Maximum Matching in Semi-Streaming with Few Passes APPROX / RANDOM 2012

Christian Konrad christian.konrad@liafa.jussieu.fr joint work with Frédéric Magniez and Claire Mathieu

LIAFA University Paris Diderot

Streaming

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access

How much RAM is required for the computation of f?

• Motivation: massive data sets

Network monitoring, genome decoding, web databases, access to data on external disks, \ldots

Streaming (2)

Streaming Complexity

- Number of passes p, usually $\in \mathrm{O}(1)$
- Memory space $s \in o(n)$
- Processing time per letter t, usually $\in O(\operatorname{polylog}(n))$
- Deterministic / randomized algorithm
- Unidirectional / bidirectional

Example: Recognizing regular languages

Is word ω in regular language L?

One pass, deterministic, O(1) space, O(1) processing time per letter:

Graph Streams and Bipartite Matching

$$G = (A, B, E)$$
 bipartite, $n = |A| = |B|$, $m = |E|$

Graph stream: sequence of edges, any order $\pi = (3, 2), (7, 6), (1, 2), (7, 8), \dots (5, 6)$

Bipartite Matching in Streaming:

perform one pass, compute large matching using little space

Memory considerations: [Feigenbaum, Kannan, Mcgregor, Suri, Zhang, SODA 2005] deciding basic graph properties such as bipartiteness and connectivity requires $\Omega(n)$ space

Semi-Streaming Model: $O(n \operatorname{polylog} n)$ space

From now on:

M^{*}: fixed maximum matching (matching of maximal size) Simplification: graph has perfect matching (all vertices matched)

Adversarial Arrival Order

Input sequence: No assumption on the order

Upper Bound: $\frac{1}{2}$ -approximation, Greedy Algorithm

- start with empty matching, insert incoming edge if possible
- Example: $\pi = (2,3), (1,2), (3,4)$

Greedy
$$(\pi) = \{(2,3)\}$$
 $M^* = \{(1,2), (3,4)\}$

• Maximal matchings: cannot be enlarged by simply adding an edge

- Maximal matchings are of size at least $\frac{1}{2}|M^*|$
- Greedy computes a maximal matching $\rightarrow \frac{1}{2}$ approximation

Lower Bound: [Kapralov, 2012] $1 - \frac{1}{e} \approx 0.63$

Adversarial Arrival Order

Input sequence: No assumption on the order

Upper Bound: $\frac{1}{2}$ -approximation, Greedy Algorithm

- start with empty matching, insert incoming edge if possible
- Example: $\pi = (2,3), (1,2), (3,4)$

Greedy
$$(\pi) = \{(2,3)\}$$
 $M^* = \{(1,2), (3,4)\}$

• Maximal matchings: cannot be enlarged by simply adding an edge

- Maximal matchings are of size at least $\frac{1}{2}|M^*|$
- Greedy computes a maximal matching $\rightarrow \frac{1}{2}$ approximation

Lower Bound: [Kapralov, 2012] $1 - \frac{1}{e} \approx 0.63$

Open question: Can we break $\frac{1}{2}$ in one pass?

Adversarial Arrival Order

Input sequence: No assumption on the order

Upper Bound: $\frac{1}{2}$ -approximation, Greedy Algorithm

- start with empty matching, insert incoming edge if possible
- **Example**: $\pi = (2,3), (1,2), (3,4)$

Greedy
$$(\pi) = \{(2,3)\}$$
 $M^* = \{(1,2), (3,4)\}$

Maximal matchings: cannot be enlarged by simply adding an edge

- Maximal matchings are of size at least $\frac{1}{2}|M^*|$
- Greedy computes a maximal matching $\rightarrow \frac{1}{2}$ approximation

Lower Bound: [Kapralov, 2012] $1 - \frac{1}{2} \approx 0.63$

Open question: Can we break $\frac{1}{2}$ in one pass?

Two passes: [Konrad, Magniez, Mathieu, APPROX 2012] $\frac{1}{2} + 0.019$ approx.

Input sequence: Edges sorted with respect to incident *A* node

Upper Bounds: $1 - \frac{1}{e}$ approximation

• [Karp, Vazirani, Vazirani, STOC 1990]

- Online Algorithm: upon arrival of a node with its edges, match node irrevocably
- Rank *B* nodes randomly, match *A* node to free *B* node with highest rank
- [Goel, Kapralov, Khanna, SODA 2012] deterministic Algorithm achieving same approximation

Lower Bound: [Kapralov, 2012] $1 - \frac{1}{e}$

Input sequence: Edges come in in uniform random order

Upper Bound: [Konrad, Magniez, Mathieu, APPROX 2012] $\frac{1}{2} + 0.005$ approximation in expectation

- Random Arrival Order allows to break $\frac{1}{2}$
- randomized Greedy Algorithm

Analysis of Greedy Matching Algorithms:

Another Greedy Algorithm: choose randomly some vertex, and then randomly an incident edge

- [Aronson, Dyer, Frieze, Suen, 1995] $\frac{1}{2} + 0.0000025$ approximation
- [Poloczek, Szegedy, FOCS 2012] $\frac{1}{2} + 0.0039$ approximation

Some Intuition: Hard Instance for Greedy

$$G = (A, B, E), |A| = |B| = N$$

Analysis:

- Pefect matching $|M^*| = N$
- Greedy : $|\mathbb{E}_{\pi} \operatorname{Greedy}(\pi)| = \frac{1}{2}N$

Some Intuition: Hard Instance for Greedy

$$G = (A, B, E), |A| = |B| = N$$

Analysis:

- Pefect matching $|M^*| = N$
- Greedy : $|\mathbb{E}_{\pi} \operatorname{Greedy}(\pi)| = \frac{1}{2}N$

Structure of small maximal matchings ($\approx \frac{1}{2}$ -approximations):

Almost all edges form 3-augmenting paths with optimal edges

• Maximal matching M_0 : Greedy

- **1** Maximal matching M_0 : Greedy
- ² Left wings M_1 : Greedy between $A(M_0)$ and $B \setminus B(M_0)$

- **1** Maximal matching M_0 : Greedy
- ² Left wings M_1 : Greedy between $A(M_0)$ and $B \setminus B(M_0)$

- **1** Maximal matching M_0 : Greedy
- 2 Left wings M_1 : Greedy between $A(M_0)$ and $B \setminus B(M_0)$
- Solution Right wings M_2 : Greedy between and $A \setminus A(M_0)$

- **1** Maximal matching M_0 : Greedy
- **2** Left wings M_1 : Greedy between $A(M_0)$ and $B \setminus B(M_0)$
- Solution Right wings M_2 : Greedy between \bullet and $A \setminus A(M_0)$
- Augment M_0 with M_1 and M_2

- **1** Maximal matching M_0 : Greedy
- 2 Left wings M_1 : Greedy between $A(M_0)$ and $B \setminus B(M_0)$
- Solution Right wings M_2 : Greedy between and $A \setminus A(M_0)$
- Augment M_0 with M_1 and M_2

Can we implement this strategy with less passes?

Difficulty: highly linear approach M_1 depends on M_0 , M_2 depends on M_1 and M_0

One-pass random order

Idea: split stream into 3 parts, run on each part a pass

Crucial properties:

- M₀: maximal matching
- Sufficiently many edges for augmentation in second part of the stream (guaranteed by random order assumption)

New Property of Greedy

Lemma: If Greedy performs badly then Greedy converges quickly

If
$$|\mathbb{E}_{\pi}\operatorname{Greedy}(\pi)| = (rac{1}{2} + \epsilon)|M^*|$$
 then

$$|\mathop{\mathbb{E}}_{\pi} \operatorname{Greedy}(\pi[1, \alpha m])| = (\frac{1}{2} - (\frac{1}{\alpha} - 2)\epsilon)|M^*|$$

Corollary: $(\alpha = \frac{1}{2}) |\mathbb{E}_{\pi} \operatorname{Greedy}(\pi[1, \frac{1}{2}m])| \geq \frac{1}{2}|M^*|$

Some Intuition:

- Greedy performs badly: it misses almost all optimal edges
- Random order assumption: many optimal edges arrive early
- Early optimal edges blocked: many non-optimal edges taken early

Blocks: [0, 0.43*m*], [0.43*m*, 0.76*m*], [0.76*m*, *m*]

 $\rightarrow \frac{1}{2} + 0.005$ approximation in expectation for random order

Two pass Algorithm for adversarial order:

- First pass: M_0 and M_1 (Greedy matching + left wings)
- Second pass: M₂ (right wings)

Difficulty: M_1 depends strongly on M_0 :

 $M_1 =$ Greedy between $A(M_0)$ and $B \setminus B(M_0)$

Another new property of Greedy

Matching subsets of *B*:

Lemma: π any input sequence, B' ⊂ B uniform random sample such that ∀b ∈ B : P[b ∈ B'] = p. Then:

$$\mathbb{E}_{B'} |\text{Greedy}(\pi, G|_{A \times B'})| \ge \frac{p}{1+p} |M^*|$$

Intuition:

• Graph with perfect matching M^* , $B' \subset B$ Potential ϕ : perfect edges in $G|_{A \times B'}$ $\mathbb{E} \phi_0 = |M^*|p$

Another new property of Greedy

Matching subsets of *B*:

Lemma: π any input sequence, B' ⊂ B uniform random sample such that ∀b ∈ B : P[b ∈ B'] = p. Then:

$$\mathbb{E}_{B'} |\text{Greedy}(\pi, G|_{A \times B'})| \ge \frac{p}{1+p} |M^*|$$

Intuition:

- Graph with perfect matching M^* , $B' \subset B$ Potential ϕ : perfect edges in $G|_{A \times B'}$ $\mathbb{E} \phi_0 = |M^*|p$
- Consider edge a'b incident to node $b \in B'$

Bad case: $\Delta \phi = 2$ if $b' \in B'$ Good case: $\Delta \phi = 1$ if $b' \notin B'$ $\mathbb{E} \Delta \phi = p \cdot 2 + (1 - p) \cdot 1 = 1 + p$

Another new property of Greedy

Matching subsets of *B*:

Lemma: π any input sequence, B' ⊂ B uniform random sample such that ∀b ∈ B : P[b ∈ B'] = p. Then:

$$\mathbb{E}_{B'} |\text{Greedy}(\pi, G|_{A \times B'})| \ge \frac{p}{1+p} |M^*|$$

Intuition:

- Graph with perfect matching M^* , $B' \subset B$ Potential ϕ : perfect edges in $G|_{A \times B'}$ $\mathbb{E} \phi_0 = |M^*|p$
- Consider edge a'b incident to node $b \in B'$

Bad case: $\Delta \phi = 2$ if $b' \in B'$ Good case: $\Delta \phi = 1$ if $b' \notin B'$ $\mathbb{E} \Delta \phi = p \cdot 2 + (1 - p) \cdot 1 = 1 + p$

Matching size: # rounds until potential = 0

$$\frac{\mathbb{E}\,\phi_0}{\mathbb{E}\,\Delta\phi} = \frac{p}{1+p}|M^*|$$

● Sample $A' \subset A$ such that $\Pr[a \in A'] = 0.1 \forall a \in A$

Sample $A' \subset A$ such that $\Pr[a \in A'] = 0.1 \,\forall a \in A$

② in one pass: $M_0 = \text{Greedy}(A, B)$ and $M_1 = \text{Greedy}(A', B)$

• Sample $A' \subset A$ such that $\Pr[a \in A'] = 0.1 \forall a \in A$

(a) in one pass: $M_0 = \text{Greedy}(A, B)$ and $M_1 = \text{Greedy}(A', B)$

Sample $A' \subset A$ such that $\Pr[a \in A'] = 0.1 \, \forall a \in A$

2 in one pass: $M_0 = \text{Greedy}(A, B)$ and $M_1 = \text{Greedy}(A', B)$

(a) in one pass: find left wings M_2 for • nodes (Greedy matching)

- **③** Sample $A' \subset A$ such that $\Pr[a \in A'] = 0.1 \forall a \in A$
- (2) in one pass: $M_0 = \text{Greedy}(A, B)$ and $M_1 = \text{Greedy}(A', B)$
- **(a)** in one pass: find left wings M_2 for nodes (Greedy matching)
- augment M_0 by $M_1 \cup M_2 o rac{1}{2} + 0.019$ approximation

Bipartite Matching:

Order	Passes	Upper Bound Approx.	Lower Bound
Adversarial	1 pass	1/2	1-1/e
Adversarial	2 passes	1/2 + 0.019	-
Vertex Arrival	1 pass	1-1/e	1-1/e
Random	1 pass	1/2 + 0.005	-

Remarks:

- Deterministic 2-passes version for adversarial order
- None of the upper bounds require randomization
- Presented algorithms extends to general graphs

Thank you for your attention.