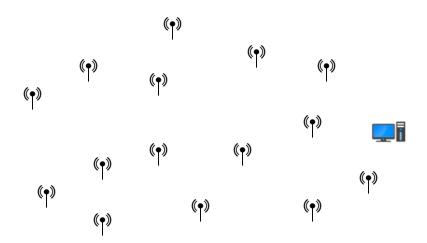
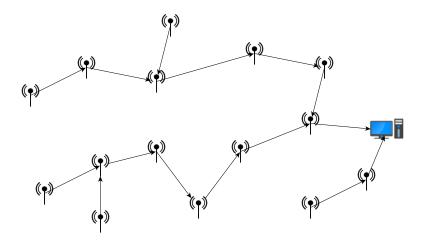
Radio Aggregation Scheduling ALGOSENSORS 2015

Rajiv Gandhi, Magnús M. Halldórsson, <u>Christian Konrad</u>, Guy Kortsarz, Hoon Oh

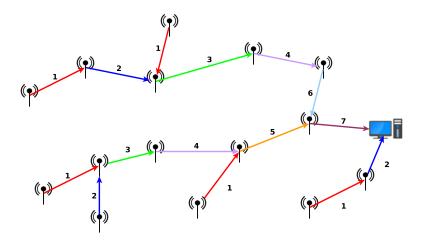
18.09.2015



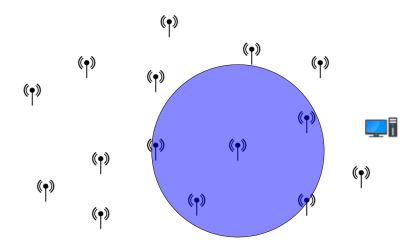
Goal: Convergecast, all nodes send data item to sink



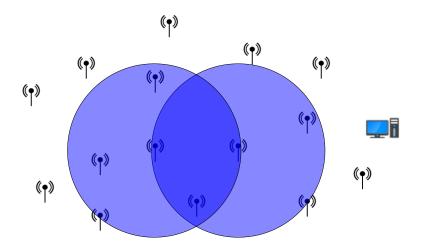
Goal: Spanning Tree



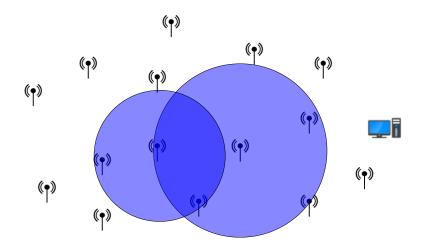
Goal: Conflict-free schedule of edge



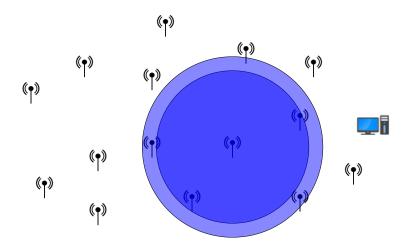
Difficulty: Limited Transmission range



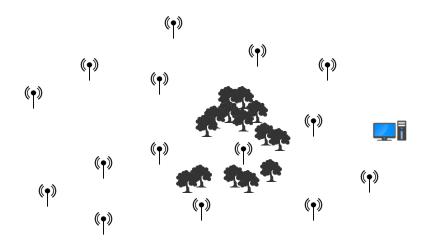
Difficulty: Interference



Difficulty: Transmission radii may vary



Difficulty: Transmission radii may be different from interference radii



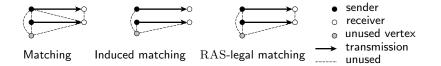
Difficulty: Obstacles

Problem Definition: Radio Aggregation Scheduling (RAS)

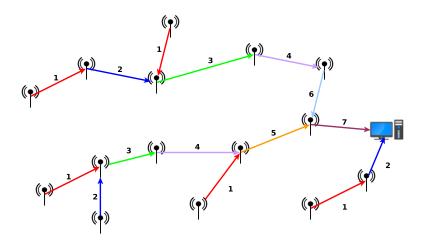
Given: Graph G = (V, E) and sink node $s \in V$

Find: Directed matchings $M_1, M_2, \ldots, M_t \subseteq E$ so that:

- **1** $\cup_i M_i$ induce an in-arborescence directed towards *s*,
- **2** The M_i are conflict-free (RAS-legal matching),
- t minimal.

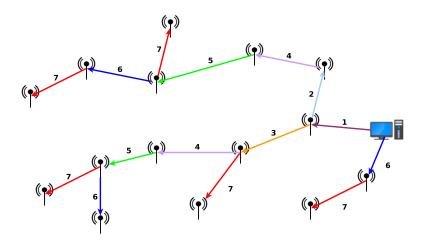


Broadcast: Reversing the Slots



Convergecast

Broadcast: Reversing the Slots



Broadcast, by reversing the slots

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS -legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Telephone model: One-to-one comm., no interference constraint

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS -legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Telephone model: One-to-one comm., no interference constraint

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS -legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Telephone model: One-to-one comm., no interference constraint

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS-legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Radio model: One-to-many comm., interference constraint holds

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS -legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Radio model: One-to-many comm., interference constraint holds

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS -legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Radio model: One-to-many comm., interference constraint holds

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS -legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Radio-unicast: One-to-one comm., interference constraint holds

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS -legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Radio-unicast: One-to-one comm., interference constraint holds

Given: Graph G = (V, E) and source node $s \in V$

Each round, RAS-legal matching between informed & uninformed nodes

- One-to-one communication (one sender to one receiver)
- Interference constraint: Successful reception at receiver if exactly one neighbor transmits

Relation to other Models

Radio-unicast: One-to-one comm., interference constraint holds

Known Results:

- Converge-cast schedule in $\Theta(\textit{diam} + \omega(G))$ on unit-disc graph
- \bullet If interference radius larger than transmission radius in unit disc graph: ${\rm O}(1)\text{-approximation}$
- 2-approximation on unit interval graphs

[Wan et al., MobiHoc 2009], [Xu et al., FOWANC 2009], [Chen et al., MSN 2005] [An et al., I. J. Comput. Appl. 2011], [Guo et al., J. of Combin. Opt. 2014]

Our Objectives

- Systematic study of RAS, starting with general graphs
- Approximation algorithms for geometrically defined graph classes

General Graphs

1. It is NP-hard to approximate RAS within factors $n^{1-\epsilon}$ or \sqrt{dn} , where \overline{d} is the average degree

2. Polynomial-time $O(\sqrt{dn})$ -approximation algorithm

Interval Graphs

3. Polynomial-time $O(\log n)$ -approximation algorithm

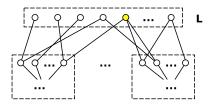
Simulating the Radio Model

A round in the radio model can be simulated in Δ (max degree) rounds in the radio-unicast model

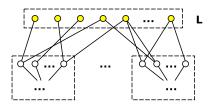
Theorem [Kowalski, Pelc, Dist. Comp. 2007] Broadcast in the radio model can be done in $O(diam + \log^2(n))$ rounds.

Corollary Broadcast in the radio-unicast model can be done in $O(\Delta(diam + \log^2(n)))$ rounds.

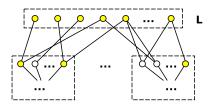
Lower Bound on OPT diam is a trivial LB. Hence: $\tilde{O}(\Delta)$ -approximation



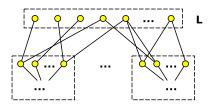
- $L \subseteq V$: nodes of degree at least $\sqrt{dn} (|L| \le \sqrt{dn})$
- Inform *L* sequentially along shortest paths from *s* in $O(diam\sqrt{d}n)$ rounds
- **③** Inform $\sqrt{dn} \cdot OPT$ centers adjacent nodes to L in $O(\sqrt{dn} \cdot OPT)$ rounds
- Inform remaining nodes by simulating radio broadcast algorithm in $O(\sqrt{dn}(diam + \log^2(n)))$ rounds



- $L \subseteq V$: nodes of degree at least $\sqrt{dn} (|L| \le \sqrt{dn})$
- Inform *L* sequentially along shortest paths from *s* in $O(diam\sqrt{d}n)$ rounds
- **③** Inform $\sqrt{dn} \cdot OPT$ centers adjacent nodes to L in $O(\sqrt{dn} \cdot OPT)$ rounds
- Inform remaining nodes by simulating radio broadcast algorithm in O(\sqrt{dn}(diam + log²(n)) rounds

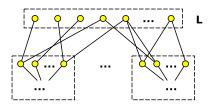


- $L \subseteq V$: nodes of degree at least $\sqrt{dn} (|L| \le \sqrt{dn})$
- Inform *L* sequentially along shortest paths from *s* in $O(diam\sqrt{d}n)$ rounds
- **③** Inform $\sqrt{dn} \cdot OPT$ centers adjacent nodes to L in $O(\sqrt{dn} \cdot OPT)$ rounds
- Inform remaining nodes by simulating radio broadcast algorithm in O(\sqrt{dn}(diam + log²(n)) rounds



- $L \subseteq V$: nodes of degree at least $\sqrt{dn} (|L| \le \sqrt{dn})$
- Inform *L* sequentially along shortest paths from *s* in $O(diam\sqrt{d}n)$ rounds
- **③** Inform $\sqrt{dn} \cdot OPT$ centers adjacent nodes to L in $O(\sqrt{dn} \cdot OPT)$ rounds
- Inform remaining nodes by simulating radio broadcast algorithm in O(\sqrt{dn}(diam + log²(n)) rounds

 $G = (V, E), \overline{d}$: average degree, informed node s, OPT known



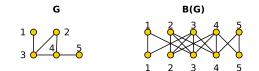
- $L \subseteq V$: nodes of degree at least $\sqrt{dn} (|L| \le \sqrt{dn})$
- **2** Inform *L* sequentially along shortest paths from *s* in $O(diam\sqrt{d}n)$ rounds
- **③** Inform $\sqrt{dn} \cdot OPT$ centers adjacent nodes to L in $O(\sqrt{dn} \cdot OPT)$ rounds
- Inform remaining nodes by simulating radio broadcast algorithm in $O(\sqrt{dn}(diam + \log^2(n)))$ rounds

Theorem $\tilde{O}(\sqrt{dn})$ -approximation for radio-unicast broadcast

Approximation Hardness for General Graphs

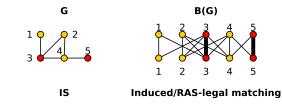
Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998] Deciding whether a graph has chromatic number $\chi(G) \leq n^{\epsilon}$ or $\chi(G) \geq n^{1-\epsilon}$ is NP-hard.

Connection IS/Coloring and RAS



Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998] Deciding whether a graph has chromatic number $\chi(G) \leq n^{\epsilon}$ or $\chi(G) \geq n^{1-\epsilon}$ is NP-hard.

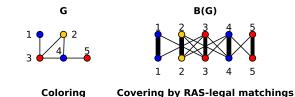
Connection IS/Coloring and RAS



Large IS in G implies large RAS-legal matching in B(G)

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998] Deciding whether a graph has chromatic number $\chi(G) \leq n^{\epsilon}$ or $\chi(G) \geq n^{1-\epsilon}$ is NP-hard.

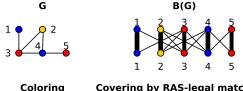
Connection IS/Coloring and RAS



c-coloring in *G* implies RAS-legal matching cover of size *c* in B(G)

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998] Deciding whether a graph has chromatic number $\chi(G) \leq n^{\epsilon}$ or $\chi(G) > n^{1-\epsilon}$ is NP-hard.

Connection IS/Coloring and RAS



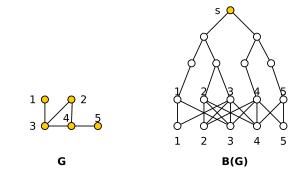
Covering by RAS-legal matchings

Converse is also true:

RAS-legal matching cover of size c in B(G) implies c-coloring in G

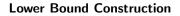
LB Construction

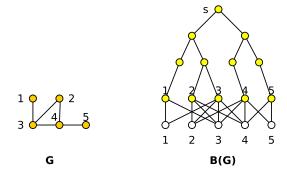
Lower Bound Construction



Binary +B(G)

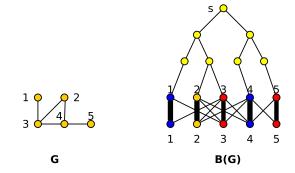
LB Construction





One bipartition of B(G) can be informed in $O(\log n)$ rounds

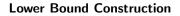
Lower Bound Construction

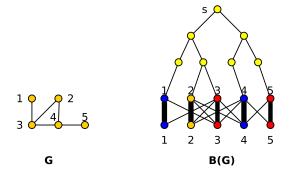


 $OPT = O(\log n) + \text{size of } RAS - \text{legal matching cover}$

OPT small \rightarrow induced RAS-legal matching cover small in $B(G) \rightarrow$ coloring with few colors in G

LB Construction





Theorem It is NP-hard to approximate *RAS* within factor $n^{1-\epsilon}$, for any $\epsilon > 0$.

Unit Interval Graphs [Guo et al., J. of Combin. Opt. 2014]

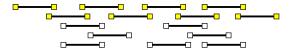
- Inform a diameter path (dominating set)
- Each color class of a coloring can be informed in O(1) rounds
- Runtime: $O(diam + \chi(G))$, diam and $\chi(G)$ are LBs $\Rightarrow O(1)$ -approx.

Interval Graphs Difficulty: claws

- Splitting into O(log n) length classes
- Informed length class informs other length class in O(OPT) rounds

Unit Interval Graphs [Guo et al., J. of Combin. Opt. 2014]

- Inform a diameter path (dominating set)
- Each color class of a coloring can be informed in O(1) rounds
- Runtime: $O(diam + \chi(G))$, diam and $\chi(G)$ are LBs $\Rightarrow O(1)$ -approx.



Interval Graphs Difficulty: claws

- Splitting into O(log n) length classes
- Informed length class informs other length class in O(OPT) rounds

Unit Interval Graphs [Guo et al., J. of Combin. Opt. 2014]

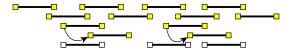
- Inform a diameter path (dominating set)
- Each color class of a coloring can be informed in O(1) rounds
- Runtime: $O(diam + \chi(G))$, diam and $\chi(G)$ are LBs $\Rightarrow O(1)$ -approx.

Interval Graphs Difficulty: claws

- Splitting into O(log n) length classes
- Informed length class informs other length class in O(OPT) rounds

Unit Interval Graphs [Guo et al., J. of Combin. Opt. 2014]

- Inform a diameter path (dominating set)
- Each color class of a coloring can be informed in O(1) rounds
- Runtime: $O(diam + \chi(G))$, diam and $\chi(G)$ are LBs $\Rightarrow O(1)$ -approx.

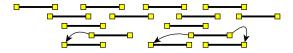


Interval Graphs Difficulty: claws

- Splitting into O(log n) length classes
- Informed length class informs other length class in O(OPT) rounds

Unit Interval Graphs [Guo et al., J. of Combin. Opt. 2014]

- Inform a diameter path (dominating set)
- Each color class of a coloring can be informed in O(1) rounds
- Runtime: $O(diam + \chi(G))$, diam and $\chi(G)$ are LBs $\Rightarrow O(1)$ -approx.



Interval Graphs Difficulty: claws

- Splitting into O(log n) length classes
- Informed length class informs other length class in O(OPT) rounds

Summary

- $\tilde{O}(\sqrt{dn})$ -approximation algorithm for *RAS* on general graphs
- $n^{1-\epsilon}$ -approximation hardness on general graphs
- O(log *n*)-approximation algorithm for *RAS* on interval graphs

Open Questions

- O(1)-approximation on interval graphs?
- Is there a const/poly-log approximation on unit disc graphs?
- Disc Graphs?

Thank you.