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o Objective: compute some function f(x,...,x,) given only
sequential access

Streaming

How much RAM is required for the computation of 7
@ Motivation: massive data sets

Network monitoring, genome decoding, web databases, access to
data on external disks, ...
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Streaming (2)

Streaming Complexity
@ Number of passes p, usually € O(1)
Memory space s € o(n)
Processing time per letter t, usually € O(polylog(n))
Deterministic / randomized algorithm
Unidirectional / bidirectional

Example: Recognizing regular languages
Is word w in regular language L?

One pass, deterministic, O(1) space, O(1) processing time per letter:

|w1|w2‘w3‘w4‘w5|w6|w7‘w8‘

finite Automaton
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Graph Streams and Bipartite Matching

G = (A, B, E) bipartite, n = |A| = |B|, m = |E]

Graph stream: sequence of edges, any order
m™=(3,2),(7,6),(1,2),(7.8),...(5,6)

Bipartite Matching in Streaming:
perform one pass, compute large matching using little space

Memory considerations: [Feigenbaum, Kannan, Mcgregor, Suri, Zhang, SODA 2005]
deciding basic graph properties such as bipartiteness and connectivity
requires Q(n) space

Semi-Streaming Model: O(npolylog n) space

From now on:

M*: fixed maximum matching (matching of maximal size)
Simplification: graph has perfect matching (all vertices matched)
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Adversarial Arrival Order

Input sequence: No assumption on the order

Upper Bound: %—approximation, Greedy Algorithm

@ start with empty matching, insert incoming edge if possible
e Example: 7 =(2,3),(1,2),(3,4)

O—00—C06—0®
Greedy(r)= {(2,3)} M= {(1,2), 3.4))

o Maximal matchings: cannot be enlarged by simply adding an edge

o Maximal matchings are of size at least 3|M"|
o Greedy computes a maximal matching — % approximation

Lower Bound: [Kapralov, 2012] 1 — 1 ~ 0.63
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o Greedy computes a maximal matching — % approximation

Lower Bound: [Kapralov, 2012] 1 — 1 ~ 0.63

- . 1 -
Open question: Can we break 3 in one pass?
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Adversarial Arrival Order

Input sequence: No assumption on the order

Upper Bound: %—approximation, Greedy Algorithm

@ start with empty matching, insert incoming edge if possible
e Example: 7 =(2,3),(1,2),(3,4)

O—00—C06—0®
Greedy(r)= {(2,3)} M= {(1,2), 3.4))

o Maximal matchings: cannot be enlarged by simply adding an edge

o Maximal matchings are of size at least 3|M"|
o Greedy computes a maximal matching — % approximation

Lower Bound: [Kapralov, 2012] 1 — 1 ~ 0.63
Open question: Can we break % in one pass?

Two passes: [Konrad, Magniez, Mathieu, APPROX 2012] % + 0.019 approx.
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Vertex Arrival Order

Input sequence: Edges sorted with respect to incident A node

A B
arrival order randpm
Upper Bounds: 1 — 1 approximation of A nodes e
O
@ [Karp, Vazirani, Vazirani, STOC 1990] o
o Online Algorithm: upon arrival of a node O== o
with its edges, match node irrevocably ; o
o Rank B nodes randomly, match A node ‘ ;
to free B node with highest rank v OZ @)

@ [Goel, Kapralov, Khanna, SODA 2012]
deterministic Algorithm achieving same approximation

Lower Bound: [Kapralov, 2012 1 — 1
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Random Arrival Order

Input sequence: Edges come in in uniform random order

Upper Bound: [Konrad, Magniez, Mathieu, APPROX 2012]

% + 0.005 approximation in expectation

@ Random Arrival Order allows to break %
@ randomized Greedy Algorithm

Analysis of Greedy Matching Algorithms:

Another Greedy Algorithm: choose randomly some vertex, and then
randomly an incident edge

@ [Aronson, Dyer, Frieze, Suen, 1995] % + 0.0000025 approximation

® [Poloczek, Szegedy, FOCS 2012] 3 + 0.0039 approximation
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Some Intuition: Hard Instance for Greedy

G=(A E) |Al=|B[=N

Analysis:
o Pefect matching |[M*| = N
o Greedy : | E, Greedy(r)| = AN
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Some Intuition: Hard Instance for Greedy

G=(A E) |Al=|B[=N

Analysis:
o Pefect matching |[M*| = N
o Greedy : | E, Greedy(r)| = AN

Structure of small maximal matchings (~ }-approximations):

©, ® ©, ®

Almost all edges form 3-augmenting paths with optimal edges
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Three passes Streaming Algorithm
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@ Maximal matching Mp: Greedy
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Three passes Streaming Algorithm
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@ Maximal matching Mp: Greedy
@ Left wings M;: Greedy between A(My) and B\ B(Mp)
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Three passes Streaming Algorithm
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@ Maximal matching Mp: Greedy
@ Left wings M;: Greedy between A(My) and B\ B(Mp)
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Three passes Streaming Algorithm
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@ Maximal matching Mp: Greedy

@ Left wings M;: Greedy between A(My) and B\ B(Mp)
@ Right wings M,: Greedy between e and A\ A(M,)
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Three passes Streaming Algorithm
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@ Maximal matching Mp: Greedy

@ Left wings M;: Greedy between A(My) and B\ B(Mp)
@ Right wings M,: Greedy between e and A\ A(M,)

@ Augment My with M; and M,
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Three passes Streaming Algorithm
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@ Maximal matching Mp: Greedy

@ Left wings M;: Greedy between A(My) and B\ B(Mp)
@ Right wings M,: Greedy between e and A\ A(M,)

@ Augment My with M; and M,

Can we implement this strategy with less passes?

Difficulty: highly linear approach
M, depends on My, M, depends on M; and M,

Christian Konrad Streaming 9/1



One-pass random order

Idea: split stream into 3 parts, run on each part a pass

B A B A
e

ole

o\c/j >
G

N

7Y

MO M1 M2
Crucial properties:

@ Mpy: maximal matching

e Sufficiently many edges for augmentation in second part of the
stream (guaranteed by random order assumption)
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New Property of Greedy

Lemma: If Greedy performs badly then Greedy converges quickly
If | Ex Greedy(7)| = (3 + €)|M*| then

1 1
| E Greedy(n[1, am])| = (5 - (a —2)e)|M*|
Corollary: (o = 1) |E Greedy(n[1, 3m])| > §|M*|

Some Intuition:

@ Greedy performs badly: it misses almost all optimal edges
@ Random order assumption: many optimal edges arrive early

o Early optimal edges blocked: many non-optimal edges taken early
Blocks: [0,0.43m],[0.43m,0.76m], [0.76m, m]|

— % -+ 0.005 approximation in expectation for random order
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Two-passes for adversarial order

Two pass Algorithm for adversarial order:
o First pass: My and M; (Greedy matching + left wings)
e Second pass: M, (right wings)

B

) >
DR

I
N
oLl

O

OO0
I\E

\

Q

Difficulty: M; depends strongly on Mj:
M; = Greedy between A(Mp) and B\ B(Mp)
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Another new property of Greedy

Matching subsets of B:

o Lemma: 7 any input sequence, B’ C B uniform random sample
such that Vb € B: P[b € B'] = p. Then:

Egs |Greedy(m, Glaxs’)| > 2= |M*|

itp
@ Intuition:

A B

o Graph with perfect matching M*, B C B

Potential ¢: perfect edges in G|axp O O

E¢o = [M*|p O——-0

O—0

OO0
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Another new property of Gree
Matching subsets of B:

o Lemma: 7 any input sequence, B’ C B uniform random sample
such that Vb € B: P[b € B'] = p. Then:
Ep/ |Greedy(m, Glaxs’)| > 1+p|M*‘

@ Intuition:
A B
o Graph with perfect matching M*, B C B
Potential ¢: perfect edges in G|axp
E¢o = [M"|p

o Consider edge a’b incident to node b € B’
Bad case: A¢ =2 if b’ € B’ a b’

Good case: A¢p=1if b' ¢ B o —
EAG=p-2+(1—p)-1=1+p :
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Another new property of Gree
Matching subsets of B:

o Lemma: 7 any input sequence, B’ C B uniform random sample
such that Vb € B: P[b € B'] = p. Then:

Epg |Greedy(m, Glaxs/)| = £5|M”|

@ Intuition:
A B
o Graph with perfect matching M*, B C B
Potential ¢: perfect edges in G|axp
E¢o = [M"|p
o Consider edge a’b incident to node b € B’
Bad case: A¢ =2 if b’ € B’ a b’
Good case: Ap=1if b’ ¢ B’ O O
EAG=p-2+(1—p)-1=1+p :
o Matching size: # rounds until potential =0 O O
E ¢o p .
= |M7]

EA¢ 1+p
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Two passes Algorithm

A B
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Two passes Algorithm
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@ Sample A’ C A such that Prlae A =0.1Vac A
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Two passes Algorithm
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@ Sample A’ C A such that Prlae A =0.1Vac A
@ in one pass: My = Greedy(A, B) and M; = Greedy(A’, B)
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Two passes Algorithm
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@ Sample A’ C A such that Prlae A =0.1Vac A
@ in one pass: My = Greedy(A, B) and M; = Greedy(A’, B)
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Two passes Algorithm
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@ Sample A’ C A such that Prlae A =0.1Vac A
@ in one pass: My = Greedy(A, B) and M; = Greedy(A’, B)
@ in one pass: find left wings M, for e nodes (Greedy matching)
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Two passes Algorithm
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@ Sample A’ C A such that Prlae A =0.1Vac A

@ in one pass: My = Greedy(A, B) and M; = Greedy(A’, B)

@ in one pass: find left wings M, for e nodes (Greedy matching)
@ augment My by My U My — % + 0.019 approximation
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Bipartite Matching:

Order Passes  Upper Bound Approx. Lower Bound
Adversarial 1 pass 1/2 1-1/e
Adversarial 2 passes 1/2+0.019 -

Vertex Arrival 1 pass 1-1/e 1-1/e
Random 1 pass 1/2 +0.005 -
Remarks:

@ Deterministic 2-passes version for adversarial order
@ None of the upper bounds require randomization
@ Presented algorithms extends to general graphs
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Thank you for your attention.




