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What is XML?

XML document: sequence of opening and closing tags

<r>
<b>

<a></a>
<a></a>
<c></c>

</b>
<b></b>
<b>

<a></a>
<a></a>

</b>
<c></c>

</ r>

Notation: rbaaaaccbbbbaaaabccr
pos(a),pos(a): position in XML document
depth(a), depth(a): depth of corresp. node

Depth first tree traversal: down step gives opening tag, up
step gives closing tag
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Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

raabbr is well-formed

rabbar is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

r → b∗c+

b → a∗c?|ε
a → ε

c → ε

Difficulty: relate each label to labels of its children

not valid
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Stream Computation

Objective: compute some function f (x1, . . . , xn) given only
sequential access

x1 x2 x3 x4 x5 x6 . . . xn

How much RAM is required for the computation of f ?

Motivation: massive data sets
Storage on external disks, cheap sequential access
Data streams over the internet
XML databases can be huge

Scenarios:
multiple passes
deterministic/randomized
bidirectional
. . .
auxiliary streams (external memory)
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Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: x1 x2 x3 . . . xn
Stream 2:
Stream 3:

input on stream 1

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space
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Stream 1: x1 x2 x3 . . . xn
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Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: x1 x2 x3 . . . xn
Stream 2: X1 X3 . . . Xn−1
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Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X12 X34 . . . Xn−1,n
Stream 2: X1 X3 . . . Xn−1
Stream 3: X2 X4 . . . Xn

merge operation: merge blocks into blocks of size 2 onto stream 1
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Example: Merge Sort with 3 streams, O(log N) passes,
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Auxiliary Streams (external memory)

Example: Merge Sort with 3 streams, O(log N) passes,
O(log N) space

Stream 1: X1234 X5678 . . . Xn−3,...,n
Stream 2: X12 X56 . . .
Stream 3: X34 X78 . . .

merge operation: merge blocks of size 2 into blocks of size 4 onto
stream 1

Important parameters:
k(N) auxiliary streams
usually in addition to one read-only input stream
p(N) passes
s(N) random access space
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O(log N) space

Stream 1: X1...n

Stream 2: . . .
Stream 3: . . .
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Well-formedness: Reduction to DYCK languages

DYCK(k): well-parenthesized words, k types of parenthesis

([()[]]) ∈ DYCK(2), ([{}]) ∈ DYCK(3)

Well-formedness: document well-formed if in DYCK(k):

rbaaaaccbbbbaaaabccr
(r (b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r

Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

There is a randomized 1-pass algorithm that decides membership
to DYCK(k) with space O(

√
N log k log(N log k)).

There is a bidirectional randomized 2-passes algorithm that decides
membership to DYCK(k) with space O((log (N log k))2).

From now on: XML documents are well-formed
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Starting Point
Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass
Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic
Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Ω(N/p) space

DTD:
r → 0r1 | 1r0 | 0r0 | ε
0, 1→ ε

Reduction: Set-Disjointness in Communication Complexity
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Main Result

Theorem

There is a bidirectional O(log N)-pass deterministic streaming
algorithm for validity of arbitrary XML files and arbitrary DTDs
with space O(log2 N) and 3 auxiliary streams.

Steps:

1 Using 3 aux. streams, O(log N) space, O(log N) passes:
Compute the FCNS (First-Child-Next-Sibling) encoding of the
original document (encoding as a binary tree)

2 Using 2 bidirectional passes, O(log2 N) space:
Check validity based on this binary encoding
Algorithm inspired by algorithm for checking validity of binary
trees
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Binary Trees - Results

Theorem

There is a one-pass deterministic algorithm using O(
√

N log N)
space for checking validity of binary trees.

Conjecture: there is no one-pass algorithm using o(
√

N log N)
space even when randomization is allowed

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log2 N) space for checking validity of binary trees.
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Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log2 N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log2 N) space for validity.

Proof:

1 Run algorithm of Lemma 1

2 Run algorithm of Lemma 1 on the input stream read from
right to left interpreting opening tags as closing tags and vice
versa.
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Binary Trees - general ideas

Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

p

u v

subtree of u subtree of v

. . . pu . . . . . . uv . . . . . . vp . . .

Two chances for verification:

Top down using p, u, v
Bottom up using u, v , p

u, v is used for verification in any case

Strategies: store either p until uv arrives, or throw p away and
store uv until p arrives
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Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
p

u v

subtree of u subtree of v

. . . pu . . . . . . uv . . . . . . vp. . .

Ignore opening tags of parent nodes

Push children information on a stack:
...

u4, v4
u3, v3
u2, v2
u1, v1

...

Verify when going up

- Stack of linear size
- Verification of all nodes
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Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children uv
from stack whose parents’ node has a smaller left subtree than its
right subtree

...

u2, v2
u1, v1

...

c : current item in stream

p

u1 v1

q

u2 v2

c

XML stream:
pos(c)pos(u2)pos(u1)

pos(c) - pos(u2) ≤ size of right subtree of q

pos(u2)− pos(u1) ≥ size of left subtree of q

Deletion rule: delete if pos(c)− pos(u2) > pos(u2)− pos(u1)
→ In doing so stack is of size at most log N.
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Verifying nodes with larger left subtree (3)

Lemma: Stack is of size at most log(N).

Proof:

Deletion rule: pos(c)− pos(ui ) > pos(ui )− pos(ui−1)

uivi remains on stack: ⇒ deletion rule does not apply

pos(ui ) >
pos(c) + pos(ui−1)

2
.

pos(u2) ≥ dpos(c)

2
e,

pos(u3) ≥ d3pos(c)

4
e,

. . .

This leaves only space for log(pos(c)) elements

umax , vmax
...

u2, v2
u1, v1
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First-Child-Next-Sibling encoding

1. Original document 2. Keep edges to first children

3. Insert edges connecting children 4. FCNS encoding
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First-Child-Next-Sibling encoding

original tree FCNS encoding

Transformation: For each node in original document:

First child: becomes left child of that node
Next Sibling: becomes right child of that node

Annotation: tags in FCNS encoding are annotated left/right
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Validation is easier given the FCNS encoding

original document

v

v1 v2 . . . vk

t1 t2 tk

FCNS encoding

v

v1

v2

. . .

vk

t ′1

t ′2

t ′k

Original document: tags of children of v scattered

. . . . . .
v v1 v1v2 v2v3 vk−1vk vk v. . .

FCNS encoding: vkvk−1 . . . v2v1 appears as substring

. . . . . .
v v1 v2 vk vkvk−1 . . . v2v1 v. . .
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Reusing binary tree validation algorithm

FCNS encoding:

v

v1

v2

. . .

vk

t ′1

t ′2

t ′kLeft-to-Right pass:
compress subsequence vk . . . v1 via an automaton AL

constructed from initial DTD into a state
annotate v1 with that state
binary tree validation algorithm relates state to label of parent

Right-to-Left pass:
compress subsequence v1 . . . vk via an automaton AR

constructed from initial DTD into a state
if binary tree algorithm pushed v1 onto stack, annotate stack
element by this state
binary tree validation algorithm relates state to label of parent
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Computing the FCNS encoding

rbaaaaccbbbbaaaabccr rbaaccaabbaaaaccbbbr

Computing the FCNS encoding: reordering of XML tags
and annotation
Algorithm:

1 compute sequence of opening tags with annotations
sequences of opening tags coincide

2 compute sequence of closing tags with annotations
start with sequence of opening tags, interpret them as closing
tags, and reorder them via a modified merge sort

3 merge these sequences
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Conclusion

We have:

One pass, O(
√

N log N) space for two-ranked trees

Two bidirectional passes, O(log2 N) space for two-ranked trees

O(log N) passes, 3 aux. streams, O(log2 N) space for
arbitrary trees

Open Problems:

Lower bound: optimality of one pass algorithm for binary trees

Lower bound: Ω(log(N)) passes are required for unranked
trees when using sublinear space and a constant number of
auxiliary streams

Other membership problems: DYCK(k) ⊂ Visibly Pushdown
languages ⊂ deterministic context free languages ⊂ context
free languages
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