Approximating Semi-matchings in Streaming and in Two-party Communication ICALP 2013

Christian Konrad and Adi Rosén

LIAFA University Paris Diderot

July 9, 2013

Semi-matchings

Unweighted bipartite graph G = (A, B, E) with n = |A|

Definition:

A Semi-matching S is a subset of edges $S \subseteq E$ s.t. $\forall a \in A : \deg_S(a) = 1$

Scheduling: Equivalent to scheduling a set of unit length jobs on identical machines with assignment constraints

Semi-matchings

Unweighted bipartite graph G = (A, B, E) with n = |A|

Definition:

A Semi-matching S is a subset of edges $S \subseteq E$ s.t. $\forall a \in A : \deg_S(a) = 1$

Scheduling: Equivalent to scheduling a set of unit length jobs on identical machines with assignment constraints

Optimality of a Semi-matching

Semi-matching S^* is *optimal* if \forall semi-matchings S : deg max $S^* \leq$ deg max S

Stronger Notion of Optimality [Harvey et al. WADS 2003]

- Absence of degree-minimizing paths \iff
- Minimization of convex cost functions: $\sum_{b \in B} f(\deg_S(b))$

Algorithm: $O(\sqrt{nm} \log n)$ time [Fakcharoenphol et al. ICALP 2010]

Streaming

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access

How much RAM is required for the computation of f?

• Streaming Complexity:

- Number of passes p, usually $\in O(1)$
- Memory space (sublinear in the input size)

$$G = (A, B, E)$$
 bipartite, $n = |A| = |B|$, $m = |E|$

Graph Stream: sequence of edges, any order $(4, 5), (8, 7), (1, 3), (1, 7), \ldots$

Semi-matching Problem in Streaming:

Compute approximate Semi-matching in one pass using space $o(n^2)$

Notion of Approximation: *S* is a *c*-approximation if:

 $\deg\max S \leq c \deg\max S^*$

Memory Considerations: deciding basic graph properties such as bipartiteness and connectivity: $\Omega(n)$ space [Feigenbaum, Kannan, Mcgregor, Suri, Zhang, SODA 2005]

Semi-streaming Model: O(n polylog n) space

Question: Approximation factor/space trade-off?

Model: Edge set is split between Alice and Bob

Question: Approximation factor/message size trade-off?

Connection to Streaming:

Lower bound on message size for communication protocol is lower bound for space of any streaming algorithm

Starting Point / Prior Work

Online Model

- A vertices arrive with incident edges
- Match incoming A vertex irrevocably to a B vertex

Greedy Algorithm

[Azar, Naor, Rom, SODA 1992]

Match incoming A vertex to B vertex that currently has the minimal degree

 $\rightarrow (\lceil \log(n) \rceil + 1)$ -competitive (tight)

Streaming with Vertex Arrival Order

- Edges are sorted with respect to their incident A vertex
- Previous Greedy algorithm is a (⌈log(n)⌉ + 1)-approx. semi-streaming algorithm (using Õ(n) space) if input stream is in vertex arrival order

Adversarial Order: no assumption on order of input stream

• 1-pass: $orall 0 \leq \epsilon \leq 1$: $ilde{\mathrm{O}}(n^{1+\epsilon})$ space , $\mathrm{O}(n^{(1-\epsilon)/2})$ approximation

 $ightarrow ilde{\mathrm{O}}({\it n})$ space, $\mathrm{O}(\sqrt{{\it n}})$ approximation

• $\log(n)$ -pass: $\tilde{O}(n)$ space, $O(\log n)$ approximation

Vertex Arrival Order: edges sorted with respect to incident A vertex

• 1-pass: $\tilde{O}(n)$ space, $O(\log n)$ approximation [Azar, Naor, Rom, SODA 1992]

One-way Two-party Communication Lower Bound

Deterministic protocols that communicate edges: ∀ε > 0 : O(n^{1/(1+ε)c+1}) approximation requires cn edges

Adversarial Order: no assumption on order of input stream

• 1-pass: $\forall 0 \leq \epsilon \leq 1 : \tilde{\mathrm{O}}(n^{1+\epsilon})$ space , $\mathrm{O}(n^{(1-\epsilon)/2})$ approximation

 $ightarrow \tilde{\mathrm{O}}(n)$ space, $\mathrm{O}(\sqrt{n})$ approximation

• $\log(n)$ -pass: $\tilde{O}(n)$ space, $O(\log n)$ approximation

Vertex Arrival Order: edges sorted with respect to incident A vertex

• 1-pass: $\tilde{O}(n)$ space, $O(\log n)$ approximation [Azar, Naor, Rom, SODA 1992]

One-way Two-party Communication Lower Bound

- Deterministic protocols that communicate edges: ∀ε > 0 : O(n^{1/(1+ε)c+1}) approximation requires cn edges
- \rightarrow 1-pass $\mathrm{O}(\sqrt{n})\text{-approx.}$ tight among deterministic alg. that store n edges
- \rightarrow Vertex arrival order helps

Suppose that G = (A, B, E) contains a perfect matching M^*

Strategy: Run two Greedy algorithms in parallel (Goal: 2d-Approx.)

$$\begin{array}{l} \bullet \quad S_1 \leftarrow \varnothing \\ \text{for all edges } ab \text{ in stream do} \\ \text{ if } \deg_{S_1}(a) = 0 \text{ and } \deg_{S_1}(b) < d \text{ then } \\ S_1 \leftarrow S_1 \cup \{ab\} \\ \text{ return } S_1 \end{array}$$

(2) for all $a \in A$: store arbitrary k incident edges to a in set S_2

Analysis

- Lemma: $|S_1| \ge \frac{d}{d+1}n$ (at most $\frac{1}{d+1}n$ A vertices unmatched in S_1)
- Lemma: If $k = \frac{n}{d(d+1)}$ then unmatched vertices can be matched with maximal degree d using edges of S_2

ightarrow 2*d*-approximation using space $ilde{\mathrm{O}}(nk) = ilde{\mathrm{O}}(n \cdot rac{n}{d(d+1)})$

Theorem: $\forall \epsilon \geq 0$: one-pass, $O(n^{(1-\epsilon)/2})$ -approximation, $\tilde{O}(n^{1+\epsilon})$ space

Upper Bounds

- Alice sends *n* edges: $O(\sqrt{n})$ approximation
- Alice sends 2n edges: $O(n^{1/3})$ approximation
- Conjecture: Alice sends *cn* edges: O(*n*^{1/(*c*+1)}) approximation

Lower Bounds

- For protocols communicating edges: ∀ε > 0 : O(n¹(1+ε)c+1</sup>) approximation requires *cn* edges
- For any protocol: $\forall \epsilon > 0$: $O(n^{\frac{1}{(1+\epsilon)c+1}})$ approximation requires *cn* bits

Alice $\xrightarrow{\text{Message}}$ Bob $\xrightarrow{\text{c-approximate Semi-matching}}$ $G_1 = (A, B, E_1)$ $G_2 = (A, B, E_2)$

Strategy: Alice sends a *c*-semi-matching skeleton $S \subseteq E_1$:

 $\forall A' \subseteq A : \deg \max \operatorname{semi}(A', B, S) \leq c \deg \max \operatorname{semi}(A', B, E_1)$

Lemma: Alice sends *c*-semi-matching skeleton \rightarrow Bob outputs (*c* + 1)-approximation

Upper Bounds for Skeletons:

- *n* edges: $O(\sqrt{n})$ -semi-matching skeleton (tight up to a constant)
- 2*n* edges: $O(n^{1/3})$ -semi-matching skeleton (tight up to a constant)
- **Conjecture:** cn edges: $O(n^{1/(c+1)})$ -semi-matching skeleton

Lower Bound for Skeletons: $\forall \epsilon > 0$: an $O(n^{\frac{1}{(1+\epsilon)c+1}})$ -semi-matching skeleton requires *cn* edges

Semi-matching Skeleton with *n* Edges:

Optimal semi-matching is a (\sqrt{n}) -semi-matching skeleton

Semi-matching Skeleton with 2n Edges:

$$S = \operatorname{semi}(A, B, E_1)$$

$$A_i = \Gamma_S(b_i)$$

$$S' = S \cup \bigcup_i \operatorname{semi}(A_i, B, E_1)$$

S' is a $(2n^{1/3})$ -semi-matching skeleton

Conjecture:

There is an $O(n^{1/(c+1)})$ -semi-matching skeleton with *cn* edges

Lower Bound: $\forall \epsilon > 0$: an $O(n^{\frac{1}{(1+\epsilon)c+1}})$ -semi-matching skeleton requires *cn* edges

Hard Instances

Alice: edge set E_1 of a complete bipartite graph $K_{n,\sqrt{n}}$

Hard Instances

Alice: edge set E_1 of a complete bipartite graph $K_{n,\sqrt{n}}$

Alice sends *n* edges *M* to Bob

Lemma: $\exists A_1 \subset A \text{ with } |A_1| = \sqrt{n} \text{ and } |\Gamma_M(A_1)| = 1 \text{ (counting argument)}$

Hard Instances

Alice: edge set E_1 of a complete bipartite graph $K_{n,\sqrt{n}}$

Alice sends n edges M to Bob

Lemma: $\exists A_1 \subset A \text{ with } |A_1| = \sqrt{n} \text{ and } |\Gamma_M(A_1)| = 1 \text{ (counting argument)}$

Bob: E_2 : edges connecting each $a \in A \setminus A_1$ to a new vertex

Hard Instances

Alice: edge set E_1 of a complete bipartite graph $K_{n,\sqrt{n}}$

Graph has perfect matching (\blacksquare + \blacksquare):

 $\deg\max S^*=1$

Output of Bob (\blacksquare + \blacksquare):

 $\deg\max\operatorname{semi}(A,B,M\cup E_2)=\sqrt{n}$

 $n \text{ edges}
ightarrow \Omega(\sqrt{n})\text{-approximation}$

Hard Instances

Alice: edge set E_1 of a complete bipartite graph $K_{n,\sqrt{n}}$

Graph has perfect matching $(\blacksquare + \blacksquare)$:

 $\deg\max S^*=1$

Output of Bob (\blacksquare + \blacksquare):

 $\operatorname{\mathsf{deg}} \max \operatorname{\mathsf{semi}}(A,B,M\cup E_2) = \sqrt{n}$

 $n \text{ edges}
ightarrow \Omega(\sqrt{n})\text{-approximation}$

Extensions

- cn edges
- edges to bits

Conclusion

Summary:

- Deterministic 1-pass $\tilde{O}(n^{1+\epsilon})$ space streaming algorithms with approximation factor $O(n^{\frac{1-\epsilon}{2}})$ $\tilde{O}(n)$ space $\rightarrow O(\sqrt{n})$ approximation
- Two optimal deterministic one-way two-party protocols with approximation factors $O(\sqrt{n})$ and $O(n^{1/3})$
- LB on one-way two-party communcation: computing an O(n^{1/(1+c)c+1}) approximation deterministically requires sending *cn* edges

Open Problems:

- Is $O(\sqrt{n})$ -approximation tight for 1-pass streaming with space $\tilde{O}(n)$?
- Does randomization help?

Conclusion

Summary:

- Deterministic 1-pass $\tilde{O}(n^{1+\epsilon})$ space streaming algorithms with approximation factor $O(n^{\frac{1-\epsilon}{2}})$ $\tilde{O}(n)$ space $\rightarrow O(\sqrt{n})$ approximation
- Two optimal deterministic one-way two-party protocols with approximation factors $O(\sqrt{n})$ and $O(n^{1/3})$
- LB on one-way two-party communcation: computing an O(n¹(1+e)c+1</sup>) approximation deterministically requires sending *cn* edges

Open Problems:

- Is $O(\sqrt{n})$ -approximation tight for 1-pass streaming with space $\tilde{O}(n)$?
- Does randomization help?
- Thank you for your attention