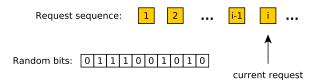
Preemptively Guessing the Center International Symposium on Combinatorial Optimization 2018

Christian Konrad and Tigran Tonoyan

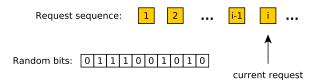
HÁSKÓLINN Í REYKJAVÍK REYKJAVIK UNIVERSITY

13.04.2018



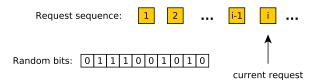
Online Algorithms:

- Each request: Irrevocable decision
- Unknown input length
- Randomized online algorithm: Access to uniform random bits



Online Algorithms:

- Each request: Irrevocable decision
- Unknown input length
- Randomized online algorithm: Access to uniform random bits



Online Algorithms:

- Each request: Irrevocable decision
- Unknown input length
- Randomized online algorithm: Access to uniform random bits

What is the impact of not knowing the input length?

- Go skiing for unknown number of days
- Rent skis: 1 pound per day
- Buy skis: 10 pounds
- Should you rent or buy? When should you buy?
- Trivial if input length known in advance

- Go skiing for unknown number of days
- Rent skis: 1 pound per day
- Buy skis: 10 pounds
- Should you rent or buy? When should you buy?
- Trivial if input length known in advance

General Difficulty: No orientation within the request sequence possible

- When have we seen half of the input?
- Are we close to the end of the request sequence?

- Go skiing for unknown number of days
- Rent skis: 1 pound per day
- Buy skis: 10 pounds
- Should you rent or buy? When should you buy?
- Trivial if input length known in advance

General Difficulty: No orientation within the request sequence possible

- When have we seen half of the input?
- Are we close to the end of the request sequence?

- Go skiing for unknown number of days
- Rent skis: 1 pound per day
- Buy skis: 10 pounds
- Should you rent or buy? When should you buy?
- Trivial if input length known in advance

General Difficulty: No orientation within the request sequence possible

- When have we seen half of the input? Preemption!
- Are we close to the end of the request sequence?

Preemptively Guessing the Center:

- **Input:** Sequence of 1s of unknown length *n* (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if $TODO: add condition here then {update guess} } \\ p \leftarrow j \\ \text{return } p \end{array}$

Example: $(p \triangleq |)$

Initially, p = 0

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: $(p \triangleq |)$

| 1

Either keep p = 0 (| 1) or update p = 1 (1 |)

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: $(p \triangleq |)$

| 1

Either keep p = 0 (| 1) or update p = 1 (1 |)

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: $(p \triangleq |)$

|11

Either keep p = 0 (| 1 1) or update p = 2 (1 1 |)

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: $(p \triangleq |)$

11|

Either keep p = 0 (| 1 1) or update p = 2 (1 1 |)

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length *n* (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: (p = |)

 $1 \ 1 \ | \ 1$

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: $(p \triangleq |)$

11|11

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: $(p \triangleq |)$

11|111

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if $TODO: add condition here then {update guess} } \\ p \leftarrow j \\ \text{return } p \end{array}$

Example: $(p \triangleq |)$

11111

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if $TODO: add condition here then {update guess} } \\ p \leftarrow j \\ \text{return } p \end{array}$

Example: (p = |)

1 1 1 1 1 | 1

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length n (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: (p = |)

11111|11

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length *n* (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if $TODO: add condition here then {update guess} } \\ p \leftarrow j \\ \text{return } p \end{array}$

Example: (p = |)

11111 | 111

Preemptively Guessing the Center:

- Input: Sequence of 1s of unknown length *n* (even)
- **Output:** Guess p for position n/2 s.t. deviation |p n/2| minimized
- Constraint: Guess can only be updated at the current position

 $\begin{array}{l} p \leftarrow 0 \; \{ \text{initialization of our guess} \} \\ \text{for each request } j = 1, 2, \ldots, n \; \text{do} \; \{ n \; \text{is unknown} \} \\ \text{if } TODO: \; add \; condition \; here \; \text{then} \; \{ \text{update guess} \} \\ p \leftarrow j \\ \text{return } \; p \end{array}$

Example: (p = |)

Sequence ends (n = 8). Deviation $= |5 - \frac{8}{2}| = 1$.

Weighted Version and Applications

Weighted Version:

- **Input:** Sequence X of integers of unknown length *n* that can be split into two parts of equal weight
- **Output:** Guess p such that $|\sum_{i=1}^{p} X_i \frac{1}{2} \sum X|$ is minimized
- **Constraint:** Guess can only be updated at current position (as before)

3 11 2 8 37 18 4 3 19 5 6 6

Weighted Version and Applications

Weighted Version:

- **Input:** Sequence X of integers of unknown length *n* that can be split into two parts of equal weight
- **Output:** Guess p such that $|\sum_{i=1}^{p} X_i \frac{1}{2} \sum X|$ is minimized
- **Constraint:** Guess can only be updated at current position (as before)

$$\underbrace{3\ 11\ 2\ 8\ 37}_{\sum=61} \mid \underbrace{18\ 4\ 3\ 19\ 5\ 6\ 6}_{\sum=61}$$

Weighted Version and Applications

Weighted Version:

- **Input:** Sequence X of integers of unknown length *n* that can be split into two parts of equal weight
- **Output:** Guess p such that $|\sum_{i=1}^{p} X_i \frac{1}{2} \sum X|$ is minimized
- **Constraint:** Guess can only be updated at current position (as before)

3 11 2 8 37 | 18 | 4 3 19 5 6 6 deviation 18

Weighted Version:

- **Input:** Sequence X of integers of unknown length n that can be split into two parts of equal weight
- **Output:** Guess p such that $|\sum_{i=1}^{p} X_i \frac{1}{2} \sum X|$ is minimized
- **Constraint:** Guess can only be updated at current position (as before)

3 11 2 8 37 | 18 | 4 3 19 5 6 6 deviation 18

Applications/Relation to other Problems:

- Special case of the problem of partitioning integer sequences
- Special case of the online checkpointing problem

Our Results

Unweighted Sequences:

- **Upper Bound:** There is a randomized preemptive online algorithm with expected deviation 0.172*n*.
- **Upper Bound:** Using a single random bit, an expected deviation of 0.25*n* can be achieved.
- **Lower Bound:** Every randomized preemptive online algorithm has expected deviation 0.172*n*.

Our Results

Unweighted Sequences:

- **Upper Bound:** There is a randomized preemptive online algorithm with expected deviation 0.172*n*.
- **Upper Bound:** Using a single random bit, an expected deviation of 0.25*n* can be achieved.
- **Lower Bound:** Every randomized preemptive online algorithm has expected deviation 0.172*n*.

Weighted Sequences: $W = \sum_{i=1}^{n} X_i$

- **Upper Bound:** There is a randomized preemptive online algorithm with expected deviation 0.313*W*.
- Lower Bound: Every (randomized) preemptive online algorithm has expected deviation 0.25*W*.

Our Results

Unweighted Sequences:

- **Upper Bound:** There is a randomized preemptive online algorithm with expected deviation 0.172*n*.
- **Upper Bound:** Using a single random bit, an expected deviation of 0.25*n* can be achieved.
- **Lower Bound:** Every randomized preemptive online algorithm has expected deviation 0.172*n*.

Weighted Sequences: $W = \sum_{i=1}^{n} X_i$

- **Upper Bound:** There is a randomized preemptive online algorithm with expected deviation 0.313*W*.
- Lower Bound: Every (randomized) preemptive online algorithm has expected deviation 0.25*W*.

Open Question: Close gap for weighted sequences?

Upper Bounds

Upper Bound

Doubling Method with Random Seed:

- **()** Chose random seed: Choose $\delta \in (0, 1)$ uniformly at random
- Select base: x = 3.052 (unweighted) or x = 5.357 (weighted)
- **Opdate rule: for** each request *i* **do**

$$p \leftarrow i \text{ iff } i = \lceil x^{j+\delta} \rceil$$
, for some $j \in \mathbb{N}$ (Unweighted)
 $p \leftarrow i \text{ iff } \sum_{j=1}^{i} X_j \ge \lceil x^{j+\delta} \rceil$ and $\sum_{j=1}^{i-1} X_j < \lceil x^{j+\delta} \rceil$, for $j \in \mathbb{N}$ (Weighted)

Expected Deviation: 0.172*n* (unweighted), 0.313*W* (weighted)

Remarks:

- Observe that x substantially larger than 2
- Penalty when updating is larger with weights: (update at weight 10)

Algorithm using single random bit:

- Flip a coin
- **If coin = 'tails':** Update at positions $2^0, 2^2, 2^4, 2^6, \ldots$
- If coin = 'heads': Update at positions 2¹, 2³, 2⁵, 2⁷, ...

Analysis:

- Let $n = 2^{i+\epsilon}$, for an integer i and $0 \le \epsilon < 1$
- Algorithm either outputs 2ⁱ or 2ⁱ⁻¹
- Thus, the expected deviation is:

$$\frac{1}{2}(2^{i}-2^{i+\epsilon-1})+\frac{1}{2}(2^{i+\epsilon-1}-2^{i-1})=2^{i-2}\leq \frac{n}{4}$$

Lower Bounds

Yao's Minimax Principle:

Randomized Algorithm A_r Expected deviation C on \Rightarrow any input length $\forall n : \mathbb{E} A_r(n) \le C$ Deterministic Algorithm \mathcal{A}_d

 $\Rightarrow \quad \text{Expected deviation } C \text{ over any} \\ \text{input length distribution } \sigma \\ \underset{n \sim \sigma}{\mathbb{E}} \mathcal{A}_d(n) \leq C$

Deterministic Algorithm

Uniquely specified update positions $J = \{j_1, j_2, j_3, \dots\}$

Proof Outline:

- Define distribution σ over input lengths
- Show that for any set of update positions J, the average deviation over σ is at least C

Lower Bound Proof

Hard Input Distribution: σ

- Let $n_{\min} < n_{\max}$ be integers
- Input is of length $n \in [n_{\min}, n_{\max}]$ with probability proportional to $\frac{1}{n}$

Deterministic Algorithm: \mathcal{A}

Let J denote the update positions between n_{\min} and n_{\max}

Idea:

• Consider every pair of consecutive positions $n_{\min} \leq a < b \leq n_{\max}$

- Consider input lengths $n \in [a, b]$
- Prove that expected deviation on these inputs is at least C

First Case

Standardized performance measure:

- Let R_n be the ratio between larger half and optimal split $\frac{n}{2}$
- Deviation = $R_n \cdot \frac{n}{2} \frac{n}{2} = \frac{n}{2}(R_n 1)$

Case: $b \leq 2a$ (assume that b = 2a (worst case))

- Observe that for $a \le n \le 2a$, we have $R_n = 2a/n$
- Let $S = \sum_{n=a}^{2a} \frac{1}{n} \approx \ln(2a) \ln(a) = \ln 2$
- Then, expected value R_n for input lengths n with $a \le n \le 2a$ is:

$$\sum_{n=a}^{b} \frac{1}{nS} \frac{2a}{n} = \frac{2a}{S} \sum_{n=a}^{b} \frac{1}{n^2} \approx a \frac{2}{\ln(2)} \left(\frac{1}{a} - \frac{1}{b}\right) = \frac{1}{\ln(2)} .$$

Deviation:

$$\frac{n}{2}(R_n-1) = \frac{n}{2}\left(\frac{1}{\ln(2)}-1\right) \approx 0.2213n > 0.172n$$
.

Case: *b* > 2*a*

- Requires more work
- We prove: deviation $\geq 0.172n$ in this case
- Worst case: $b/a \approx 3.052$
- Observe: This is the same as the base in our upper bound

Case: *b* > 2*a*

- Requires more work
- We prove: deviation $\geq 0.172n$ in this case
- Worst case: $b/a \approx 3.052$
- Observe: This is the same as the base in our upper bound

Theorem Every randomized preemptive online algorithm for Guessing the Center on unweighted sequences has expected deviation 0.172n.

Summary

Our Results:

	Unweighted sequences	Weighted sequences
Upper Bound:	0.172 <i>n</i>	0.313 <i>n</i>
Lower Bound:	0.172 <i>n</i>	0.25 <i>n</i>

Open Questions:

- Close gap for weighted sequences?
- Guessing 1/3, 1/4 of the input length?
- Randomized algorithms for online checkpointing (i.e., splitting in more than 2 parts)

Summary

Our Results:

	Unweighted sequences	Weighted sequences
Upper Bound:	0.172 <i>n</i>	0.313 <i>n</i>
Lower Bound:	0.172 <i>n</i>	0.25 <i>n</i>

Open Questions:

- Close gap for weighted sequences?
- Guessing 1/3, 1/4 of the input length?
- Randomized algorithms for online checkpointing (i.e., splitting in more than 2 parts)

Thank you