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The LOCAL Model

Model:

• O(1) communication rounds

• Unbounded message sizes

• Unbounded computational power

Focus:

Locality of computational problems

Independent Sets/Colorings

Hardness. The maximum indepen-
dent set and the minimum vertex color-
ing problems are NP-hard, and they are
even hard to approximate within a factor
of n1−ε.
Exponential Time. Under the as-
sumption that P 6= NP , every local al-
gorithm with non-trivial approximation
ratio for either problem has to use expo-
nential time computations.

Related Work

Most works on distributed independent
sets and colorings consider the maximal
independent set problem and the (∆+1)-
coloring problem. These problems can
easily be solved sequentially.
The work of Barenboim [ICALP, 2012]
is closest to our work and presents a
O(n1/2+ε)-approximation local algorithm
for the minimum vertex coloring problem
(using exponential time computations).

Results

Upper Bounds:
We present local randomized O(nε)-
approximation algorithms for the maxi-
mum independent set and the minimum
vertex coloring problems, for any ε > 0,
which run in O(3

1
ε ) rounds.

Lower Bounds:
We prove that both algorithms are op-
timal in that no local algorithm can
achieve no(1)-approximations for either
problem.

Distributed Maximum Independent Set Approximation

Suppose that every node computes a maximum independent set in its k-neighborhood.
How can we combine these locally optimal solutions to a coherent global solution?

1. New Vertex Decomposition
For a constant k = Θ(1

ε
), partition V into disjoint sets V1, V2, . . . , Vk so that

v ∈ Vj if j is the smallest i such that

maxIS(N ci−1(v)) ≥ n(i−1)/k, and maxIS(N ci(v)) ≤ ni/k,

where (ci)i is an exponentially increasing sequence, and Nd(v) denotes the d-
neighborhood of v.

ci−1 ci - Relatively large maxIS in Bci−1(v)
- maxIS in Bci(v) at most by factor nε larger

2. Ruling Set Algorithm
For i = 1, . . . , k, we treat the sets Vi separately. Using an algorithm by Gfeller
and Vicari [PODC 2007], in O(1) rounds, we compute a (2ci−1 + 1)-independent
subset V ′i ⊆ Vi which essentially ci-dominates Vi.

dist(u, v) ≥ 2ci−1 + 1

u ∈ V ′i V ′i 3 v

1 2 ci−1 ci−1 2 1

Then, a large independent set Ii =
⋃
v∈V ′i maxIS(Bci−1(v)) is established. Let I∗

be a a maximum independent set in the input graph. We show that:

nε|Ii| ≥ |I∗ ∩ Vi|, (1)

3. Merging the Independent Sets
From the sets I1, . . . , Ik, we compute an independent set I so that |I| ≥ |Ii|, for
every i. Since there exists an i such that |I∗∩Vi| ≥ |I∗|/k, and using Inequality 1,
I is a (k · nε)-approximation.

Distributed Minimum Vertex Coloring Approximation

We make use of the following connection between between minimum vertex coloring
and network decompositions.

De�nition A (d, c)-network decomposition is a partitioning of the vertices of the
input graph into clusters of maximal diameter d so that the graph obtained when
contracting the clusters into vertices can be colored with at most c colors.

Theorem (Barenboim [ICALP, 2012]) Suppose that nodes of a graph G = (V,E)
know their color in a (d, c)-network decomposition. Then, there is an O(d)-rounds
distributed algorithm that computes a c-approximate minimum vertex coloring.

Barenboim [ICALP, 2012] showed that there is a sampling-based, local algorithm

that computes a (O(1), n
1
2
+ε)-network decomposition, implying a local O(n

1
2
+ε)-

approximation algorithm for minimum vertex coloring.

Our ResultWe show that via a recursive sampling-based approach similar to Baren-
boim's method, a (O(1), nε)-network decomposition can be computed, leading to a
local O(nε)-approximation algorithm for minimum vertex coloring.


