 and G2 are subgraphs of G, it is trivial that OPTk(G, vs, vt) ≤
OPTk(G1, vs, v) + OPTk(G2, v, vt). Therefore, it suffices to prove that

OPTk(G, vs, vt) ≥ OPTk(G1, vs, v) + OPTk(G2, v, vt).

Let GX be the graph obtained from G by contracting all vertices in X as one
vertex vX . Each resulting edge (v, vX), v ∈ V (GX) \ {vX}, has the same values
of vulnerability, capasity and cost of its corresponding edge. Note that if vs ∈ X
then let vs = vX , and if vt ∈ X then let vt = vX . Clearly OPTk(G, vs, vt) ≥
OPTk(GX , vs, vt), and hence it suffices to prove that

OPTk(GX , vs, vt) ≥ OPTk(G1, vs, v) + OPTk(G2, v, vt).

Let PX be a set of k vsvt-paths as an optimal solution in GX . Then we will
construct a set P1 of k vsv-paths in G1, and a set P2 of k vvt-paths in G2, such
that λ(PX) = λ(P1) + λ(P2) as follows.

For each path PX ∈ PX , the edges in E(G1) ∪ E(G2) corresponding to the
edges on PX in GX form exactly two paths: One is a vsv1-path P1 in G1, and
the other is a v2vt-path P2 in G2, where v1, v2 ∈ X.

Then, we choose an arbitrary vertex u ∈ X which is not on any path in P1

so far and is not an end of some edges corresponding to the edges on some paths
in PX . Since |PX | = k, there are at most 2k edges on paths in PX adjacent to
vertices in X. Furthermore |X| ≥ 3k. Therefore there are at least |X| − 2k ≥ k
vertices in X which can be chosen in total. After chosen, by adding two edges
e1 = (v1, u) and e2 = (u, v) to join P1 to v, the resulting path P1 is a vsv-path
in G1, and add it to P1. Since vul(e1) ≥ 1, cap(e1) ≥ 1, vul(e2) ≥ 1, cap(e2) ≥ 1,
and these two edges e1 and e2 are not used by another path in P1, we do not
pay any costs on e1 and e2.

Similarly, we choose an arbitrary vertex u ∈ X which is not on any path in
P2 so far and is not an end of some edges corresponding to the edges on some
paths in PX . After chosen, by adding two edges e1 = (v, u) and e2 = (u, v2) to
join P2 to v, the resulting path P2 is a vvt-path in G2, and add it to P2. Since

13

these two edges e1 and e2 are not used by another path in P2, we do not pay
any costs on e1 and e2.

We have completed to construct two sets, P1 of k vsv-paths in G1 and P2 of
k vvt-paths in G2 from PX such that λ(P1) + λ(P2) = λ(PX), and hence

OPTk(G1, vs, v) + OPTk(G2, v, vt) ≤ λ(P1) + λ(P2)

= λ(PX)

= OPTk(G, vs, vt).

This completes the proof of Lemma 2. ⊓⊔

By using Lemmas 1 and 2, we thus have the following FPT algorithm Alg(G, vs,
vt, k) that returns OPTk(G, vs, vt) for a chordal graph G.

Algorithm 1 Alg(G, vs, vt, k)

1: let ⟨{Xi : i ∈ VT }, T ⟩ be a tree-decomposition of the chordal graph G with
treewidth t.

2: if there are all i ∈ VT such that |Xi| ≤ 3k − 1 then
3: compute OPTk(G, vs, vt) by Theorem 3 and return it;
4: else
5: /* in this case, there is a node i ∈ VT such that |Xi| ≥ 3k */
6: Let i be a node in VT such that |Xi| ≥ 3k;
7: if vs, vt ∈ V (Gi) then
8: return Alg(Gi, vs, vt, k);
9: else if vs, vt ̸∈ V (Gi) then
10: return Alg(Gi, vs, vt, k), where Gi = G[(V (G) \ V (Gi)) ∪Xi];
11: else
12: suppose without loss of generality that vs ∈ V (Gi) and vt ̸∈ V (Gi);
13: let v be an arbitrary vertex in Xi \ {vs, vt};
14: return Alg(Gi, vs, v, k) + Alg(Gi, v, vt, k);
15: end if
16: end if

We are now ready to prove Theorem 4.

Proof of Theorem 4. By Lemmas 1 and 2 and Theorem 3, Alg(G, vs, vt, k)
above correctly computes OPTk(G). Therefore, it suffices to prove the time-
complexities. Lines 4–15 can be performed in combined O(tn) time. By Theo-

rem 3, Line 2–3 can be done in (k+1)O(k(3k+2))n time. This completes the proof
of Theorem 4. ⊓⊔

14

References

1. Assadi, S., Emamjomeh-Zadeh, E., Norouzi-Fard, A., Yazdanbod, S., Zarrabi-
Zadeh, H.: The minimum vulnerability problem. In: Proc. ISAAC 2012, LNCS
7676, pp. 382–391 (2012)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Computing 25, pp. 1305–1317 (1996)

3. Boutiche, M.A., Ait Haddadène, H., Le Thi, H.A.: Maintaining graph properties
of weakly chordal graphs. Applied Mathematical Sciences 6, pp. 765–778 (2012)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey, SIAM (1999)
5. Even, G., Kortsarz, G., Slany, W.: On network design problems: fixed cost flows

and the covering steiner problem. ACM Trans. Algorithms 1, pp. 74–101 (2005)
6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)
7. Isobe, S., Zhou, X., Nishizeki, T.: A polynomial-time algorithm for finding total

colorings of partial k-trees. International J. Foundations of Computer Science 10,
pp. 171–194 (1999)

8. Krumke, S.O., Noltemeier, H., Schwarz, S., Wirth, H.-C., Ravi, R.: Flow improve-
ment and network flows with fixed costs. In: Proc. OR 1998, pp. 158–167 (1998)

9. Omran, M.T., Sack, J.-R., Zarrabi-Zadeh, H.: Finding paths with minimum shared
edges. J. Combinatorial Optimization 26, pp. 709–722 (2011)

10. Ye, Z.Q., Li, Y.M., Lu, H.Q., Zhou, X.: Finding paths with minimum shared edges
in graphs with bounded treewidth. In: Proc. FCS 2013, pp. 40–46 (2013)

15

