
The Streaming Complexity of Validating XML
Documents

Christian Konrad
christian.konrad@liafa.jussieu.fr

and
Frédéric Magniez

frederic.magniez@liafa.jussieu.fr

LIAFA
University Paris Diderot - Paris 7

Paris

ICDT 2012

What is XML?

XML document: sequence of opening and closing tags

<r>

<a>
<a>
<c></c>

<a>
<a>

<c></c>

</ r>

Notation: rbaaaaccbbbbaaaabccr
pos(a),pos(a): position in XML document
depth(a), depth(a): depth of corresp. node

Depth first tree traversal: down step gives opening tag, up
step gives closing tag

Christian Konrad Streaming XML Validity 2 / 20

Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

raabbr is well-formed

rabbar is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

r → b∗c+

b → a∗c?|ε
a → ε

c → ε

Difficulty: relate each label to labels of its children

not valid

Christian Konrad Streaming XML Validity 3 / 20

Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

raabbr is well-formed

rabbar is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

r → b∗c+

b → a∗c?|ε
a → ε

c → ε

Difficulty: relate each label to labels of its children

not valid

Christian Konrad Streaming XML Validity 3 / 20

Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

raabbr is well-formed

rabbar is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

r → b∗c+

b → a∗c?|ε
a → ε

c → ε

Difficulty: relate each label to labels of its children

not valid

Christian Konrad Streaming XML Validity 3 / 20

Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

raabbr is well-formed

rabbar is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

r → b∗c+

b → a∗c?|ε
a → ε

c → ε

Difficulty: relate each label to labels of its children

not valid

Christian Konrad Streaming XML Validity 3 / 20

Stream Computation

Objective: compute some function f (x1, . . . , xn) given only
sequential access

x1 x2 x3 x4 x5 x6 . . . xn

How much RAM is required for the computation of f ?

Motivation: massive data sets
Storage on external disks, cheap sequential access
Data streams over the internet
XML databases can be huge

Scenarios:
multiple passes
deterministic/randomized
bidirectional
. . .
auxiliary streams (external memory)

Christian Konrad Streaming XML Validity 4 / 20

Stream Computation

Objective: compute some function f (x1, . . . , xn) given only
sequential access

x1 x2 x3 x4 x5 x6 . . . xn

How much RAM is required for the computation of f ?

Motivation: massive data sets
Storage on external disks, cheap sequential access
Data streams over the internet
XML databases can be huge

Scenarios:
multiple passes
deterministic/randomized
bidirectional
. . .
auxiliary streams (external memory)

Christian Konrad Streaming XML Validity 4 / 20

Stream Computation

Objective: compute some function f (x1, . . . , xn) given only
sequential access

x1 x2 x3 x4 x5 x6 . . . xn

How much RAM is required for the computation of f ?

Motivation: massive data sets
Storage on external disks, cheap sequential access
Data streams over the internet
XML databases can be huge

Scenarios:
multiple passes
deterministic/randomized
bidirectional
. . .
auxiliary streams (external memory)

Christian Konrad Streaming XML Validity 4 / 20

Stream Computation

Objective: compute some function f (x1, . . . , xn) given only
sequential access

x1 x2 x3 x4 x5 x6 . . . xn

How much RAM is required for the computation of f ?

Motivation: massive data sets
Storage on external disks, cheap sequential access
Data streams over the internet
XML databases can be huge

Scenarios:
multiple passes
deterministic/randomized
bidirectional
. . .
auxiliary streams (external memory)

Christian Konrad Streaming XML Validity 4 / 20

Stream Computation

Objective: compute some function f (x1, . . . , xn) given only
sequential access

x1 x2 x3 x4 x5 x6 . . . xn

How much RAM is required for the computation of f ?

Motivation: massive data sets
Storage on external disks, cheap sequential access
Data streams over the internet
XML databases can be huge

Scenarios:
multiple passes
deterministic/randomized
bidirectional
. . .
auxiliary streams (external memory)

Christian Konrad Streaming XML Validity 4 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: x1 x2 x3 . . . xn
Stream 2:
Stream 3:

input on stream 1

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: x1 x2 x3 . . . xn
Stream 2: x1 x3 . . . xn−1
Stream 3: x2 x4 . . . xn

copy numbers aternately onto stream 2 and stream 3

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: x1 x2 x3 . . . xn
Stream 2: X1 X3 . . . Xn−1
Stream 3: X2 X4 . . . Xn

think of numbers as sorted blocks of size 1

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X12 X34 . . . Xn−1,n
Stream 2: X1 X3 . . . Xn−1
Stream 3: X2 X4 . . . Xn

merge operation: merge blocks into blocks of size 2 onto stream 1

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X12 X34 . . . Xn−1,n
Stream 2: X12 X56 . . .
Stream 3: X34 X78 . . .

copy blocks of size 2 alternately onto stream 2 and stream 3

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X1234 X5678 . . . Xn−3,...,n
Stream 2: X12 X56 . . .
Stream 3: X34 X78 . . .

merge operation: merge blocks of size 2 into blocks of size 4 onto
stream 1

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: . . .
Stream 2: . . .
Stream 3: . . .

repeat this procedure until we obtain a sorted block of size n

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X1...n

Stream 2: . . .
Stream 3: . . .

repeat this procedure until we obtain a sorted block of size n

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X1...n

Stream 2: . . .
Stream 3: . . .

constant number of passes to double block size → O(log N) passes

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X1...n

Stream 2: . . .
Stream 3: . . .

constant number of passes to double block size → O(log N) passes

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space

Christian Konrad Streaming XML Validity 5 / 20

Well-formedness: Reduction to DYCK languages

DYCK(k): well-parenthesized words, k types of parenthesis

([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)

Well-formedness: document well-formed if in DYCK(k):

rbaaaaccbbbbaaaabccr
(r (b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r

Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

There is a randomized 1-pass algorithm that decides membership
to DYCK(k) with space O(

√
N log k log(N log k)).

There is a bidirectional randomized 2-passes algorithm that decides
membership to DYCK(k) with space O((log (N log k))2).

From now on: XML documents are well-formed

Christian Konrad Streaming XML Validity 6 / 20

Well-formedness: Reduction to DYCK languages

DYCK(k): well-parenthesized words, k types of parenthesis

([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)

Well-formedness: document well-formed if in DYCK(k):

rbaaaaccbbbbaaaabccr
(r (b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r

Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

There is a randomized 1-pass algorithm that decides membership
to DYCK(k) with space O(

√
N log k log(N log k)).

There is a bidirectional randomized 2-passes algorithm that decides
membership to DYCK(k) with space O((log (N log k))2).

From now on: XML documents are well-formed

Christian Konrad Streaming XML Validity 6 / 20

Well-formedness: Reduction to DYCK languages

DYCK(k): well-parenthesized words, k types of parenthesis

([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)

Well-formedness: document well-formed if in DYCK(k):

rbaaaaccbbbbaaaabccr
(r (b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r

Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

There is a randomized 1-pass algorithm that decides membership
to DYCK(k) with space O(

√
N log k log(N log k)).

There is a bidirectional randomized 2-passes algorithm that decides
membership to DYCK(k) with space O((log (N log k))2).

From now on: XML documents are well-formed

Christian Konrad Streaming XML Validity 6 / 20

Well-formedness: Reduction to DYCK languages

DYCK(k): well-parenthesized words, k types of parenthesis

([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)

Well-formedness: document well-formed if in DYCK(k):

rbaaaaccbbbbaaaabccr
(r (b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r

Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

There is a randomized 1-pass algorithm that decides membership
to DYCK(k) with space O(

√
N log k log(N log k)).

There is a bidirectional randomized 2-passes algorithm that decides
membership to DYCK(k) with space O((log (N log k))2).

From now on: XML documents are well-formed

Christian Konrad Streaming XML Validity 6 / 20

Starting Point
Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass
Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic
Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Ω(N/p) space

DTD:
r → 0r1 | 1r0 | 0r0 | ε
0, 1→ ε

Reduction: Set-Disjointness in Communication Complexity

Christian Konrad Streaming XML Validity 7 / 20

Starting Point
Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass
Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic
Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Ω(N/p) space

DTD:
r → 0r1 | 1r0 | 0r0 | ε
0, 1→ ε

r

1 r 0

0 r 1

0 r 1

1 r 1

0 r 0

r11r00r00r11r . . . 00r r00 . . . r11r11r11r00r

Reduction: Set-Disjointness in Communication Complexity

Christian Konrad Streaming XML Validity 7 / 20

Starting Point
Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass
Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic
Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Ω(N/p) space

DTD:
r → 0r1 | 1r0 | 0r0 | ε
0, 1→ ε

1

0

0

1

0

0

1

1

1

0

r

r

r

r

r

r

r11r00r00r11r . . . 00r r00 . . . r11r11r11r00r

Reduction: Set-Disjointness in Communication Complexity

Christian Konrad Streaming XML Validity 7 / 20

Starting Point
Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass
Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic
Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Ω(N/p) space

DTD:
r → 0r1 | 1r0 | 0r0 | ε
0, 1→ ε

1

0

0

1

0

0

1

1

1

0

r

r

r

r

r

r

r11r00r00r11r . . . 00r r00 . . . r11r11r11r00r

Reduction: Set-Disjointness in Communication Complexity
Christian Konrad Streaming XML Validity 7 / 20

Main Result

Theorem

There is a bidirectional O(log N)-pass deterministic streaming
algorithm for validity of arbitrary XML files and arbitrary DTDs
with space O(log2 N) and 3 auxiliary streams.

Steps:

1 Using 3 aux. streams, O(log N) space, O(log N) passes:
Compute the FCNS (First-Child-Next-Sibling) encoding of the
original document (encoding as a binary tree)

2 Using 2 bidirectional passes, O(log2 N) space:
Check validity based on this binary encoding
Algorithm inspired by algorithm for checking validity of binary
trees

Christian Konrad Streaming XML Validity 8 / 20

Main Result

Theorem

There is a bidirectional O(log N)-pass deterministic streaming
algorithm for validity of arbitrary XML files and arbitrary DTDs
with space O(log2 N) and 3 auxiliary streams.

Steps:

1 Using 3 aux. streams, O(log N) space, O(log N) passes:
Compute the FCNS (First-Child-Next-Sibling) encoding of the
original document (encoding as a binary tree)

2 Using 2 bidirectional passes, O(log2 N) space:
Check validity based on this binary encoding
Algorithm inspired by algorithm for checking validity of binary
trees

Christian Konrad Streaming XML Validity 8 / 20

Binary Trees - Results

Theorem

There is a one-pass deterministic algorithm using O(
√

N log N)
space for checking validity of binary trees.

Conjecture: there is no one-pass algorithm using o(
√

N log N)
space even when randomization is allowed

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log2 N) space for checking validity of binary trees.

Christian Konrad Streaming XML Validity 9 / 20

Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log2 N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log2 N) space for validity.

Proof:

1 Run algorithm of Lemma 1

2 Run algorithm of Lemma 1 on the input stream read from
right to left interpreting opening tags as closing tags and vice
versa.

Christian Konrad Streaming XML Validity 10 / 20

Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log2 N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log2 N) space for validity.

Proof:

1 Run algorithm of Lemma 1

2 Run algorithm of Lemma 1 on the input stream read from
right to left interpreting opening tags as closing tags and vice
versa.

Christian Konrad Streaming XML Validity 10 / 20

Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log2 N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log2 N) space for validity.

Proof:

1 Run algorithm of Lemma 1

2 Run algorithm of Lemma 1 on the input stream read from
right to left interpreting opening tags as closing tags and vice
versa.

Christian Konrad Streaming XML Validity 10 / 20

Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log2 N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log2 N) space for validity.

Proof:

1 Run algorithm of Lemma 1

2 Run algorithm of Lemma 1 on the input stream read from
right to left interpreting opening tags as closing tags and vice
versa.

Christian Konrad Streaming XML Validity 10 / 20

Binary Trees - general ideas

Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

p

u v

subtree of u subtree of v

. . . pu uv vp . . .

Two chances for verification:

Top down using p, u, v
Bottom up using u, v , p

u, v is used for verification in any case

Strategies: store either p until uv arrives, or throw p away and
store uv until p arrives

Christian Konrad Streaming XML Validity 11 / 20

Binary Trees - general ideas

Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

p

u v

subtree of u subtree of v

. . . pu uv vp . . .

Two chances for verification:

Top down using p, u, v

Bottom up using u, v , p

u, v is used for verification in any case

Strategies: store either p until uv arrives, or throw p away and
store uv until p arrives

Christian Konrad Streaming XML Validity 11 / 20

Binary Trees - general ideas

Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

p

u v

subtree of u subtree of v

. . . pu uv vp. . .

Two chances for verification:

Top down using p, u, v
Bottom up using u, v , p

u, v is used for verification in any case

Strategies: store either p until uv arrives, or throw p away and
store uv until p arrives

Christian Konrad Streaming XML Validity 11 / 20

Binary Trees - general ideas

Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

p

u v

subtree of u subtree of v

. . . pu uv v p . . .

Two chances for verification:

Top down using p, u, v
Bottom up using u, v , p

u, v is used for verification in any case

Strategies: store either p until uv arrives, or throw p away and
store uv until p arrives

Christian Konrad Streaming XML Validity 11 / 20

Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
p

u v

subtree of u subtree of v

. . . pu uv vp. . .

Ignore opening tags of parent nodes

Push children information on a stack:
...

u4, v4
u3, v3
u2, v2
u1, v1

...

Verify when going up

- Stack of linear size
- Verification of all nodes

Christian Konrad Streaming XML Validity 12 / 20

Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
p

u v

subtree of u subtree of v

. . . pu uv vp. . .

Ignore opening tags of parent nodes

Push children information on a stack:
...

u4, v4
u3, v3
u2, v2
u1, v1

...

Verify when going up

- Stack of linear size
- Verification of all nodes

Christian Konrad Streaming XML Validity 12 / 20

Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
p

u v

subtree of u subtree of v

. . . pu uv vp. . .

Ignore opening tags of parent nodes

Push children information on a stack:
...

u4, v4
u3, v3
u2, v2
u1, v1

...

Verify when going up

- Stack of linear size
- Verification of all nodes

Christian Konrad Streaming XML Validity 12 / 20

Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
p

u v

subtree of u subtree of v

. . . pu uv vp. . .

Ignore opening tags of parent nodes

Push children information on a stack:
...

u4, v4
u3, v3
u2, v2
u1, v1

...

Verify when going up

- Stack of linear size
- Verification of all nodes

Christian Konrad Streaming XML Validity 12 / 20

Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children uv
from stack whose parents’ node has a smaller left subtree than its
right subtree

...

u2, v2
u1, v1

...

c : current item in stream

p

u1 v1

q

u2 v2

c

XML stream:
pos(c)pos(u2)pos(u1)

pos(c) - pos(u2) ≤ size of right subtree of q

pos(u2)− pos(u1) ≥ size of left subtree of q

Deletion rule: delete if pos(c)− pos(u2) > pos(u2)− pos(u1)
→ In doing so stack is of size at most log N.

Christian Konrad Streaming XML Validity 13 / 20

Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children uv
from stack whose parents’ node has a smaller left subtree than its
right subtree

...

u2, v2
u1, v1

...

c : current item in stream

p

u1 v1

q

u2 v2

c

XML stream:
pos(c)pos(u2)pos(u1)

pos(c) - pos(u2) ≤ size of right subtree of q

pos(u2)− pos(u1) ≥ size of left subtree of q

Deletion rule: delete if pos(c)− pos(u2) > pos(u2)− pos(u1)
→ In doing so stack is of size at most log N.

Christian Konrad Streaming XML Validity 13 / 20

Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children uv
from stack whose parents’ node has a smaller left subtree than its
right subtree

...

u2, v2
u1, v1

...

c : current item in stream

p

u1 v1

q

u2 v2

c

XML stream:
pos(c)pos(u2)pos(u1)

pos(c) - pos(u2) ≤ size of right subtree of q

pos(u2)− pos(u1) ≥ size of left subtree of q

Deletion rule: delete if pos(c)− pos(u2) > pos(u2)− pos(u1)
→ In doing so stack is of size at most log N.

Christian Konrad Streaming XML Validity 13 / 20

Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children uv
from stack whose parents’ node has a smaller left subtree than its
right subtree

...

u2, v2
u1, v1

...

c : current item in stream

p

u1 v1

q

u2 v2

c

XML stream:
pos(c)pos(u2)pos(u1)

pos(c) - pos(u2) ≤ size of right subtree of q

pos(u2)− pos(u1) ≥ size of left subtree of q

Deletion rule: delete if pos(c)− pos(u2) > pos(u2)− pos(u1)

→ In doing so stack is of size at most log N.

Christian Konrad Streaming XML Validity 13 / 20

Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children uv
from stack whose parents’ node has a smaller left subtree than its
right subtree

...

u2, v2
u1, v1

...

c : current item in stream

p

u1 v1

q

u2 v2

c

XML stream:
pos(c)pos(u2)pos(u1)

pos(c) - pos(u2) ≤ size of right subtree of q

pos(u2)− pos(u1) ≥ size of left subtree of q

Deletion rule: delete if pos(c)− pos(u2) > pos(u2)− pos(u1)
→ In doing so stack is of size at most log N.

Christian Konrad Streaming XML Validity 13 / 20

Verifying nodes with larger left subtree (3)

Lemma: Stack is of size at most log(N).

Proof:

Deletion rule: pos(c)− pos(ui) > pos(ui)− pos(ui−1)

uivi remains on stack: ⇒ deletion rule does not apply

pos(ui) >
pos(c) + pos(ui−1)

2
.

pos(u2) ≥ dpos(c)

2
e,

pos(u3) ≥ d3pos(c)

4
e,

. . .

This leaves only space for log(pos(c)) elements

umax , vmax
...

u2, v2
u1, v1

Christian Konrad Streaming XML Validity 14 / 20

First-Child-Next-Sibling encoding

1. Original document 2. Keep edges to first children

3. Insert edges connecting children 4. FCNS encoding

Christian Konrad Streaming XML Validity 15 / 20

First-Child-Next-Sibling encoding

original tree FCNS encoding

Transformation: For each node in original document:

First child: becomes left child of that node
Next Sibling: becomes right child of that node

Annotation: tags in FCNS encoding are annotated left/right

Christian Konrad Streaming XML Validity 16 / 20

Validation is easier given the FCNS encoding

original document

v

v1 v2 . . . vk

t1 t2 tk

FCNS encoding

v

v1

v2

. . .

vk

t ′1

t ′2

t ′k

Original document: tags of children of v scattered

.
v v1 v1v2 v2v3 vk−1vk vk v. . .

FCNS encoding: vkvk−1 . . . v2v1 appears as substring

.
v v1 v2 vk vkvk−1 . . . v2v1 v. . .

Christian Konrad Streaming XML Validity 17 / 20

Validation is easier given the FCNS encoding

original document

v

v1 v2 . . . vk

t1 t2 tk

FCNS encoding

v

v1

v2

. . .

vk

t ′1

t ′2

t ′k

Original document: tags of children of v scattered

.
v v1 v1v2 v2v3 vk−1vk vk v. . .

FCNS encoding: vkvk−1 . . . v2v1 appears as substring

.
v v1 v2 vk vkvk−1 . . . v2v1 v. . .

Christian Konrad Streaming XML Validity 17 / 20

Reusing binary tree validation algorithm

FCNS encoding:

v

v1

v2

. . .

vk

t ′1

t ′2

t ′kLeft-to-Right pass:
compress subsequence vk . . . v1 via an automaton AL

constructed from initial DTD into a state
annotate v1 with that state
binary tree validation algorithm relates state to label of parent

Right-to-Left pass:
compress subsequence v1 . . . vk via an automaton AR

constructed from initial DTD into a state
if binary tree algorithm pushed v1 onto stack, annotate stack
element by this state
binary tree validation algorithm relates state to label of parent

Christian Konrad Streaming XML Validity 18 / 20

Computing the FCNS encoding

rbaaaaccbbbbaaaabccr rbaaccaabbaaaaccbbbr

Computing the FCNS encoding: reordering of XML tags
and annotation
Algorithm:

1 compute sequence of opening tags with annotations
sequences of opening tags coincide

2 compute sequence of closing tags with annotations
start with sequence of opening tags, interpret them as closing
tags, and reorder them via a modified merge sort

3 merge these sequences

Christian Konrad Streaming XML Validity 19 / 20

Computing the FCNS encoding

rbaaaaccbbbbaaaabccr rbaaccaabbaaaaccbbbr

Computing the FCNS encoding: reordering of XML tags
and annotation
Algorithm:

1 compute sequence of opening tags with annotations
sequences of opening tags coincide

2 compute sequence of closing tags with annotations
start with sequence of opening tags, interpret them as closing
tags, and reorder them via a modified merge sort

3 merge these sequences

Christian Konrad Streaming XML Validity 19 / 20

Computing the FCNS encoding

rbaaaaccbbbbaaaabccr rbaaccaabbaaaaccbbbr

Computing the FCNS encoding: reordering of XML tags
and annotation
Algorithm:

1 compute sequence of opening tags with annotations
sequences of opening tags coincide

2 compute sequence of closing tags with annotations
start with sequence of opening tags, interpret them as closing
tags, and reorder them via a modified merge sort

3 merge these sequences

Christian Konrad Streaming XML Validity 19 / 20

Conclusion

We have:

One pass, O(
√

N log N) space for two-ranked trees

Two bidirectional passes, O(log2 N) space for two-ranked trees

O(log N) passes, 3 aux. streams, O(log2 N) space for
arbitrary trees

Open Problems:

Lower bound: optimality of one pass algorithm for binary trees

Lower bound: Ω(log(N)) passes are required for unranked
trees when using sublinear space and a constant number of
auxiliary streams

Other membership problems: DYCK(k) ⊂ Visibly Pushdown
languages ⊂ deterministic context free languages ⊂ context
free languages

Christian Konrad Streaming XML Validity 20 / 20

