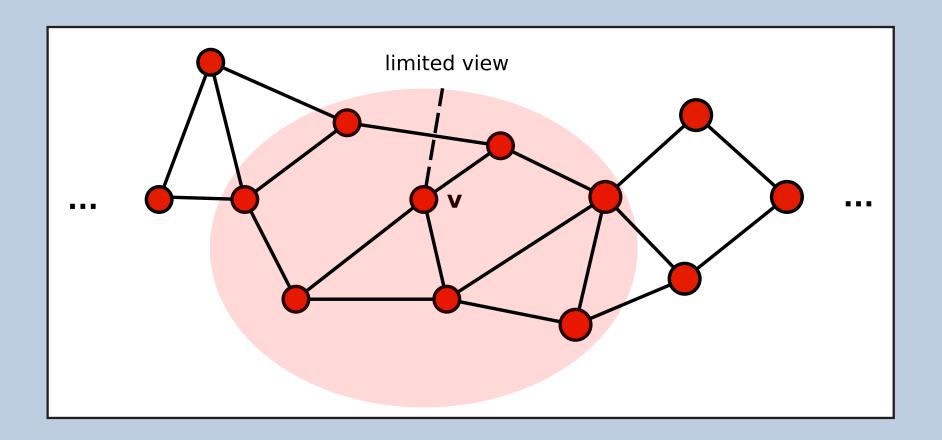
\mathcal{LOCAL} Approximation of Independent Set and Coloring

Marijke H. L. Bodlaender, Magnús M. Halldórsson, Christian Konrad {marijke12,mmh,christiank}@ru.is

The LOCAL Model

Model:

- O(1) communication rounds
- Unbounded message sizes
- Unbounded computational power



Focus:

Locality of computational problems

Independent Sets/Colorings

Hardness. The maximum independent set and the minimum vertex coloring problems are NP-hard, and they are even hard to approximate within a factor of $n^{1-\epsilon}$.

Exponential Time. Under the assumption that $P \neq NP$, every local algorithm with non-trivial approximation ratio for either problem has to use exponential time computations.

Related Work

Most works on distributed independent sets and colorings consider the maximal independent set problem and the $(\Delta+1)$ -coloring problem. These problems can easily be solved sequentially.

The work of Barenboim [ICALP, 2012] is closest to our work and presents a $O(n^{1/2+\epsilon})$ -approximation local algorithm for the minimum vertex coloring problem (using exponential time computations).

Results

Upper Bounds:

We present local randomized $O(n^{\epsilon})$ approximation algorithms for the maximum independent set and the minimum
vertex coloring problems, for any $\epsilon > 0$,
which run in $O(3^{\frac{1}{\epsilon}})$ rounds.

Lower Bounds:

We prove that both algorithms are optimal in that no local algorithm can achieve $n^{o(1)}$ -approximations for either problem.

Distributed Maximum Independent Set Approximation

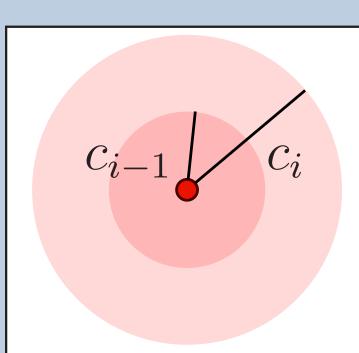
Suppose that every node computes a maximum independent set in its k-neighborhood. How can we combine these locally optimal solutions to a coherent global solution?

1. New Vertex Decomposition

For a constant $k = \Theta(\frac{1}{\epsilon})$, partition V into disjoint sets V_1, V_2, \ldots, V_k so that $v \in V_j$ if j is the smallest i such that

$$\max IS(N^{c_{i-1}}(v)) \ge n^{(i-1)/k}$$
, and $\max IS(N^{c_i}(v)) \le n^{i/k}$,

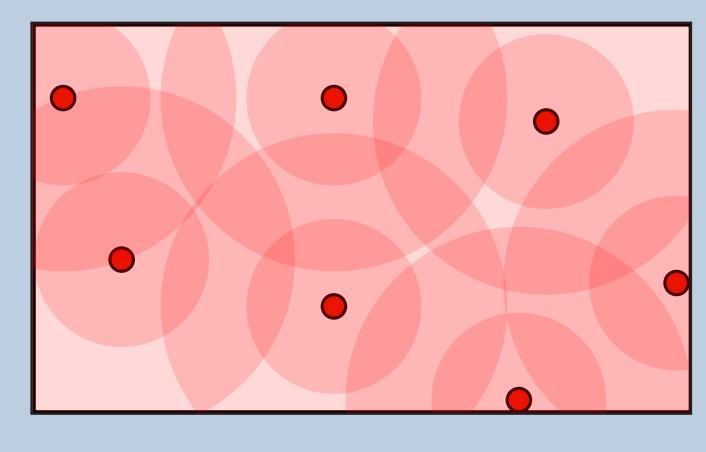
where $(c_i)_i$ is an exponentially increasing sequence, and $N^d(v)$ denotes the d-neighborhood of v.

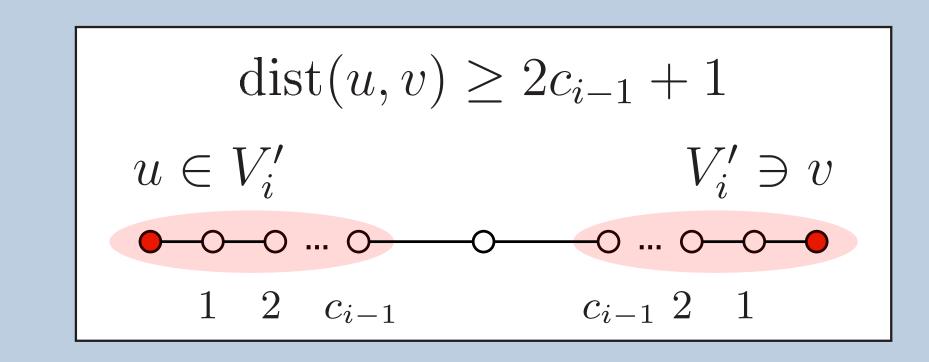


- Relatively large maxIS in $B^{c_{i-1}}(v)$
- maxIS in $B^{c_i}(v)$ at most by factor n^{ϵ} larger

2. Ruling Set Algorithm

For i = 1, ..., k, we treat the sets V_i separately. Using an algorithm by Gfeller and Vicari [PODC 2007], in O(1) rounds, we compute a $(2c_{i-1} + 1)$ -independent subset $V'_i \subseteq V_i$ which essentially c_i -dominates V_i .





Then, a large independent set $I_i = \bigcup_{v \in V_i'} \max IS(B^{c_{i-1}}(v))$ is established. Let I^* be a a maximum independent set in the input graph. We show that:

$$n^{\epsilon}|I_i| \ge |I^* \cap V_i|,\tag{1}$$

3. Merging the Independent Sets

From the sets I_1, \ldots, I_k , we compute an independent set I so that $|I| \ge |I_i|$, for every i. Since there exists an i such that $|I^* \cap V_i| \ge |I^*|/k$, and using Inequality 1, I is a $(k \cdot n^{\epsilon})$ -approximation.

Distributed Minimum Vertex Coloring Approximation

We make use of the following connection between between minimum vertex coloring and network decompositions.

Definition A (d, c)-network decomposition is a partitioning of the vertices of the input graph into clusters of maximal diameter d so that the graph obtained when contracting the clusters into vertices can be colored with at most c colors.

Theorem (Barenboim [ICALP, 2012]) Suppose that nodes of a graph G = (V, E) know their color in a (d, c)-network decomposition. Then, there is an O(d)-rounds distributed algorithm that computes a c-approximate minimum vertex coloring.

Barenboim [ICALP, 2012] showed that there is a sampling-based, local algorithm that computes a $(O(1), n^{\frac{1}{2} + \epsilon})$ -network decomposition, implying a local $O(n^{\frac{1}{2} + \epsilon})$ -approximation algorithm for minimum vertex coloring.

Our Result We show that via a recursive sampling-based approach similar to Barenboim's method, a $(O(1), n^{\epsilon})$ -network decomposition can be computed, leading to a local $O(n^{\epsilon})$ -approximation algorithm for minimum vertex coloring.