Maximum Matching in Turnstile Streams ESA 2015

Christian Konrad

Reykjavik University

14.09.2015

Streaming Algorithms for Graph Problems

Insertion-only Streams (1999 -)

• Input stream: Sequence of edges of input graph G = (V, E) with n = |V| in arbitrary order

$$S = e_2 e_1 e_4 e_3$$

- Goal: Few passes (preferably one) algorithms with space $o(n^2)$
- Matchings, independent sets, cuts, graph sparsifiers, random walks, bipartiteness testing, counting triangles/subgraphs, ...

Dynamic/Turnstile Streams (2012 -)

• Input stream: Sequence of edge insertions/deletions, arbitrary order

$$S = e_4 e_3 e_5 \overline{e_5} e_2 e_6 \overline{e_2} e_2 e_1 \overline{e_6}$$

(arbitrary length)

• Goal: Few passes (preferably one) algorithm with space $o(n^2)$

Matching in Insertion-only Streams

Greedy Matching Algorithm

- Insert e into initially empty matching M if $M \cup \{e\}$ is a matching
- One-pass $\frac{1}{2}$ -approximation streaming algorithm with space $O(n \log n)$

Most Studied Graph Problem in the Streaming Model

Unweighted/weighted, one-pass/multi-pass, adversarial arrival order/random order

[Feigenbaum et al., Theo. Comp. Sci. 2005] [McGregor, APPROX 2005], [Ahn, Guha, ICALP 2011], [Eggert et al., Algorithmica 2012], [Goel et al., SODA 2012], [Kapralov, SODA 2013] [Zelke, Algorithmica 2012], [Epstein et al., STACS 2010], [Crouch, Stubbs, APPROX 2014], [Konrad et al., APPROX 2012], [Kapralov et al., SODA 2014], [Kapralov et al., SODA 2014], [SoDA 2014], [SoDA 2015], ...

How well can we do if edge deletions are allowed?

(Open question from Bertinoro workshop 2014 on sub-linear algorithms)

Known Results on Dynamic Graph Streams

- [Ahn, Guha, McGregor, SODA 2012] Connectivity, bipartiteness, const. factor minimum weight spanning tree in $O(n \log n)$ space $(1 + \epsilon)$ -approximate weighted matching with $O(n^{1+1/p} \operatorname{poly} \epsilon^{-1})$ space and $O(p \cdot \epsilon^{-2} \cdot \log \epsilon^{-1})$ passes
- [Ahn, Guha, McGregor, APPROX 2013], [Kapralov, Woodruff, PODC 2014], [Kapralov et al., FOCS 2014] Sparsifiers and spanners

 Upper Bound: For every 0 ≤ ε ≤ 1: One-pass O(n^ε)-approximation streaming algorithm with space Õ(n^{2-2ε})

 Lower Bound: For every 0 ≤ ε ≤ 1: Every one-pass O(n^ε)-approximation streaming algorithm requires space Ω(n^{3/2-4ε})

Upper Bound

Main Algorithmic Technique: Linear Sketches

Linear Sketches and Turnstile Streams

- Turnstile stream: Updates to characteristic vector of edges
 - x vector of integers of size $\binom{|V|}{2}$, initially x = (0, ..., 0)
 - Edge insertion $e_i: x \leftarrow x + (0, \dots, 0, 1, 0 \dots, 0)$ (*i*th unit vector)
 - Edge deletion e_i : $x \leftarrow x (0, \dots, 0, 1, 0 \dots, 0)$
- Sketching algorithm:
 - Choose sampling matrix A from dist. of matrices (randomized)
 - **(2)** Compute sketch $y = A \cdot x$ (deterministic) while processing the stream
 - Post-processing: Compute output from sketch y

Linear Sketches are Universal

- All known turnstile algorithms are linear sketches
- [Li, Nguyen, Woodruff, STOC 2014] For every turnstile alg., there is one that *behaves* the same and can be implemented as linear sketch
- Size of sketch at most log-factor larger than space of original alg.

- Given vector x, sample from non-zero coordinates u.a.r.
- [Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm with space $O(\log^2(n) \log \frac{1}{\delta})$ that performs L_0 -sampling with δ error

Algorithm (suppose perfect matching present)

- Input: Bipartite G = (A, B, E) with |A| = |B| = n
- Let $A' \subseteq A$ u.a.r. subset of nodes of size $n^{1-\epsilon}$
- For every a ∈ A' : Sample C ⋅ n^{1-ε} log n times from set of incident edges
- Output largest matching *M* induced by sampled edges

Lemma

 $\forall a \in A'$: at least min $\{\deg_G(a), n^{1-\epsilon}\}$ incident edges sampled w.h.p.

- Given vector x, sample from non-zero coordinates u.a.r.
- [Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm with space $O(\log^2(n) \log \frac{1}{\delta})$ that performs L_0 -sampling with δ error

Algorithm (suppose perfect matching present)

- Input: Bipartite G = (A, B, E) with |A| = |B| = n
- Let $A' \subseteq A$ u.a.r. subset of nodes of size $n^{1-\epsilon}$
- For every a ∈ A' : Sample C ⋅ n^{1-ε} log n times from set of incident edges
- Output largest matching M induced by sampled edges

 $G[A' \cup B]$

Lemma

 $\forall a \in A'$: at least min $\{\deg_G(a), n^{1-\epsilon}\}$ incident edges sampled w.h.p.

- Given vector x, sample from non-zero coordinates u.a.r.
- [Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm with space $O(\log^2(n) \log \frac{1}{\delta})$ that performs L_0 -sampling with δ error

Algorithm (suppose perfect matching present)

- Input: Bipartite G = (A, B, E) with |A| = |B| = n
- Let $A' \subseteq A$ u.a.r. subset of nodes of size $n^{1-\epsilon}$
- For every a ∈ A' : Sample C ⋅ n^{1-ε} log n times from set of incident edges
- Output largest matching *M* induced by sampled edges

A B

sampled edges

Lemma

 $\forall a \in A' : \text{at least min}\{\deg_G(a), n^{1-\epsilon}\} \text{ incident edges sampled w.h.p.}$

- Given vector x, sample from non-zero coordinates u.a.r.
- [Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm with space $O(\log^2(n) \log \frac{1}{\delta})$ that performs L_0 -sampling with δ error

Algorithm (suppose perfect matching present)

- Input: Bipartite G = (A, B, E) with |A| = |B| = n
- Let $A' \subseteq A$ u.a.r. subset of nodes of size $n^{1-\epsilon}$
- For every a ∈ A' : Sample C ⋅ n^{1-ε} log n times from set of incident edges
- Output largest matching M induced by sampled edges

A B

matching M

Lemma

 $\forall a \in A' : \text{at least min}\{\deg_G(a), n^{1-\epsilon}\} \text{ incident edges sampled w.h.p.}$

- Given vector x, sample from non-zero coordinates u.a.r.
- [Jowhari, Sağlam, Tardos, PODS 2011] There is a turnstile algorithm with space $O(\log^2(n) \log \frac{1}{\delta})$ that performs L_0 -sampling with δ error

Algorithm (suppose perfect matching present)

- Input: Bipartite G = (A, B, E) with |A| = |B| = n
- Let $A' \subseteq A$ u.a.r. subset of nodes of size $n^{1-\epsilon}$
- For every a ∈ A' : Sample C ⋅ n^{1-ε} log n times from set of incident edges
- Output largest matching M induced by sampled edges

Space Requirements: $\tilde{O}(n^{2-2\epsilon})$

Lemma

 $\forall a \in A'$: at least min $\{\deg_G(a), n^{1-\epsilon}\}$ incident edges sampled w.h.p.

Upper Bound (2)

Let M^* be a maximum matching in G, then

 $\mathbb{E}|M^* \cap G[A' \cup B]| = |M^*|/n^{\epsilon}$

Lemma We find a 1/2-approximation in graph $G[A' \cup B]$

Proof Idea

- 1. Nodes $A_1 \subseteq A$ of degree at most $n^{1-\epsilon}$:
 - Graph $G[A_1 \cup B]$ entirely sampled
 - Let M_1 be a maximum matching in $G[A_1 \cup B]$
- 2. Nodes $A_2 = A \setminus A_1$ of degree at least $n^{1-\epsilon}$:
 - Hall's theorem: All A_2 vertices can be matched in graph $G[A_2 \cup B]$

3.
$$\mathbb{E} \max\{M_1, M_2\} \geq \mathbb{E} |M^* \cap G[A' \cup B]|/2$$

Lower Bound

LBs via Simultaneous Communication Complexity

Simultaneous Communication Protocols

- Every party Pi holds a subgraph $G_i = (V, E_i)$ and $E_i \subseteq E$
- Every party sends message M_i to referee
- Referee computes output as a function of the messages

```
\begin{array}{ll} \mbox{Turnstile Algorithm} \rightarrow \mbox{Linear sketch} \rightarrow \mbox{Sim. Communication protocol} \\ ({\rm space } s) & ({\rm sketch \ size \ } \tilde{{\rm O}}(s)) & ({\rm longest \ message \ } \tilde{{\rm O}}(s)) \end{array}
```

Lemma

LB on size of any message M_i is LB on space of any turnstile algorithm

Global View

Perfect matching M in bipartite graph G = (A, B, E)

Global View

Each party should equally contribute to large global matching

$$M = M_1 \cup M_2 \cup \cdots \cup M_p$$

Global View

Local View

Local View

Vertex groups interconnected with perfect matchings

All perfect matchings are induced

By symmetry, M_i cannot be identified

Ruzsa-Szemerédi Graphs: Edge set can be partitioned into large induced matchings

Global View

Theorem For every $0 \le \epsilon \le 1$, every one-pass $O(n^{\epsilon})$ -approximation streaming algorithm requires space $\Omega(n^{3/2-4\epsilon})$.

 \rightarrow First lower bound for graph problems in the turnstile model

Our Result

In order to compute a n^{ϵ} -approximation to the maximum matching problem in the one-pass turnstile streaming model,

- space $\Omega(n^{3/2-4\epsilon})$ is required, and
- space $\tilde{O}(n^{2-2\epsilon})$ is sufficient.

Our Result

In order to compute a n^{ϵ} -approximation to the maximum matching problem in the one-pass turnstile streaming model,

- space $\Omega(n^{3/2-4\epsilon})$ is required, and
- space $\tilde{O}(n^{2-2\epsilon})$ is sufficient.

Independent Results

- [Assadi et al. arXiv 2015] Right answer: $n^{2-3\epsilon}$ (UB and LB)
- [Chitnis et al. arXiv 2015] Upper Bound: $n^{2-3\epsilon}$

Our Result

In order to compute a n^{ϵ} -approximation to the maximum matching problem in the one-pass turnstile streaming model,

- space $\Omega(n^{3/2-4\epsilon})$ is required, and
- space $\tilde{O}(n^{2-2\epsilon})$ is sufficient.

Independent Results

- [Assadi et al. arXiv 2015] Right answer: $n^{2-3\epsilon}$ (UB and LB)
- [Chitnis et al. arXiv 2015] Upper Bound: $n^{2-3\epsilon}$

Open Problems

- Particular graph classes?
- Matching size?

Thank you.