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Coloring

The LOCAL Mo- Distributed Maximum Independent_

Model:

e O(1) communication rounds
e Unbounded message sizes

e Unbounded computational power
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Focus:

Locality of computational problems

Independent Sets_

Hardness. The maximum indepen-
dent set and the minimum vertex color-
ing problems are NP-hard, and they are
even hard to approximate within a factor
of nt~¢.

Exponential Time. Under the as-
sumption that P ¢ NP, every local al-
corithm with non-trivial approximation
ratio for either problem has to use expo-
nential time computations.

Related Work _

Most works on distributed independent
sets and colorings consider the maximal
independent set problem and the (A-+1)-
coloring problem. These problems can
easily be solved sequentially.

The work of Barenboim |[ICALP, 2012
is closest to our work and presents a
O(n!/?*¢)-approximation local algorithm
for the minimum vertex coloring problem
(using exponential time computations).
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Upper Bounds:

We present local randomized O(nc)-
approximation algorithms for the maxi-
mum Independent set and the minimum

vertex coloring prloblems, for any € > 0,

which run in O(3¢) rounds.

Lower Bounds:

We prove that both algorithms are op-
timal i that no local algorithm can
achieve n°M-approximations for either
problem.

Suppose that every node computes a maximum independent set in its k-neighborhood.
How can we combine these locally optimal solutions to a coherent global solution?

1. New Vertex Decomposition

For a constant k = @(%), partition V into disjoint sets Vi, V5, ..., V. so that
v € V; 1f 7 1s the smallest ¢ such that

maxIS(N“t(v)) > n=D/% and maxIS(N(v)) < ni'*.

where (¢;); is an exponentially increasing sequence, and N%(v) denotes the d-
neighborhood of v.

Ci—1 % - Relatively large maxIS in B%-!(v)

- maxIS in B%(v) at most by factor n¢ larger

2. Ruling Set Algorithm
For e = 1,...,k, we treat the sets V; separately. Using an algorithm by Gieller
and Vicari [PODC 2007[, in O(1) rounds, we compute a (2¢;_; + 1)-independent
subset V. C V; which essentially c;-dominates V.

dist(u,v) > 2¢;_1 + 1
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Then, a large independent set I; = U,y maxIS(B%-1(v)) is established. Let I*
be a a maximum independent set in the input graph. We show that:

n| L] = |17 N Vi, (1)

3. Merging the Independent Sets
From the sets I, ..., Ix, we compute an independent set I so that |I| > |I;|, for
every ¢. Since there exists an ¢ such that |[I*NV;| > |I*|/k, and using Inequality 1,
I is a (k - nf)-approximation.

Distributed Minimum Vertex/CoREREE R

We make use of the following connection between between minimum vertex coloring
and network decompositions.

Definition A (d, c)-network decomposition is a partitioning of the vertices of the
input graph into clusters of maximal diameter d so that the graph obtained when
contracting the clusters into vertices can be colored with at most ¢ colors.

Theorem (Barenboim [ICALP, 2012]) Suppose that nodes of a graph G = (V, F)
know their color in a (d, c)-network decomposition. Then, there is an O(d)-rounds

distributed algorithm that computes a c-approximate minimum vertex coloring.

Barenboim [ICALP, 2012| showed that there is a sampling-based, local algorithm

that computes a (O(1),n2t¢)-network decomposition, implying a local O(nzt)-
approximation algorithm for minimum vertex coloring.

Our Result We show that via a recursive sampling-based approach similar to Baren-
boim’s method, a (O(1),n¢)-network decomposition can be computed, leading to a
local O(n°)-approximation algorithm for minimum vertex coloring.




