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Aggregation Scheduling in Radio Networks

Goal: Convergecast, all nodes send data item to sink
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Aggregation Scheduling in Radio Networks

Goal: Spanning Tree
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Aggregation Scheduling in Radio Networks

Goal: Conflict-free schedule of edge
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Aggregation Scheduling in Radio Networks

Difficulty: Limited Transmission range
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Aggregation Scheduling in Radio Networks

Difficulty: Interference
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Aggregation Scheduling in Radio Networks

Difficulty: Transmission radii may vary
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Aggregation Scheduling in Radio Networks

Difficulty: Transmission radii may be different from interference radii
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Aggregation Scheduling in Radio Networks

Difficulty: Obstacles
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Radio Aggregation Scheduling

Problem Definition: Radio Aggregation Scheduling (RAS)

Given: Graph G = (V ,E ) and sink node s ∈ V

Find: Directed matchings M1,M2, . . . ,Mt ⊆ E so that:

1 ∪iMi induce an in-arborescence directed towards s,

2 The Mi are conflict-free (RAS-legal matching),

3 t minimal.

sender
receiver
unused vertex
transmission
unusedMatching Induced matching RAS-legal matching
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Broadcast: Reversing the Slots

Convergecast
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Broadcast: Reversing the Slots

Broadcast, by reversing the slots
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Broadcast in Radio-unicast Model

Brodcast in the Radio-unicast Model

Given: Graph G = (V ,E ) and source node s ∈ V

Each round, RAS-legal matching between informed & uninformed nodes

1 One-to-one communication (one sender to one receiver)

2 Interference constraint: Successful reception at receiver if exactly
one neighbor transmits

Relation to other Models
Telephone model: One-to-one comm., no interference constraint
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Known Results

Known Results:

Converge-cast schedule in Θ(diam + ω(G )) on unit-disc graph

If interference radius larger than transmission radius in unit disc
graph: O(1)-approximation

2-approximation on unit interval graphs

[Wan et al., MobiHoc 2009], [Xu et al., FOWANC 2009], [Chen et al., MSN 2005]

[An et al., I. J. Comput. Appl. 2011], [Guo et al., J. of Combin. Opt. 2014]

Our Objectives

Systematic study of RAS, starting with general graphs

Approximation algorithms for geometrically defined graph classes
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Our Results

General Graphs

1. It is NP-hard to approximate RAS within factors n1−ε or
√
dn, where

d is the average degree

2. Polynomial-time O(
√
dn)-approximation algorithm

Interval Graphs

3. Polynomial-time O(log n)-approximation algorithm
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Algorithm for General Graphs
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Algorithm for General Graphs

Simulating the Radio Model

A round in the radio model can be simulated in ∆ (max degree) rounds
in the radio-unicast model

Theorem [Kowalski, Pelc, Dist. Comp. 2007]
Broadcast in the radio model can be done in O(diam + log2(n)) rounds.

Corollary
Broadcast in the radio-unicast model can be done in
O(∆(diam + log2(n))) rounds.

Lower Bound on OPT
diam is a trivial LB. Hence: Õ(∆)-approximation
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Algorithm for General Graphs

G = (V ,E ), d : average degree, informed node s, OPT known

1 L ⊆ V : nodes of degree at least
√

dn (|L| ≤
√

dn)

2 Inform L sequentially along shortest paths from s in O(diam
√

dn) rounds

3 Inform
√

dn ·OPT centers adjacent nodes to L in O(
√

dn ·OPT ) rounds

4 Inform remaining nodes by simulating radio broadcast algorithm in

O(
√

dn(diam + log2(n)) rounds
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Algorithm for General Graphs

G = (V ,E ), d : average degree, informed node s, OPT known

1 L ⊆ V : nodes of degree at least
√

dn (|L| ≤
√

dn)

2 Inform L sequentially along shortest paths from s in O(diam
√

dn) rounds

3 Inform
√

dn ·OPT centers adjacent nodes to L in O(
√

dn ·OPT ) rounds

4 Inform remaining nodes by simulating radio broadcast algorithm in

O(
√

dn(diam + log2(n)) rounds

Theorem Õ(
√
dn)-approximation for radio-unicast broadcast
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Approximation Hardness for
General Graphs
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Connection IS/Coloring and RAS

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998]

Deciding whether a graph has chromatic number χ(G ) ≤ nε or
χ(G ) ≥ n1−ε is NP-hard.

Connection IS/Coloring and RAS
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Connection IS/Coloring and RAS

Hardness of IS/Coloring: [Feige, Kilian, J. Comput. Syst. Sci. 1998]

Deciding whether a graph has chromatic number χ(G ) ≤ nε or
χ(G ) ≥ n1−ε is NP-hard.

Connection IS/Coloring and RAS

Converse is also true:
RAS-legal matching cover of size c in B(G ) implies c-coloring in G
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LB Construction

Lower Bound Construction

Binary +B(G )
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LB Construction

Lower Bound Construction

One bipartition of B(G ) can be informed in O(log n) rounds
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LB Construction

Lower Bound Construction

OPT = O(log n) + size of RAS-legal matching cover

OPT small→ induced RAS-legal matching cover small in B(G )→ coloring
with few colors in G
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LB Construction

Lower Bound Construction

Theorem It is NP-hard to approximate RAS within factor n1−ε, for any
ε > 0.
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Interval Graphs
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Interval Graphs

Unit Interval Graphs [Guo et al., J. of Combin. Opt. 2014]

Inform a diameter path (dominating set)

Each color class of a coloring can be informed in O(1) rounds

Runtime: O(diam + χ(G )), diam and χ(G ) are LBs ⇒ O(1)-approx.

Interval Graphs Difficulty: claws

Splitting into O(log n) length classes

Informed length class informs other length class in O(OPT ) rounds

Theorem There is a polynomial-time algorithm for RAS on interval
graphs with approximation ratio O(log n).
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Conclusion

Summary

Õ(
√
dn)-approximation algorithm for RAS on general graphs

n1−ε-approximation hardness on general graphs

O(log n)-approximation algorithm for RAS on interval graphs

Open Questions

O(1)-approximation on interval graphs?

Is there a const/poly-log approximation on unit disc graphs?

Disc Graphs?
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Thank you.
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