
Streaming Partitioning of Sequences and Trees
ICDT 2016

Christian Konrad

Reykjavik University

15.03.2016



Outline

1 Motivation: XML Fragmentation

2 Problem Definitions

3 Previous Work

4 Streaming Algorithms for Partitioning Integer Sequences

5 Streaming Algorithms for Partitioning Trees

6 Outlook

Christian Konrad Streaming Partitioning of Sequences and Trees 2 / 28



Motivation
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XML Queries

Querying massive XML Databases
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XML Queries

Querying massive XML Databases

Distributed Query Processing
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XML Fragmentation

How to fragment XML Documents?

Structured (taking XML schema into account)

Ad-hoc

Survey: [Braganholo, Mattoso, SIGMOD 2014]

Important: Fragments are of similar sizes for good load balancing

Algorithmic Perspective
Challanging if XML documents are massive

Objective of this Work

Develop space efficient streaming algorithms for fragmenting XML
documents

Focus on load balancing aspect
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Problem Definitions
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Partitioning Trees

Partitioning Trees: Remove p− 1 edges from a node-weighted tree s.t.
maximum weight of the resulting subtrees is minimized

n: number of nodes of input tree (n = 9)

p: number of partitions to be created (p = 3)

B: Bottleneck value, weight of heaviest subtree (B = 7)

B∗: Bottleneck value of optimal partitioning (B∗ = 7)
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Partitioning Integer Sequences

Partitioning Integer Sequences: Split sequence X = X [1] . . .X [n]
into p blocks such that maximum weight of a block is minimized

X = 5 6 11 2 9︸ ︷︷ ︸∑
=33

| 14 3 8 1︸ ︷︷ ︸∑
=26

| 11 22︸ ︷︷ ︸∑
=33

n: length of sequence (n = 11)

p: number of partitions to be created (p = 3)

B: Bottleneck value, weight of heaviest partition (B = 33)

B∗: Bottleneck value of optimal partitioning (B∗ = 33?)
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Streaming

sequential access random access

Streaming

Objective: compute some function f (x1, . . . , xn) given only
sequential access

How much RAM is required for the computation of f ?

Motivation: massive data sets (too large for storage in RAM)

Streaming Complexity

Number of passes p, usually ∈ O(1) this talk: p = 1, 2
Memory space s ∈ o(n)
Update-time t, usually ∈ O(1) (or O(log n))
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Streaming Algorithms for Sequences and Trees

Partitioning Sequences in the Streaming Model:

Input Stream: sequence X = X1X2 . . .Xn

Output: positions of partition separators

Partitioning Trees in the Streaming Model:

Input Stream: depth-first-traversal of input tree

241223314122113312

Output: IDs of root nodes of partitions (1, 3, 6)
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XML Document is a Depth-First-Traversal

<?xml version="1.0"?>

<university name="Reykjavik University">

<lab name="DATALAB"></lab>

<lab name="CADIA"></lab>

<lab name="ICLT"></lab>

<lab name="ICE-TCS">

<members>

<professor>Luca Aceto</professor>

<professor>Magnus Halldorsson</professor>

<postdoc>Ignacio Fabregas</postdoc>

<phd-student>Christian Bean</phd-student>

</members>

<location>3rd floor, Mars</location>

</lab>

<lab name="ICE-ROSE"></lab>

</university>

ul1l1l1l1l1l1l1mp1p1p1p1p2p2p3p3ml2l2l1l1l1u

Depth-first traversal:

Opening tag x : down-step

Closing tag x : up-step
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Previous Work
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Previous Work: Partitioning Integer Sequences

Dynamic Programming:

Bokhari 1988 O(n3p)
Anily & Federgruen 1991 O(n2p)
Hansen & Liu 1992 O(n2p)

Iterative Improvement:

Manne & Sorevik 1995 O(np log p)
Olstadt & Manne 1995 O(np)

Other Results:

Nicol 1991 O(n + p2 log2 n)

Charikar, Chekuri & Motwani 1996 O(n + p2 log2 n)
Han, Narahari & Choi 1992 O(n + p1+ε), for any ε > 0

Approach based on the Probe Algorithm:

Frederickson 1991 O(n)
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Probe Algorithm

Probe(B):

Traverse X from left-to-right setting up maximal partitions so that
partition weights do not exceed B

Return true if successful, otherwise false

Example: p = 3,
∑

i Xi = 92, try Probe(31)

5 6 11 2 9 14 3 8 1 11 22
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Probe Algorithm

Probe(B):

Traverse X from left-to-right setting up maximal partitions so that
partition weights do not exceed B

Return true if successful, otherwise false

Example: p = 3,
∑

i Xi = 92, try Probe(31)

5 6 11 2 | 9 14 3 8 1 11 22

24 + 9 = 33 > 31
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∑
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Probe Algorithm

Probe(B):

Traverse X from left-to-right setting up maximal partitions so that
partition weights do not exceed B

Return true if successful, otherwise false

Example: p = 3,
∑

i Xi = 92, try Probe(31)

5 6 11 2 | 9 14 3 | 8 1 11 22
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Probe Algorithm

Probe(B):

Traverse X from left-to-right setting up maximal partitions so that
partition weights do not exceed B

Return true if successful, otherwise false

Example: p = 3,
∑

i Xi = 92, try Probe(31)

5 6 11 2 | 9 14 3 | 8 1 11 22

20 + 22 = 42 > 31→ return false.

Last partition larger than 31 → optimal bottleneck B∗ ≥ 32

Christian Konrad Streaming Partitioning of Sequences and Trees 14 / 28



Probe Algorithm

Probe(B):

Traverse X from left-to-right setting up maximal partitions so that
partition weights do not exceed B

Return true if successful, otherwise false

Example: p = 3,
∑

i Xi = 92, try Probe(31)

5 6 11 2 | 9 14 3 | 8 1 11 22

20 + 22 = 42 > 31→ return false.

Trivial Bounds on B∗: (m = maxXi )

1 ≤ B∗ ≤ nm

Binary search: logmn calls to Probe → O(n log(mn)) algorithm
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Streaming Algorithms for
Partitioning Integer Sequences
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Baseline Algorithm

Observation:
Probe is a one-pass streaming alg. with O(p log n + log(mn)) space

One-pass Streaming Algorithm using Probe

Suppose m, n are known in advance

Then optimal bottleneck value B∗ is bounded: 1 ≤ B∗ ≤ mn

Run Probe(B) for B = 1, (1 + ε), (1 + ε)2, . . . ,mn in parallel

X1X2X3X4 . . .Xn−1Xn

Probe(1) Probe(1 + ε) Probe((1 + ε)2) Probe(mn)

Return: Partitioning with smallest feasible value

→ (1 + ε)-approximation using Θ(log(mn)/ε) copies of Probe
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q Θ(log p/ε)
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Our Results

Algorithm: One-pass (1 + ε)-approximation streaming algorithm with

1 O(log(mn)p/ε) space,

2 Optimal O(1) update-time.

Lower Bounds:

Ω(n) is needed for exact algorithms

Ω( 1
ε log n) is needed for (1 + ε)-approximation
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New Technique: Coarsening

Technique in Computer Science:
Replace large (complicated) object by smaller (simpler) objects that cap-
ture important properties of inital object sufficiently well

E.g. Kernelization, Distance Oracles, Graph Sparsification, . . .

Partitioning Sequences: Coarse Version

1 Compute coarse version of smaller size

2 Partition coarse version exactly (p = 2)

3 Deduce partitioning of original version (B = 34, B∗ = 33)
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Coarse Versions

Definition: c-coarse Version

X: 4 3 2 8 7 2 1 7 7 8 5 2 3 1
↓

Y: 9 15 10 15 11

(4, 5) (8,7) (2,9) (7,8) (5,6)

(base, increment)

Split elements of coarse version Y into base and increment

c-coarse version → maximal increment at most c (here: 9-coarse)

Lemma: Let B ′ be bottleneck value of opt. partitioning of c-coarse
version Y . Then opt. partitioning of X has bottleneck value B∗+ c ≥ B ′.

Sε
p -coarse version suffices, (S =

∑
i Xi total weight), since B∗ ≥ S/p

Length of coarse version: O(p/ε) independent of n!
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Algorithm

Example: p = 2, ε = 1/2 (i.e., compute a 1.5-approximation)

S : 4 3 2 8 7 2 1 7 7 8 5 2 3

Algorithm:

1 Fill memory with items from stream

2 Compress into Sε
p -coarse version and repeat

Mem: (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Christian Konrad Streaming Partitioning of Sequences and Trees 20 / 28



Algorithm

Example: p = 2, ε = 1/2 (i.e., compute a 1.5-approximation)

S : 4 3 2 8 7 2 1 7 7 8 5 2 3

Algorithm:

1 Fill memory with items from stream

2 Compress into Sε
p -coarse version and repeat

Mem: (4, 0) (3, 0) (2, 0) (8, 0) (7, 0) (2, 0) (1, 0)

Sε
p =

27· 12
2 = 6.75
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Algorithm

Example: p = 2, ε = 1/2 (i.e., compute a 1.5-approximation)

S : 4 3 2 8 7 2 1 7 7 8 5 2 3

Algorithm:

1 Fill memory with items from stream

2 Compress into Sε
p -coarse version and repeat

Mem: (4, 5) (8, 0) (7, 3) (7, 0) (7, 0) (8, 0) (5, 0)

Sε
p =

54· 12
2 = 13.5
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Algorithm

Example: p = 2, ε = 1/2 (i.e., compute a 1.5-approximation)

S : 4 3 2 8 7 2 1 7 7 8 5 2 3

Algorithm:

1 Fill memory with items from stream

2 Compress into Sε
p -coarse version and repeat

Mem: (4, 13) (8, 0) (7, 10) (7, 0) (7, 13) (8,0) (5,0)

Sε
p =

54· 12
2 = 13.5
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Algorithm

Example: p = 2, ε = 1/2 (i.e., compute a 1.5-approximation)

S : 4 3 2 8 7 2 1 7 7 8 5 2 3

Algorithm:

1 Fill memory with items from stream

2 Compress into Sε
p -coarse version and repeat

Mem: (4, 13) (7, 10) (7, 13) (8, 0) (5, 0) (8,0) (7, 0)

Christian Konrad Streaming Partitioning of Sequences and Trees 20 / 28



Algorithm

Example: p = 2, ε = 1/2 (i.e., compute a 1.5-approximation)

S : 4 3 2 8 7 2 1 7 7 8 5 2 3

Algorithm:

1 Fill memory with items from stream

2 Compress into Sε
p -coarse version and repeat

Mem: (4, 13) (7, 10) (7, 13) (2, 0) (3, 0) (8,0) (7, 0)

Sε
p =

59· 12
2 = 14.75
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Algorithm

Example: p = 2, ε = 1/2 (i.e., compute a 1.5-approximation)

S : 4 3 2 8 7 2 1 7 7 8 5 2 3

Algorithm:

1 Fill memory with items from stream

2 Compress into Sε
p -coarse version and repeat

Mem: (4,13) (7,10) (7, 13) (2, 3) (3, 0) (8,0) (7, 0)

Coarse version: 17 17 20 5

Bottleneck value of resulting partitioning: B = 34

Optimal bottleneck value: B∗ = 32
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Ω(n) Lower Bound for Exact Algorithms

Hard Communication Problem: Index Problem

Alice M−→ Bob −→ S [I ]

S ∈ {0, 1}N I ∈ {1, 2, . . . ,N}

Fact: |M| ∈ Ω(n), for randomized protocols with bounded error

Reduction:

Alice: S = 0, 1, 0, 0, 1 generates X1 = 13 31 13 13 31

Bob: I = 4 generates X2 = 4 . . . 4︸ ︷︷ ︸
2I−N−1

2 = 4 4 2

Optimal split of X1 ◦ X2 : 13 31 13 13 | 31 4 4 2, no perfect split

If S [4] = 1 then: 13 31 13 3 | 1 31 4 4 2, perfect split
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Algorithm: Summary

Algorithm

Compute (Sε/p)-coarse version of length O(p/ε) in one pass

Post-processing: Partition coarse version optimally and deduce
(1 + ε)-partitioning of initial instance

Properties of Algorithm

O(p log(mn)/ε) space

Can be implemented with optimal O(1) update-time

What is the correct space complexity?

Ω(n) for exact algorithms

Ω(log(n)/ε) for (1 + ε)-approximations
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Streaming Algorithms for
Partitioning Trees
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Coarse Version of Trees

Structure Tree

Compute coarse structure tree consisting of O(p2/ε) nodes

Pick subset of breakpoint nodes U = {u1, u2, . . . } ordered w.r.t. a
depth-first-traversal

Let L = {lca(ui , ui+1) : i} be the set of lowest-common-ancestors of
consecutive breakpoints

Structure tree built on nodes L ∪ U

u1 u1

u3 u3

u4 u4

u2 u5 u2 u5

Figure: U: highlighted nodes. L: nodes within boxes.
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Good Breakpoints

Breakpoints

Compute coarse-version of sequence of down-steps X ′ of
depth-first-traversal X :

X ′ = 2 4 1 2 3 2 3 2 1 2 1 3 2 3

5-coarse version of X ′:

7 7 6 7 3
2 4 1 | 2 3 2 | 3 2 1 2 | 1 3 2 | 3

Bold elements define U

→ Reduction to Sequences
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Algorithm: Summary

Algorithm

2 passes required for computing structure tree

Post-processing: Partition structure tree optimally and deduce
(1 + ε)-approximate partitioning

Properties of Algorithm

O(p2 log(mn)/ε) space

Two passes

Can be implemented with optimal O(1) update-time

Open Questions

Can space be reduced to O(p log(mn)/ε)?

One pass?

Christian Konrad Streaming Partitioning of Sequences and Trees 26 / 28



Conclusion

Conclusion

Modern applications provide new perspectives on old problems

New insight: Coarsening

Where to go from here?

XML documents: Partitioning respecting underlying structure

Leightweight streaming algorithms for other partitioning problems?

Prove space optimality
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Thank You for Listening.
Questions?
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