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Unweighted bipartite graph G = (A, B, E) with n = |A|

G Matching Semi-matching
Definition:

A Semi-matching S is a subset of edges S C E s.t. Va€ A:degs(a) =1
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Optimality of a Semi-matching

Optimality of a Semi-matching

Semi-matching S* is optimal if V semi-matchings S : degmax S™ < degmax$

1 2

1 1

3 2
not optimal optimal

Stronger Notion of Optimality [Harvey et al. WADS 2003]

@ Absence of degree-minimizing paths <=

o Minimization of convex cost functions: }_, g f(degs(b))

Algorithm: O(y/nmlog n) time [Fakcharoenphol et al. ICALP 2010]
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sequential access random access

DO PR

o Objective: compute some function f(xi,...,x,) given only sequential
access

Streaming

How much RAM is required for the computation of 7

e Streaming Complexity:

o Number of passes p, usually € O(1)
o Memory space (sublinear in the input size)
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Computing Semi-matchings in the Streaming Model

G = (A, B, E) bipartite, n = |A| = |B|, m = |E|

Graph Stream: sequence of edges, any order
(4,5),(8,7),(1,3),(1,7),...

Semi-matching Problem in Streaming;:
Compute approximate Semi-matching in one pass using
space o(n?)

Notion of Approximation: S is a c-approximation if:

degmax S < cdegmax S*

Memory Considerations: deciding basic graph properties such as bipartiteness
and connectivity: (n) space [Feigenbaum, Kannan, Mcgregor, Suri, Zhang, SODA 2005]

Semi-streaming Model: O(n polylog n) space

Question: Approximation factor/space trade-off?
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Semi-matchings in One-way Two-party Communication

Model: Edge set is split between Alice and Bob

. Message ) ) .
Alice —>» Bob —>» c-approximate Semi-matching

@ @ @
O O\ ® O—0B
O @ X6 @ ©
® @
® ®

Question: Approximation factor/message size trade-off?

Connection to Streaming;:
Lower bound on message size for communication protocol is lower bound for
space of any streaming algorithm
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Starting Point / Prior Work

Online Model

@ A vertices arrive with incident edges

A B

@ Match incoming A vertex irrevocably to o
a B vertex i \

N ©)

Greedy Algorithm , o

arrival

[Azar, Naor, Rom, SODA 1992] order of (< O
. . A nodes :

Match incoming A vertex to B vertex that 1)

currently has the minimal degree :
— ([log(n)] + 1)-competitive (tight) A :Z : o

Streaming with Vertex Arrival Order

o Edges are sorted with respect to their incident A vertex

o Previous Greedy algorithm is a ([log(n)] + 1)-approx. semi-streaming
algorithm (using O(n) space) if input stream is in vertex arrival order
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Results: Streaming Algorithms

Adversarial Order: no assumption on order of input stream
e l-pass: V0 < ¢ < 1: O(n**) space , O(n*=9)/2) approximation
— O(n) space, O(y/n) approximation

o log(n)-pass: O(n) space, O(log n) approximation

Vertex Arrival Order: edges sorted with respect to incident A vertex

o 1-pass: O(n) space, O(log n) approximation [Azar, Naor, Rom, SODA 1992]

One-way Two-party Communication Lower Bound

1
@ Deterministic protocols that communicate edges: Ve > 0: O(n(Fei1)
approximation requires cn edges
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Results: Streaming Algorithms

Adversarial Order: no assumption on order of input stream
e l-pass: V0 < ¢ < 1: O(n**) space , O(n*=9)/2) approximation
— O(n) space, O(y/n) approximation

o log(n)-pass: O(n) space, O(log n) approximation

Vertex Arrival Order: edges sorted with respect to incident A vertex

o 1-pass: O(n) space, O(log n) approximation [Azar, Naor, Rom, SODA 1992]

One-way Two-party Communication Lower Bound

1
@ Deterministic protocols that communicate edges: Ve > 0: O(n(Fei1)
approximation requires cn edges

— 1-pass O(+/n)-approx. tight among deterministic alg. that store n edges
— Veertex arrival order helps
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One-pass Streaming Algorithm

Suppose that G = (A, B, E) contains a perfect matching M*
Strategy: Run two Greedy algorithms in parallel (Goal: 2d-Approx.)

Q 5«0
for all edges ab in stream do
if degs (a) = 0 and degg, (b) < d then
S1+ S U {ab}
return S;

M*(a)
@ for all a € A : store arbitrary k incident edges to a in set S,

Analysis
® Lemma: |5 > d+1” (at most d%rl" A vertices unmatched in 51)

@ Lemma: If k= then unmatched vertices can be matched with maximal

d(d+1)
degree d using edges of Sy

— 2d-approximation using space O(nk) = O(n - d+1))

Theorem: Ve > 0 : one-pass, O(n(1=€)/2)-approximation, O(n'*€) space
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Results: One-way Two-party Communication

Message . . .
Alice —>» Bob —>» c-approximate Semi-matching

G = (A,B,E) G, = (A,B,E)

Upper Bounds
@ Alice sends n edges: O(y/n) approximation
o Alice sends 2n edges: O(n'/*®) approximation

o Conjecture: Alice sends cn edges: O(n'/(¢*1) approximation

Lower Bounds

1 .
@ For protocols communicating edges: Ve > 0 : O(n@F9)<1) approximation
requires cn edges

71 . .
@ For any protocol: Ve > 0 : O(n@F9<+1) approximation requires cn bits
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Semi-matching Skeletons

. Message ) . .
Alice —>» Bob —> c-approximate Semi-matching

G1 = (A, B, E1) Gy = (A, B, E2)

Strategy: Alice sends a c-semi-matching skeleton S C E;:

VA" C A: degmaxsemi(A’, B, S) < cdeg maxsemi(A’, B, E;)

Lemma: Alice sends c-semi-matching skeleton
— Bob outputs (¢ + 1)-approximation

Upper Bounds for Skeletons:
o n edges: O(y/n)-semi-matching skeleton (tight up to a constant)
e 2n edges: O(n'/?)-semi-matching skeleton (tight up to a constant)
o Conjecture: cn edges: O(nl/(””)—semi—matching skeleton

1
Lower Bound for Skeletons: Ve > 0 : an O(n@F < )-semi-matching
skeleton requires cn edges
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Semi-matching Skeletons (2)

Semi-matching Skeleton with n Edges:
Optimal semi-matching is a (y/n)-semi-matching skeleton

Semi-matching Skeleton with 2n Edges:

S = semi(A B, E)
A = Ts(b)
s = SUUsemi(A;,B,El)

S’ is a (2n"/?)-semi-matching skeleton

Conjecture:
There is an O(n'/(¢*1))-semi-matching skeleton with
cn edges

71 - . -
Lower Bound: Ve > 0 : an O(nC(¥<)<iT )-semi-matching skeleton requires cn
edges
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Deterministic Communication Lower Bound

Suppose that Alice is allowed to send a set M of n edges

Hard Instances
Alice: edge set E; of a complete bipartite graph K, 5

A B
o——°
° o
@ [5)
° °
° :
°
°
6
°
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Deterministic Communication Lower Bound

Suppose that Alice is allowed to send a set M of n edges

Hard Instances
Alice: edge set E; of a complete bipartite graph K, 5
A B

Alice sends n edges M to Bob
Lemma: JA; C A with |A1] = +/n and
[Fm(A1)| =1 (counting argument)

Ay
(1A1] = v/n)
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Deterministic Communication Lower Bound

Suppose that Alice is allowed to send a set M of n edges

Hard Instances
Alice: edge set E; of a complete bipartite graph K, 5

A B
Alice sends n edges M to Bob

:: ::: Lemma: 34, C A with |A;| = /A and

[Fm(A1)| =1 (counting argument)

Bob: E;: edges connecting each a € A\ A;
to a new vertex

(1A1] = v/n)
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Deterministic Communication Lower Bound

Suppose that Alice is allowed to send a set M of n edges

Hard Instances
Alice: edge set E; of a complete bipartite graph K, 5
A B

Graph has perfect matching (H + H):
degmaxS* =1

Output of Bob (H + H):
deg maxsemi(A, B, MU E;) = \/n

Ay
(1A1] = v/n)

-
|
|
1
1
|
|
|
|
|
L=

n edges — (+/n)-approximation
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Deterministic Communication Lower Bound

Suppose that Alice is allowed to send a set M of n edges

Hard Instances
Alice: edge set E; of a complete bipartite graph K, 5
A B

Graph has perfect matching (H + H):
degmaxS* =1

Output of Bob (H + H):
deg maxsemi(A, B, MU E;) = \/n

Ay
(1A1] = v/n)

-
|
|
1
1
|
|
|
|
|
L=

n edges — (+/n)-approximation

Extensions
@ cn edges

@ edges to bits
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Conclusion

Summary:

@ Deterministic 1-pass (N)(nHe) space streaming algorithms with
approximation factor O(nkTé)
O(n) space — O(y/n) approximation

@ Two optimal deterministic one-way two-party protocols with
approximation factors O(+y/n) and O(n*/?)

1
o LB on one-way two-party communcation: computing an O(n(+e)<1)
approximation deterministically requires sending cn edges

Open Problems:

o Is O(+/n)-approximation tight for 1-pass streaming with space O(n)?

@ Does randomization help?
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@ Two optimal deterministic one-way two-party protocols with
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1
o LB on one-way two-party communcation: computing an O(n(+e)<1)
approximation deterministically requires sending cn edges

Open Problems:

o Is O(+/n)-approximation tight for 1-pass streaming with space O(n)?

@ Does randomization help?

Thank you for your attention
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