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Aggregation Scheduling in Radio Networks
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Goal: Convergecast, all nodes send data item to sink
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Goal: Conflict-free schedule of edge
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Aggregation Scheduling in Radio Networks
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Difficulty: Limited Transmission range
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Aggregation Scheduling in Radio Networks

((T>)

((T))

((T)) (<T))

(<T))

((T>)
CIh
(CTD) (CTDQ

Q)
L p

(CT)) (CT))

(<T>)

(<T>)

Difficulty: Obstacles

Radio Aggregation Scheduling



Radio Aggregation Scheduling

Problem Definition: Radio Aggregation Scheduling (RAS)
Given: Graph G = (V, E) and sink node s € V

Find: Directed matchings My, My, ..., M; C E so that:
@ U;M; induce an in-arborescence directed towards s,
@ The M, are conflict-free (RAS-legal matching),

© t minimal.

~——0 o—0 —0 e sender
[ S—— {@———>0 {¢——0 o receiver
o o o o unused vertex

—> transmission
Matching Induced matching RAS-legal matching  ~ unused
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Broadcast: Reversing the Slots
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Broadcast: Reversing the Slots
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Broadcast, by reversing the slots
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Broadcast in Radio-unicast Model

Brodcast in the Radio-unicast Model
Given: Graph G = (V, E) and source node s € V

Each round, RAS-legal matching between informed & uninformed nodes

@ One-to-one communication (one sender to one receiver)

@ Interference constraint: Successful reception at receiver if exactly
one neighbor transmits

Relation to other Models
Telephone model: One-to-one comm., no interference constraint
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Known Results

Known Results:

o Converge-cast schedule in ©(diam + w(G)) on unit-disc graph

o If interference radius larger than transmission radius in unit disc
graph: O(1)-approximation

@ 2-approximation on unit interval graphs

[Wan et al., MobiHoc 2009], [Xu et al., FOWANC 2009], [Chen et al., MSN 2005]
[An et al., I. J. Comput. Appl. 2011], [Guo et al., J. of Combin. Opt. 2014]

Our Objectives

@ Systematic study of RAS, starting with general graphs
@ Approximation algorithms for geometrically defined graph classes
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Our Results

General Graphs

1. It is NP-hard to approximate RAS within factors n'=¢ or V.dn, where
d is the average degree

2. Polynomial-time O(V dn)-approximation algorithm

Interval Graphs

3. Polynomial-time O(log n)-approximation algorithm
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Algorithm for General Graphs




Algorithm for General Graphs

Simulating the Radio Model

1 1
>0<———- --@-——-=
N e AN e
- N
Aok ®

-

A round in the radio model can be simulated in A (max degree) rounds
in the radio-unicast model

Theorem [Kowalski, Pelc, Dist. Comp. 2007]
Broadcast in the radio model can be done in O(diam + log?(n)) rounds.

Corollary
Broadcast in the radio-unicast model can be done in
O(A(diam 4 log?(n))) rounds.

Lower Bound on OPT B
diam is a trivial LB. Hence: O(A)-approximation
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Algorithm for General Graphs

G = (V,E), d: average degree, informed node s, OPT known

@ L C V: nodes of degree at least v dn (|L| < Vdn)
@ Inform L sequentially along shortest paths from s in O(diam+/ dn) rounds
@ Inform v/dn- OPT centers adjacent nodes to L in O(\/dn- OPT) rounds

@ Inform remaining nodes by simulating radio broadcast algorithm in
O(V dn(diam + log?(n)) rounds
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Algorithm for General Graphs

G = (V,E), d: average degree, informed node s, OPT known

@ L C V: nodes of degree at least v dn (|L| < Vdn)
@ Inform L sequentially along shortest paths from s in O(diam+/ dn) rounds
@ Inform v/dn- OPT centers adjacent nodes to L in O(\/dn- OPT) rounds

@ Inform remaining nodes by simulating radio broadcast algorithm in
O(V dn(diam + log?(n)) rounds

Theorem O(V dn)-approximation for radio-unicast broadcast
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Approximation Hardness for
General Graphs




Connection IS/Coloring and RAS

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998]
Deciding whether a graph has chromatic number x(G) < n€ or
X(G) > n*=¢ is NP-hard.

Connection 1S/Coloring and RAS

B(G)
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Connection IS/Coloring and RAS

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998]
Deciding whether a graph has chromatic number x(G) < n€ or
X(G) > n*=¢ is NP-hard.

Connection 1S/Coloring and RAS

B(G)
IS Induced/RAS-legal matching

Large IS in G implies large RAS-legal matching in B(G)
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Connection IS/Coloring and RAS

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998]
Deciding whether a graph has chromatic number x(G) < n€ or
X(G) > n*=¢ is NP-hard.

Connection 1S/Coloring and RAS

B(G)
Coloring Covering by RAS-legal matchings

c-coloring in G implies RAS-legal matching cover of size ¢ in B(G)
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Connection IS/Coloring and RAS

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998]
Deciding whether a graph has chromatic number x(G) < n€ or
X(G) > n*=¢ is NP-hard.

Connection 1S/Coloring and RAS

B(G)
Coloring Covering by RAS-legal matchings

Converse is also true:
R AS-legal matching cover of size ¢ in B(G) implies c-coloring in G
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LB Construction

Lower Bound Construction

Binary +B(G)
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LB Construction

Lower Bound Construction

G B(G)

One bipartition of B(G) can be informed in O(log n) rounds
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LB Construction

Lower Bound Construction

G B(G)

OPT = O(log n) + size of RAS-legal matching cover

OPT small — induced RAS-legal matching cover small in B(G) — coloring
with few colors in G
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LB Construction

Lower Bound Construction

G B(G)

Theorem It is NP-hard to approximate RAS within factor n*~¢, for any
e€>0.
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Interval Graphs
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Interval Graphs

Unit Interval Graphs [Guo et al., J. of Combin. Opt. 2014]
@ Inform a diameter path (dominating set)
@ Each color class of a coloring can be informed in O(1) rounds
e Runtime: O(diam + x(G)), diam and x(G) are LBs = O(1)-approx.

m, | [m, O m, l m, l
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Interval Graphs Difficulty: claws

o a

e Splitting into O(log n) length classes

o Informed length class informs other length class in O(OPT) rounds
Theorem There is a polynomial-time algorithm for RAS on interval
graphs with approximation ratio O(log n).
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Conclusion

Summary

° (N)(van)—approximation algorithm for RAS on general graphs

o n'~c-approximation hardness on general graphs

o O(log n)-approximation algorithm for RAS on interval graphs
Open Questions

@ O(1)-approximation on interval graphs?
o Is there a const/poly-log approximation on unit disc graphs?
@ Disc Graphs?
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Thank you.
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