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Distributed Vertex Coloring

Input: G = (V ,E ), n = |V |, max. degree ∆

The LOCAL Model:

Nodes host processors

Synchronous communication along edges, individual messages of
unbounded size

Local computation is free

Running time = maximal number of communication rounds

Vertex Coloring:

Chromatic number: χ(G )

Output: When algorithm terminated, every node knows its color
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Known Results

(∆ + 1)-coloring:

In general graphs: O(log n) rounds [Luby, Siam J. on Comp., 1986]

[Kuhn, Wattenhofer, PODC 2006], [Schneider, Wattenhofer, PODC 2008], [Kuhn, SPAA

2009], [Barenboim, Elkin, STOC 2009], [Schneider, Wattenhofer, PODC 2010],

[Barenboim, Elkin, Pettie, Schneider, FOCS 2012], . . .

Algorithm with approximation guarantee:

Õ(
√
n)-approx. in O(1) rounds [Barenboim, ICALP 2012]

Research Question:
Which graph classes admit distributed coloring algorithms with better
approximation guarantees?

Magnús M. Halldórsson and Christian Konrad Distributed Algorithms for Coloring Interval Graphs 3 / 18



Our Main Result

Interval Graphs: Intersection graph of intervals of arbitrary lengths on
the line

Theorem: (UB) There is a deterministic O(log∗ n) rounds distributed
algorithm for coloring interval graphs with approximation factor O(1).

Theorem: (LB) Every distributed O(1)-approximation algorithm for
coloring interval graphs requires Ω(log∗ n) rounds.
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Simple Class of Coloring Algorithms

Round-based coloring scheme:

In round i do:

1 Every not yet colored node v ∈ V pre-selects itself with probability pi
2 If no neighbor of v pre-selected itself:

v colors itself with color i

3 Stop when all nodes are colored

Algorithms implementing this scheme have to determine the pi

Properties:

Single bit messages, # rounds = # colors

Scheduling in wireless networks [Kesselheim, Vöcking, DISC 2010],

[Halldórsson, Mitra, ICALP 2011], [Halldórsson, et al., SODA 2013]

Beep model [Cornejo, Kuhn, DISC 2010] (either beep or listen): One round
of algorithm can be implemented in O(log n) rounds in Beep model
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Simple Class of Coloring Algorithms: LB Result

UB 1: There is an algorithm following this scheme that colors any
graph with O(∆ + log2 n) rounds (e.g. unit int. graphs: ∆ = Θ(χ(G )))
[Kesselheim,, Vöcking, DISC 2010]

UB 2: There is an algorithm following this scheme that colors interval
graphs in O(χ(G ) log n) rounds [Halldórsson et al., SODA 2013]

1 d-inductive-independent graphs can be colored with the previous
scheme in O(dχ(G ) log n) rounds

2 Interval graphs are 1-inductive independent (=perfect elimination
ordering):

We prove:

Lower Bound: There is an interval graph so that any algorithm that
follows the previous scheme requires Ω(χ(G ) log n

log log n ) rounds

Magnús M. Halldórsson and Christian Konrad Distributed Algorithms for Coloring Interval Graphs 6 / 18



Outline

O(1)-approx. in O(log∗ n) rounds in LOCAL model
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Existing O(log∗ n) Independent Set Algorithms

Reduction in LOCAL-model:
Maximal Independent Set algorithm implies (∆ + 1)-coloring

O(log∗ n) Rounds MIS algorithms:

Ring [Cole, Vishkin, STOC 1986]

Extension to trees and constant degree graphs

Bounded-independence Graphs [Schneider, Wattenhofer, PODC 2008]

Definition: A graph G = (V ,E ) is of bounded-independence if there
exists a bounding function f (r) so that for each node v ∈ V , the size of
a maximum independent set in the r -neighborhood of v is at most f (r).

r-Neighborhood: Γr (v) = {u ∈ V : d(u, v) ≤ r}.

Important: f is independent of n
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Bounded-independence Graphs

Examples:

Path/Ring:

f (r) = r + 1

Unit Interval Graphs:

f (r) = r + 1

Interval Graphs:

(n − 1)-claw, not of bounded-independence

We will use: O(log∗ n) rounds algorithms to compute:

(∆ + 1)-coloring in constant-degree graph

Maximal Independent Set in unit interval graph
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Algorithm in the LOCAL model

Goal: Find a dominating set D ⊆ V so that:

∀v ∈ D : |Γ3(v) ∩ D| = O(1).

D implies O(1)-approximation to coloring in O(log∗ n) rounds:

1 Find a distance-3 coloring of D, obtain color classes D1, . . . ,DO(1)

2 Go through color classes Di , each node v ∈ Di colors its neighbors
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Algorithm in the LOCAL model

Goal: Find a dominating set D ⊆ V so that:

∀v ∈ D : |Γ3(v) ∩ D| = O(1).

D implies O(1)-approximation to coloring in O(log∗ n) rounds:

1 Find a distance-3 coloring of D, obtain color classes D1, . . . ,DO(1)

2 Go through color classes Di , each node v ∈ Di colors its neighbors

Dominating set D, distance-3-adjacency of D, max. degree = O(1)
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Algorithm in the LOCAL model

Goal: Find a dominating set D ⊆ V so that:

∀v ∈ D : |Γ3(v) ∩ D| = O(1).

D implies O(1)-approximation to coloring in O(log∗ n) rounds:

1 Find a distance-3 coloring of D, obtain color classes D1, . . . ,DO(1)

2 Go through color classes Di , each node v ∈ Di colors its neighbors

Distance-3 coloring of D, e.g. using (∆ + 1)-coloring algorithm for
bounded-degree graphs (Cole & Vishkin) in O(log∗ n) rounds
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Algorithm in the LOCAL model

Goal: Find a dominating set D ⊆ V so that:

∀v ∈ D : |Γ3(v) ∩ D| = O(1).

D implies O(1)-approximation to coloring in O(log∗ n) rounds:

1 Find a distance-3 coloring of D, obtain color classes D1, . . . ,DO(1)

2 Go through color classes Di , each node v ∈ Di colors its neighbors

Color class 2 colors its yet uncolored neighbors
(no conflicts due to distance-3 coloring)
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Algorithm in the LOCAL model

Goal: Find a dominating set D ⊆ V so that:
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D implies O(1)-approximation to coloring in O(log∗ n) rounds:

1 Find a distance-3 coloring of D, obtain color classes D1, . . . ,DO(1)

2 Go through color classes Di , each node v ∈ Di colors its neighbors

Color class 3 colors its yet uncolored neighbors
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Algorithm in the LOCAL model

Goal: Find a dominating set D ⊆ V so that:

∀v ∈ D : |Γ3(v) ∩ D| = O(1).

D implies O(1)-approximation to coloring in O(log∗ n) rounds:

1 Find a distance-3 coloring of D, obtain color classes D1, . . . ,DO(1)

2 Go through color classes Di , each node v ∈ Di colors its neighbors

Summary: Given D, in O(log∗ n) rounds, we obtain an O(1)-
approximation to the coloring problem
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Algorithm in the LOCAL model

Goal: Find a dominating set D ⊆ V so that:

∀v ∈ D : |Γ3(v) ∩ D| = O(1).

D implies O(1)-approximation to coloring in O(log∗ n) rounds:

1 Find a distance-3 coloring of D, obtain color classes D1, . . . ,DO(1)

2 Go through color classes Di , each node v ∈ Di colors its neighbors

Remark: Greedy coloring in interval graphs = constant factor approxima-
tion
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Finding D in interval graph

Strategy:

Find subgraph GP ⊆ G of proper intervals by exploring
2-neighborhood:

G GP ⊆ G

GP is also a unit interval graph

Compute maximal independent set I in GP in O(log∗ n) rounds

Every node vi ∈ I selects the two nodes v1
i , v

2
i ∈ ΓGP

(vi ) that
maximizes |Γ(vi )∪ Γ(v1

i )∪ Γ(v2
i )| (Intervals stretching out to the left

and right as far as possible)

D =
⋃

i{vi , v1
i , v

2
i }
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D has the desired properties

D is a dominating set in G :

Two adjacent nodes u, v ∈ I are at distance at most 3

Intervals reaching out furthest to the left/right bridge this gap

Property: ∀v ∈ D : |Γ3(v) ∩ D| = O(1).

Maximal degree in G |D is 7

At most 73 nodes in Γ3(v) for any v ∈ D.
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Summary

Algorithm is optimal: Reduction to Linial’s ring coloring lower bound
[Linial, SIAM Journal on Computing, 1992]

Main idea:
Use dominating set D that has a distance-3-coloring using O(1) colors

Algorithm relies heavily on properties of interval graphs

This allows the application of existing O(log∗ n) algorithms

However, difficult to generalise

Open Questions:

Can a similar result be obtained for disc graphs? (we can do
O(1)-approximation in O(log n) rounds)
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Outline

Lower Bound for Round-based Coloring Scheme
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Round-based Coloring Scheme

Round-based coloring scheme: (round i)

1 Every not yet colored node v ∈ V pre-selects itself with probability pi
2 If no neighbor of v pre-selected itself:

v colors itself with color i

3 Stop when all nodes are colored

Hard Instance with chrom. number: χ(G ) = Θ(log2(n)/ log log(n))
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Hard Instance

Choice of Probabilities:

If pi � χ(G )−1 (e.g. pi = log(n)): no progress as too many nodes
pre-selected and they exclude each other

If pi � χ(G )−1 (e.g. pi = log3(n)): not enough progress as too few
nodes pre-selected

→ Best progress if pi = Θ(χ(G )−1)
We prove:

Ω(χ(G )) iterations necessary to “eliminate” one layer

Then, elimination of all layers: Ω(χ(G ) log n
log log n ).
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Summary

Summary: Round-based Coloring Scheme

Lower Bound tight up to a log log(n) factor

Seems like log(n) factor has to be paid for non-trivial graph classes:

UB 1: There is an algorithm following this scheme that colors any
graph with O(∆ + log2 n) rounds
UB 2: There is an algorithm following this scheme that colors
interval graphs in O(χ(G) log n) rounds
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Thanks
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