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What is XML?

@ XML document: sequence of opening and closing tags

<r>
<b>
<a></a> (r)
<a></a>
<< />
</b> (b) ® ® ©
<b></b>
<b>
<a></a>
<a></a> @ @ © @ @
</b> ) = =
<</ c> Notation: rbaaaaccbbbbaaaabccr
</r> pos(a), pos(a): position in XML document
depth(a), depth(a): depth of corresp. node

@ Depth first tree traversal: down step gives opening tag, up
step gives closing tag
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Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

@ raabbr is well-formed

@ rabbar is not well-formed

Only well-formed documents correspond to a tree
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Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

@ raabbr is well-formed

@ rabbar is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

r — b*ch (r)

b — a“c?e

2 — € (b) ® ® ©
c — €

@ @ © @ @

Difficulty: relate each label to labels of its children
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Well-formedness and Validity

Well-formedness: An XML document is well-formed iff each
opening tag is closed by its corresponding closing tag

@ raabbr is well-formed

@ rabbar is not well-formed

Only well-formed documents correspond to a tree

Validity: is checked wrt. a DTD (Document Type Definition)

ro—

b — a“c?e
a — ¢

c — €

Difficulty: relate each label to labels of its children
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Stream Computation

@ Objective: compute some function f(xi,...,x,) given only
sequential access

!

X1 X2 X3 X4 X5 Xp Xn

How much RAM is required for the computation of 7
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Stream Computation

@ Objective: compute some function f(xi,...,x,) given only
sequential access

X1 X2 X3 X4 X5 Xp Xn

How much RAM is required for the computation of 7

@ Motivation: massive data sets
e Storage on external disks, cheap sequential access
o Data streams over the internet
e XML databases can be huge
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Stream Computation

@ Objective: compute some function f(xi,...,x,) given only
sequential access

X1 X2 X3 X4 X5 Xp Xn

How much RAM is required for the computation of 7

@ Motivation: massive data sets
e Storage on external disks, cheap sequential access
o Data streams over the internet
e XML databases can be huge

@ Scenarios:

e multiple passes

o deterministic/randomized
e bidirectional
"]
]

auxiliary streams (external memory)
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream1: x; x» x3 ... Xn
Stream 2:
Stream 3:

input on stream 1
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream1: x; x» Xx3 ... Xn
Stream 2: x3 X3 ... Xp_1
Stream 3: x» xz ... Xn

copy numbers aternately onto stream 2 and stream 3
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream1l: x3 x Xx3 .. Xn
Stream 2: X; Xz ... X,_1
Stream 3: Xo X ... X

think of numbers as sorted blocks of size 1
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream 1: X12 X34 .. Xn—l,n
Stream 2: X; Xz ... X,_1
Stream 3: Xo X ... X

merge operation: merge blocks into blocks of size 2 onto stream 1
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream 1: X1 Xz ... Xn—1,n
Stream 2: Xio  Xsg
Stream 3: X33 Xzg

copy blocks of size 2 alternately onto stream 2 and stream 3
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream 1: X1234 Xs678 .- - Xn—3,...,n
Stream 2: Xio  Xsg
Stream 3: X33 Xzg

merge operation: merge blocks of size 2 into blocks of size 4 onto
stream 1
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,

O(log N) space

Stream 1:
Stream 2:
Stream 3:

repeat this procedure until we obtain a sorted block of size n
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream 1: X1,
Stream 2:
Stream 3:

repeat this procedure until we obtain a sorted block of size n
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream 1: X1,
Stream 2:
Stream 3:

constant number of passes to double block size — O(log N) passes
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Auxiliary Streams (external memory)

e Example: Merge Sort with 3 streams, O(log V) passes,
O(log N) space

Stream 1: X1,
Stream 2:
Stream 3:

constant number of passes to double block size — O(log N) passes

e Important parameters:
o k(N) auxiliary streams
usually in addition to one read-only input stream
o p(N) passes
e s(N) random access space
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Well-formedness: Reduction to DYCK languages

o DYCK(k): well-parenthesized words, k types of parenthesis
(1001 € DYCK(2), ([{}]) € DYCK(3)
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Well-formedness: Reduction to DYCK languages

o DYCK(k): well-parenthesized words, k types of parenthesis
(1001 € DYCK(2), ([{}]) € DYCK(3)
o Well-formedness: document well-formed if in DYCK(k):

rbagaaccbbbbagaabccr

(r(b(a)a(a)a(C)C)b(b)b(b(a)a(a)a)b(c)c)r
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Well-formedness: Reduction to DYCK languages

o DYCK(k): well-parenthesized words, k types of parenthesis
(1001 € DYCK(2), ([{}]) € DYCK(3)
o Well-formedness: document well-formed if in DYCK(k):
rbaaaaccbbbbaaaabccr
(r(b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r
@ Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

e There is a randomized 1-pass algorithm that decides membership
to DYCK (k) with space O(+/N log k log(N log k)).

o There is a bidirectional randomized 2-passes algorithm that decides
membership to DY CK (k) with space O((log (N log k))?).
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Well-formedness: Reduction to DYCK languages

o DYCK(k): well-parenthesized words, k types of parenthesis
(1001 € DYCK(2), ([{}]) € DYCK(3)
o Well-formedness: document well-formed if in DYCK(k):
rbaaaaccbbbbaaaabccr
(r(b(a)a(a)a(c)c)b(b)b(b(a)a(a)a)b(c)c)r
@ Streaming Algorithms: Checking DYCK membership

Theorem (F. Magniez, C. Mathieu, and A. Nayak, STOC 2010)

e There is a randomized 1-pass algorithm that decides membership
to DYCK (k) with space O(+/N log k log(N log k)).

o There is a bidirectional randomized 2-passes algorithm that decides
membership to DY CK (k) with space O((log (N log k))?).

From now on: XML documents are well-formed
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@ Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass

@ Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic

@ Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Q(N/p) space
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@ Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass

@ Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic

@ Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Q(N/p) space

a
PN
1 r 0
DTD: PAEN
r—0r1]|1r0|0r0| e z/lr\i
r
0,1 —e€ PAEN
17 T
PN
0 r 0

r11r00r00r11r...00,700... 7117117117007
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@ Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass

@ Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic

@ Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Q(N/p) space

a
N

DTD: PAEN
r—0r1]|1r0|0r0| e O/f\l
0 1

0,1 —e€ /lf\
17 T

PN
0 r 0

r11r00r00r11r...00rF00. .. 7117117117007
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@ Prior works: [Segoufin Sirangelo, 07], [Segoufin Vianu, 02]
Characterization of DTDs that allow deterministic constant
space validation in 1-pass

@ Upper bound: stack based algorithm, space linear to depth
of document, 1-pass deterministic

@ Lower bound: ternary trees: any p pass randomized
streaming algorithm deciding validity requires Q(N/p) space

a
N

DTD: PN
r—0r1]|1r0|0r0| e O/f\l
0 1

0,1 —e€ /lf\
17 T

PN
0 r 0

r11r00r00r11r...00r700. .. 7117117117007
@ Reduction: Set-Disjointness in Communication Complexity
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Main Result

Theorem

There is a bidirectional O(log N)-pass deterministic streaming
algorithm for validity of arbitrary XML files and arbitrary DTDs
with space O(log? N) and 3 auxiliary streams.
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Main Result

Theorem

There is a bidirectional O(log N)-pass deterministic streaming
algorithm for validity of arbitrary XML files and arbitrary DTDs
with space O(log? N) and 3 auxiliary streams.

Steps:

@ Using 3 aux. streams, O(log N) space, O(log N) passes:
Compute the FCNS (First-Child-Next-Sibling) encoding of the
original document (encoding as a binary tree)

@ Using 2 bidirectional passes, O(log® N) space:
Check validity based on this binary encoding
Algorithm inspired by algorithm for checking validity of binary
trees
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Binary Trees - Results

Theorem

There is a one-pass deterministic algorithm using O(+/N log N)
space for checking validity of binary trees.

Conjecture: there is no one-pass algorithm using o(v/N log N)
space even when randomization is allowed

Theorem
There is a bidirectional two-passes deterministic algorithm using
O(Iog2 N) space for checking validity of binary trees.
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Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log? N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.
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Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log? N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem
There is a bidirectional two-passes deterministic algorithm using
O(log? N) space for validity.
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Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log? N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem

There is a bidirectional two-passes deterministic algorithm using
O(log? N) space for validity.

Proof:

@ Run algorithm of Lemma 1
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Two-passes Algorithm for Validity of binary Trees

Lemma (1)

There is a one-pass deterministic algorithm using O(log? N)
space that verifies validity of all nodes which have a left subtree
that is at least as large as its right subtree.

Theorem
There is a bidirectional two-passes deterministic algorithm using
O(log? N) space for validity.
Proof:
@ Run algorithm of Lemma 1

@ Run algorithm of Lemma 1 on the input stream read from
right to left interpreting opening tags as closing tags and vice
versa.
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Binary Trees - general ideas

@ Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

U/p\v
PANEVAN

subtree of u  subtree of v
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Binary Trees - general ideas

@ Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

U/p\v
PANEVAN

subtree of u  subtree of v

@ Two chances for verification:

e Top down using p,d, v
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Binary Trees - general ideas

@ Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

U/p\v
PANEVAN

subtree of u  subtree of v

@ Two chances for verification:

e Top down using p,d, v
e Bottom up using u,v,p
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Binary Trees - general ideas

@ Goal: for all internal nodes p: relate p to its children u, v via
check(p, u, v)

U/p\v
PANEVAN

subtree of u  subtree of v

@ Two chances for verification:

e Top down using p,d, v
e Bottom up using u,v,p

@ U, v is used for verification in any case

Strategies: store either p until Tv arrives, or throw p away and
store Uv until p arrives

Christian Konrad Streaming XML Validity



Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
p
u / \ v
N N

subtree of u  subtree of v
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Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
P
u / \ v
N N

subtree of u  subtree of v

@ Ignore opening tags of parent nodes
@ Push children information on a stack:

ud, va
u3,v3
u2,v2
ul, vl
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Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
P
u / \ v
N N

subtree of u  subtree of v

@ Ignore opening tags of parent nodes
@ Push children information on a stack:

ud, va
u3,v3
u2,v2
ul, vl

@ Verify when going up
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Stack Algorithm

1st idea: Start with stack algorithm doing bottom-up verifications
P
u / \ v
N N

subtree of u  subtree of v

@ Ignore opening tags of parent nodes
@ Push children information on a stack:

ud, va
u3,v3
u2,v2
ul, vl

- Stack of linear size
- Verification of all nodes

@ Verify when going up
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Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children Gv
from stack whose parents’ node has a smaller left subtree than its
right subtree

p
u1/ \vl

c: current item in stream

U, vo

717 121

XML stream: ’ : .
pos(@)  pos(@)  pos(c)
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Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children Gv
from stack whose parents’ node has a smaller left subtree than its
right subtree

p
u1/ \vl

c: current item in stream

U, vo

717 121

XML stream: ’ : .
pos(@)  pos(@)  pos(c)

@ pos(c) - pos(z) < size of right subtree of ¢
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Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children Gv
from stack whose parents’ node has a smaller left subtree than its
right subtree

p
u1/ \vl

c: current item in stream

U, vo

717 121

XML stream: ’ f .
pos(@)  pos(@)  pos(c)

@ pos(c) - pos(z) < size of right subtree of ¢
@ pos(Tz) — pos(Tr) > size of left subtree of ¢

Christian Konrad Streaming XML Validity



Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children Gv
from stack whose parents’ node has a smaller left subtree than its
right subtree

p
u1/ \vl

c: current item in stream

U, vo

717 121

XML stream: ’ f .
pos(@)  pos(@)  pos(c)

@ pos(c) - pos(z) < size of right subtree of ¢

@ pos(Tz) — pos(Tr) > size of left subtree of ¢

Deletion rule: delete if pos(c) — pos(@iz) > pos(tiz) — pos(Tr)
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Verifying nodes with larger left subtree

2nd idea: Reduce stack to log(n) elements: remove children Gv
from stack whose parents’ node has a smaller left subtree than its
right subtree

p
u1/ \vl

c: current item in stream

U, vo

717 121

XML stream: ’ f .
pos(@)  pos(@)  pos(c)

@ pos(c) - pos(z) < size of right subtree of ¢
@ pos(Tz) — pos(Tr) > size of left subtree of ¢

Deletion rule: delete if pos(c) — pos(@iz) > pos(tiz) — pos(Tr)
— In doing so stack is of size at most log NV.
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Verifying nodes with larger left subtree (3)

Lemma: Stack is of size at most log(N).

Proof:
e Deletion rule: pos(c) — pos(u;) > pos(T;) — pos(ui—1)

@ u;v; remains on stack: = deletion rule does not apply

pos(c) + pos(ur7)

pos(uj) > :
Umax, Vmax pOZS(C)
pos(@) > [Py,
Uz, v2 _ 3pos(c)
v pos(im) = =5
@ This leaves only space for log(pos(c)) elements O
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First-Child-Next-Sibling encoding

§ @b @ 6 g o @6
1. Original document 2. Keep edges to first children

3. Insert edges connecting children 4. FCNS encoding
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First-Child-Next-Sibling encoding

@ @ © @ @

original tree FCNS encoding

e Transformation: For each node in original document:

e First child: becomes left child of that node
o Next Sibling: becomes right child of that node

e Annotation: tags in FCNS encoding are annotated left/right
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Validation is easier given the FCNS encoding

v
7
%1
1\
Y Vo
v AN
AN
// \\ t Vi
i 1%} Vi
t1 tr ti tk
original document FCNS encoding

@ Original document: tags of children of v scattered

. ‘ — —
v Vi vivp Vov3 o e Vik—1Vk

KV
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Validation is easier given the FCNS encoding

v
7
%1
1\
Y Vo
v AN
AN
// \\ t Vi
Vi V2 Vi
t1 tr ti tk
original document FCNS encoding

@ Original document: tags of children of v scattered

. ‘ — —
v Vi vivp Vov3 o e Vik—1Vk

e
@ FCNS encoding: Vi, vi_1 ...y appears as substring

. T }
v Vi V2 Vi cer VEVk—1...V2V1 vV
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Reusing binary tree validation algorithm

v
Vl/B

FCNS encoding: A \
/

N
th \Vk
]
o Left-to-Right pass: 3

e compress subsequence Vg ... V7 via an automaton A,
constructed from initial DTD into a state

e annotate vy with that state

o binary tree validation algorithm relates state to label of parent

o Right-to-Left pass:

e compress subsequence vy ...V, via an automaton Ag
constructed from initial DTD into a state

o if binary tree algorithm pushed v; onto stack, annotate stack
element by this state

e binary tree validation algorithm relates state to label of parent
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Computing the FCNS encoding

rbaaaaccbbbbaaaabccr rbaaccaabbaaaaccbbbr

@ Computing the FCNS encoding: reordering of XML tags
and annotation
o Algorithm:
@ compute sequence of opening tags with annotations
sequences of opening tags coincide
@ compute sequence of closing tags with annotations
start with sequence of opening tags, interpret them as closing
tags, and reorder them via a modified merge sort
© merge these sequences
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Computing the FCNS encoding

rbaaaacébbbbaaaabcEr rbaaccaabbaaaaccbbbr

@ Computing the FCNS encoding: reordering of XML tags
and annotation
o Algorithm:
@ compute sequence of opening tags with annotations
sequences of opening tags coincide
@ compute sequence of closing tags with annotations
start with sequence of opening tags, interpret them as closing
tags, and reorder them via a modified merge sort
© merge these sequences
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Computing the FCNS encoding

rbaaaaccbbbbaaaabccr rbaaccaabbaaaaccbbbr

@ Computing the FCNS encoding: reordering of XML tags
and annotation
o Algorithm:
@ compute sequence of opening tags with annotations
sequences of opening tags coincide
@ compute sequence of closing tags with annotations
start with sequence of opening tags, interpret them as closing
tags, and reorder them via a modified merge sort
© merge these sequences
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Conclusion

We have:
@ One pass, O(v/Nlog N) space for two-ranked trees

o Two bidirectional passes, O(log? ) space for two-ranked trees
o O(log N) passes, 3 aux. streams, O(log? N) space for
arbitrary trees

Open Problems:

@ Lower bound: optimality of one pass algorithm for binary trees

o Lower bound: Q(log(N)) passes are required for unranked
trees when using sublinear space and a constant number of
auxiliary streams

@ Other membership problems: DYCK(k) C Visibly Pushdown
languages C deterministic context free languages C context
free languages
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