The Streaming Complexity of Validating XML Documents

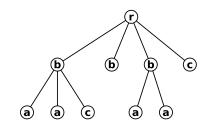
Christian Konrad christian.konrad@liafa.jussieu.fr and Frédéric Magniez frederic.magniez@liafa.jussieu.fr

LIAFA University Paris Diderot - Paris 7 Paris

ICDT 2012

• XML document: sequence of opening and closing tags

< r > $\langle b \rangle$ <a> <a> <c></c> $<\!\!b\!\!>\!\!<\!\!/b\!\!>$ $\langle b \rangle$ <a> <a> <c></c> </r>



Notation: $rba\overline{a}a\overline{a}c\overline{c}b\overline{b}b\overline{b}a\overline{a}a\overline{b}c\overline{c}r$ $pos(a), pos(\overline{a})$: position in XML document $depth(a), depth(\overline{a})$: depth of corresp. node

• **Depth first tree traversal**: down step gives opening tag, up step gives closing tag

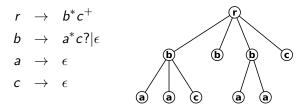
- raābbr is well-formed
- $ra\overline{b}b\overline{ar}$ is not well-formed

Only well-formed documents correspond to a tree

- raābbr is well-formed
- *rabbar* is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

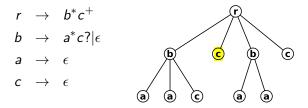


Difficulty: relate each label to labels of its children

- raābbr is well-formed
- *rabbar* is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

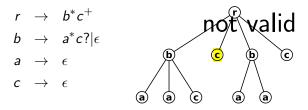


Difficulty: relate each label to labels of its children

- raābbr is well-formed
- *rabbar* is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)



Difficulty: relate each label to labels of its children

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access

How much RAM is required for the computation of f?

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access



How much RAM is required for the computation of f?

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access

 $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad \dots \quad x_n$

How much RAM is required for the computation of f?

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access

How much RAM is required for the computation of f?

 x_1 x_2 x_3 x_4 x_5 x_6 ... x_n

- Motivation: massive data sets
 - Storage on external disks, cheap sequential access
 - Data streams over the internet
 - XML databases can be huge

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access

How much RAM is required for the computation of f?

 x_1 x_2 x_3 x_4 x_5 x_6 ... x_n

- Motivation: massive data sets
 - Storage on external disks, cheap sequential access
 - Data streams over the internet
 - XML databases can be huge

Scenarios:

- multiple passes
- deterministic/randomized
- bidirectional
- ...
- auxiliary streams (external memory)

- **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space
- Stream 1: x_1 x_2 x_3 \dots x_n Stream 2:Stream 3:

input on stream 1

• **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space

 Stream 1:
 x_1 x_2 x_3 \dots x_n

 Stream 2:
 x_1 x_3 \dots x_{n-1}

 Stream 3:
 x_2 x_4 \dots x_n

copy numbers aternately onto stream 2 and stream 3

• **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space

Stream 1:	x_1	<i>x</i> ₂	<i>x</i> 3		x _n
Stream 2:	X_1	X_3		X_{n-1}	
Stream 3:	X_2	X_4		X_n	

think of numbers as sorted blocks of size 1

• **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space

 Stream 1:
 X_{12} X_{34} ...
 $X_{n-1,n}$

 Stream 2:
 X_1 X_3 ...
 X_{n-1}

 Stream 3:
 X_2 X_4 ...
 X_n

merge operation: merge blocks into blocks of size 2 onto stream 1

• **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space

Stream 1:	<i>X</i> ₁₂	X ₃₄	 $X_{n-1,n}$
Stream 2:	X_{12}	X_{56}	
Stream 3:	<i>X</i> ₃₄	X_{78}	

copy blocks of size 2 alternately onto stream 2 and stream 3

• **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space

 $\textit{merge operation:}\xspace$ merge blocks of size 2 into blocks of size 4 onto stream 1

• **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space

 Stream 1:
 ...

 Stream 2:
 ...

 Stream 3:
 ...

repeat this procedure until we obtain a sorted block of size n

- **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space
- Stream 1: $X_{1...n}$ Stream 2:...Stream 3:...

repeat this procedure until we obtain a sorted block of size n

• **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space

Stream 1: $X_{1...n}$ Stream 2:...Stream 3:...

constant number of passes to double block size $\rightarrow O(\log N)$ passes

- **Example**: Merge Sort with 3 streams, O(log *N*) passes, O(log *N*) space
- Stream 1: $X_{1...n}$ Stream 2:...Stream 3:...

constant number of passes to double block size $\rightarrow O(\log N)$ passes

• Important parameters:

- k(N) auxiliary streams usually in addition to one read-only input stream
- p(N) passes
- s(N) random access space

Well-formedness: Reduction to DYCK languages

DYCK(k): well-parenthesized words, k types of parenthesis ([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)

Well-formedness: Reduction to DYCK languages

- DYCK(k): well-parenthesized words, k types of parenthesis
 ([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)
- Well-formedness: document well-formed if in DYCK(k): $rba\overline{a}a\overline{a}c\overline{c}\overline{b}b\overline{b}ba\overline{a}a\overline{a}\overline{b}c\overline{cr}$ (r(b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r

Well-formedness: Reduction to DYCK languages

- DYCK(k): well-parenthesized words, k types of parenthesis
 ([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)
- Well-formedness: document well-formed if in DYCK(k):
 rbaāaāccbbbbaāaābccr (r(b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r
- Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

- There is a randomized 1-pass algorithm that decides membership to DYCK(k) with space $O(\sqrt{N \log k \log(N \log k)})$.
- There is a bidirectional randomized 2-passes algorithm that decides membership to DYCK(k) with space O((log (N log k))²).

Well-formedness: Reduction to DYCK languages

- DYCK(k): well-parenthesized words, k types of parenthesis
 ([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)
- Well-formedness: document well-formed if in DYCK(k):
 rbaāaāccbbbbaāaābccr (r(b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r
- Streaming Algorithms: Checking DYCK membership

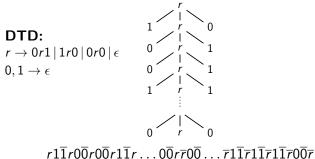
Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

- There is a randomized 1-pass algorithm that decides membership to DYCK(k) with space $O(\sqrt{N \log k \log(N \log k)})$.
- There is a bidirectional randomized 2-passes algorithm that decides membership to DYCK(k) with space O((log (N log k))²).

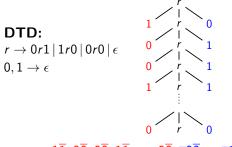
From now on: XML documents are well-formed

- **Prior works:** [Segoufin Sirangelo, 07], [Segoufin Vianu, 02] Characterization of DTDs that allow deterministic constant space validation in 1-pass
- **Upper bound:** stack based algorithm, space linear to depth of document, 1-pass deterministic
- Lower bound: ternary trees: any p pass randomized streaming algorithm deciding validity requires Ω(N/p) space

- **Prior works:** [Segoufin Sirangelo, 07], [Segoufin Vianu, 02] Characterization of DTDs that allow deterministic constant space validation in 1-pass
- **Upper bound:** stack based algorithm, space linear to depth of document, 1-pass deterministic
- Lower bound: ternary trees: any p pass randomized streaming algorithm deciding validity requires Ω(N/p) space

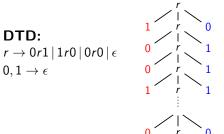


- **Prior works:** [Segoufin Sirangelo, 07], [Segoufin Vianu, 02] Characterization of DTDs that allow deterministic constant space validation in 1-pass
- **Upper bound:** stack based algorithm, space linear to depth of document, 1-pass deterministic
- Lower bound: ternary trees: any p pass randomized streaming algorithm deciding validity requires Ω(N/p) space



 $r1\overline{1}r0\overline{0}r0\overline{0}r1\overline{1}r\dots 0\overline{0}r\overline{r}0\overline{0}\dots \overline{r}1\overline{1}\overline{r}1\overline{1}\overline{r}1\overline{1}\overline{r}0\overline{0}r$

- **Prior works:** [Segoufin Sirangelo, 07], [Segoufin Vianu, 02] Characterization of DTDs that allow deterministic constant space validation in 1-pass
- **Upper bound:** stack based algorithm, space linear to depth of document, 1-pass deterministic
- Lower bound: ternary trees: any p pass randomized streaming algorithm deciding validity requires Ω(N/p) space



r1Īr0ōr0ōr1Īr...0ōrr0ō...r1Īr1Īr1Īr0ōr
Reduction: Set-Disjointness in Communication Complexity

Theorem

There is a bidirectional $O(\log N)$ -pass **deterministic** streaming algorithm for validity of arbitrary XML files and arbitrary DTDs with space $O(\log^2 N)$ and 3 auxiliary streams.

Theorem

There is a bidirectional $O(\log N)$ -pass **deterministic** streaming algorithm for validity of arbitrary XML files and arbitrary DTDs with space $O(\log^2 N)$ and 3 auxiliary streams.

Steps:

- Using 3 aux. streams, O(log N) space, O(log N) passes: Compute the FCNS (First-Child-Next-Sibling) encoding of the original document (encoding as a binary tree)
- Using 2 bidirectional passes, O(log² N) space: Check validity based on this binary encoding Algorithm inspired by algorithm for checking validity of binary trees

Theorem

There is a one-pass deterministic algorithm using $O(\sqrt{N \log N})$ space for checking validity of binary trees.

Conjecture: there is no one-pass algorithm using $o(\sqrt{N \log N})$ space even when randomization is allowed

Theorem

There is a bidirectional two-passes **deterministic** algorithm using $O(\log^2 N)$ space for checking validity of binary trees.

There is a one-pass **deterministic** algorithm using $O(\log^2 N)$ space that verifies validity of all nodes which have a left subtree that is at least as large as its right subtree.

There is a one-pass **deterministic** algorithm using $O(\log^2 N)$ space that verifies validity of all nodes which have a left subtree that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using $O(\log^2 N)$ space for validity.

There is a one-pass **deterministic** algorithm using $O(\log^2 N)$ space that verifies validity of all nodes which have a left subtree that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using $O(\log^2 N)$ space for validity.

Proof:

Run algorithm of Lemma 1

There is a one-pass **deterministic** algorithm using $O(\log^2 N)$ space that verifies validity of all nodes which have a left subtree that is at least as large as its right subtree.

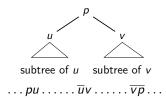
Theorem

There is a bidirectional two-passes deterministic algorithm using $O(\log^2 N)$ space for validity.

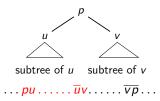
Proof:

- Run algorithm of Lemma 1
- Run algorithm of Lemma 1 on the input stream read from right to left interpreting opening tags as closing tags and vice versa.

• **Goal:** for all internal nodes *p*: relate *p* to its children *u*, *v* via check(*p*, *u*, *v*)

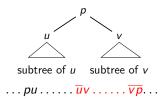


• **Goal:** for all internal nodes *p*: relate *p* to its children *u*, *v* via check(*p*, *u*, *v*)



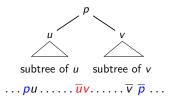
- Two chances for verification:
 - Top down using p, \overline{u}, v

• **Goal:** for all internal nodes *p*: relate *p* to its children *u*, *v* via check(*p*, *u*, *v*)



- Two chances for verification:
 - Top down using p, \overline{u}, v
 - Bottom up using $\overline{u}, v, \overline{p}$

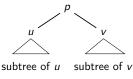
• **Goal:** for all internal nodes *p*: relate *p* to its children *u*, *v* via check(*p*, *u*, *v*)



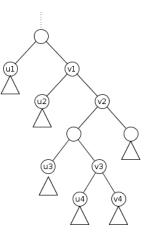
- Two chances for verification:
 - Top down using p, \overline{u}, v
 - Bottom up using $\overline{u}, v, \overline{p}$
- \overline{u} , v is used for verification in any case

Strategies: store either *p* until $\overline{u}v$ arrives, or throw *p* away and store $\overline{u}v$ until \overline{p} arrives

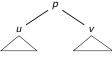
1st idea: Start with stack algorithm doing bottom-up verifications



- $\dots pu \dots \overline{u} v \dots \overline{v} \overline{p} \dots$
 - Ignore opening tags of parent nodes



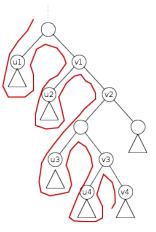
1st idea: Start with stack algorithm doing bottom-up verifications



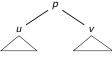
subtree of u subtree of v

- $\dots pu \dots \overline{u}v \dots \overline{vp} \dots$
 - Ignore opening tags of parent nodes
 - Push children information on a stack:

:
<u>u</u> 4, v4
u3 , v3
<u>u2</u> , v2
$\overline{u1}, v1$
:

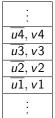


1st idea: Start with stack algorithm doing bottom-up verifications

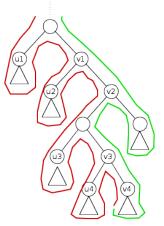


subtree of u subtree of v

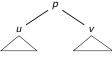
- $\dots pu \dots \overline{u}v \dots \overline{vp} \dots$
 - Ignore opening tags of parent nodes
 - Push children information on a stack:



• Verify when going up

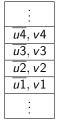


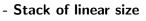
1st idea: Start with stack algorithm doing bottom-up verifications



subtree of u subtree of v

- $\dots pu \dots \overline{uv} \dots \overline{vp} \dots$
 - Ignore opening tags of parent nodes
 - Push children information on a stack:



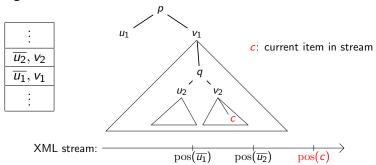


- Verification of all nodes

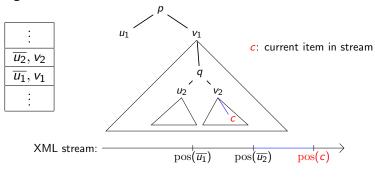
vl

Verify when going up

2nd idea: Reduce stack to log(n) elements: remove children $\overline{u}v$ from stack whose parents' node has a smaller left subtree than its right subtree

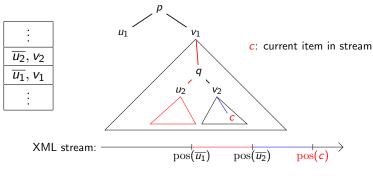


2nd idea: Reduce stack to log(n) elements: remove children $\overline{u}v$ from stack whose parents' node has a smaller left subtree than its right subtree



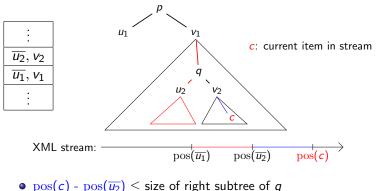
• $pos(c) - pos(\overline{u_2}) \le size of right subtree of q$

2nd idea: Reduce stack to log(n) elements: remove children $\overline{u}v$ from stack whose parents' node has a smaller left subtree than its right subtree



- $pos(c) pos(\overline{u_2}) \le size of right subtree of q$
- $pos(\overline{u_2}) pos(\overline{u_1}) \ge size of left subtree of q$

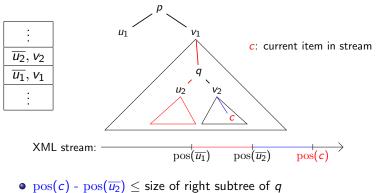
2nd idea: Reduce stack to log(n) elements: remove children $\overline{u}v$ from stack whose parents' node has a smaller left subtree than its right subtree



• $pos(\overline{u_2}) - pos(\overline{u_1}) \ge size of left subtree of q$

Deletion rule: delete if $pos(c) - pos(\overline{u_2}) > pos(\overline{u_2}) - pos(\overline{u_1})$

2nd idea: Reduce stack to log(n) elements: remove children $\overline{u}v$ from stack whose parents' node has a smaller left subtree than its right subtree



• $pos(\overline{u_2}) - pos(\overline{u_1}) \ge size of left subtree of q$

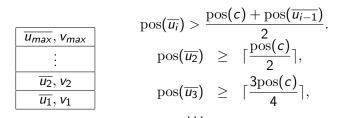
Deletion rule: delete if $pos(c) - pos(\overline{u_2}) > pos(\overline{u_2}) - pos(\overline{u_1})$

 \rightarrow In doing so stack is of size at most log N.

Lemma: Stack is of size at most log(N).

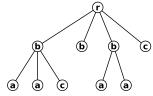
Proof:

- Deletion rule: $pos(c) pos(\overline{u_i}) > pos(\overline{u_i}) pos(\overline{u_{i-1}})$
- $u_i v_i$ remains on stack: \Rightarrow deletion rule does not apply

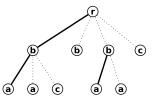


• This leaves only space for log(pos(c)) elements

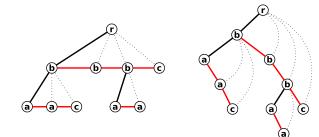
First-Child-Next-Sibling encoding



1. Original document



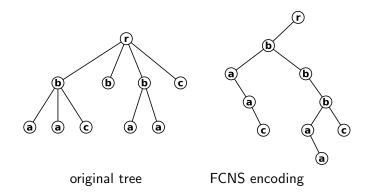
2. Keep edges to first children



3. Insert edges connecting children

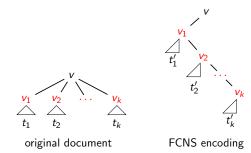
4. FCNS encoding

First-Child-Next-Sibling encoding



- Transformation: For each node in original document:
 - First child: becomes left child of that node
 - Next Sibling: becomes right child of that node
- Annotation: tags in FCNS encoding are annotated left/right

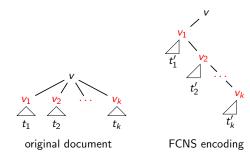
Validation is easier given the FCNS encoding



• Original document: tags of children of v scattered

$$\cdots + \frac{1}{v_1 v_1} + \frac{1}{v_1 v_2} + \frac{1}{v_2 v_3} + \frac{1}{v_{k-1} v_k} + \frac{1}{v_k} + \frac{1}$$

Validation is easier given the FCNS encoding

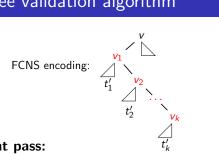


• Original document: tags of children of v scattered

• FCNS encoding: $\overline{v_k v_{k-1}} \dots \overline{v_2 v_1}$ appears as substring

$$\cdots \underbrace{v v_1}_{v v_1} \underbrace{v_2}_{v_k} \cdots \underbrace{v_k v_{k-1}}_{v_k v_{k-1}} \cdots \underbrace{v_2 v_1}_{v_1} \underbrace{v}_{v_1} \cdots \underbrace{v_k v_k}_{v_k v_k}$$

Reusing binary tree validation algorithm



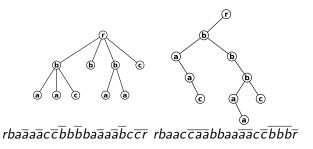
Left-to-Right pass:

- annotate $\overline{v_1}$ with that state
- binary tree validation algorithm relates state to label of parent

Right-to-Left pass:

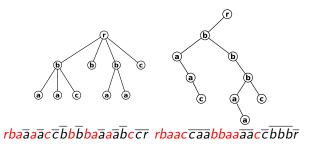
- compress subsequence v₁...v_k via an automaton A_R constructed from initial DTD into a state
- if binary tree algorithm pushed v_1 onto stack, annotate stack element by this state
- binary tree validation algorithm relates state to label of parent

Computing the FCNS encoding



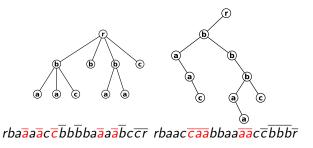
- Computing the FCNS encoding: reordering of XML tags and annotation
- Algorithm:
 - Compute sequence of opening tags with annotations sequences of opening tags coincide
 - 2 compute sequence of closing tags with annotations start with sequence of opening tags, interpret them as closing tags, and reorder them via a modified merge sort
 - merge these sequences

Computing the FCNS encoding



- Computing the FCNS encoding: reordering of XML tags and annotation
- Algorithm:
 - Compute sequence of opening tags with annotations sequences of opening tags coincide
 - 2 compute sequence of closing tags with annotations start with sequence of opening tags, interpret them as closing tags, and reorder them via a modified merge sort
 - merge these sequences

Computing the FCNS encoding



- Computing the FCNS encoding: reordering of XML tags and annotation
- Algorithm:
 - **compute sequence of opening tags with annotations** sequences of opening tags coincide
 - 2 compute sequence of closing tags with annotations start with sequence of opening tags, interpret them as closing tags, and reorder them via a modified merge sort
 - merge these sequences

Conclusion

We have:

- One pass, $O(\sqrt{N \log N})$ space for two-ranked trees
- Two bidirectional passes, $O(\log^2 N)$ space for two-ranked trees
- O(log N) passes, 3 aux. streams, O(log² N) space for arbitrary trees

Open Problems:

- Lower bound: optimality of one pass algorithm for binary trees
- Lower bound: Ω(log(N)) passes are required for unranked trees when using sublinear space and a constant number of auxiliary streams
- Other membership problems: DYCK(k) ⊂ Visibly Pushdown languages ⊂ deterministic context free languages ⊂ context free languages