A Simple Augmentation Method for Matchings with Applications to Streaming Algorithms MFCS 2018

Christian Konrad

27.08.2018

Streaming (1996 -)

• **Objective:** compute some function $f(x_1, ..., x_n)$ given only sequential access

How much RAM is required for the computation of f?

• Applications: Massive data sets (e.g. stored on external memory)

Matchings in Graph Streams

Graph Streams (1999 -)

• Input stream: Sequence of edges of input graph G = (V, E) with n = |V| in arbitrary order

$$S = e_2 e_1 e_4 e_3$$

- Goal: Few passes (preferably one) algorithms with space $o(n^2)$
- Matchings, independent sets, cuts, graph sparsifiers, random walks, bipartiteness testing, counting triangles/subgraphs, ...

Maximum Matching in Graph Streams:

Matchings in Graph Streams

Graph Streams (1999 -)

• Input stream: Sequence of edges of input graph G = (V, E) with n = |V| in arbitrary order

$$S = e_2 e_1 e_4 e_3$$

- Goal: Few passes (preferably one) algorithms with space $o(n^2)$
- Matchings, independent sets, cuts, graph sparsifiers, random walks, bipartiteness testing, counting triangles/subgraphs, ...

Maximum Matching in Graph Streams: GREEDY Algorithm

- Insert e into initially empty matching M if $M \cup \{e\}$ is a matching
- One-pass $\frac{1}{2}$ -approximation streaming algorithm with space $O(n \log n)$

Most Studied Graph Problem in the Streaming Model

Unweighted/weighted, one-pass/multi-pass, adversarial arrival order/random order

[Feigenbaum et al., Theo. Comp. Sci. 2005], [McGregor, APPROX 2005], [Epstein et al., STACS 2010], [Ahn, Guha, ICALP 2011], [Eggert et al., Algorithmica 2012], [Konrad et al., APPROX 2012], [Goel et al., SODA 2012], [Zelke, Algorithmica 2012], [Kapralov, SODA 2013], [Crouch, Stubbs, APPROX 2014], [Kapralov et al., SODA 2014], [Esfandiari et al., SODA 2015], [Konrad, ESA 2015], [Assadi et al., SODA 2016], [Kale et al., APPROX 2017], [Cormode et al., ESA 2017]...

Most Studied Graph Problem in the Streaming Model

Unweighted/weighted, one-pass/multi-pass, adversarial arrival order/random order

[Feigenbaum et al., Theo. Comp. Sci. 2005], [McGregor, APPROX 2005], [Epstein et al., STACS 2010], [Ahn, Guha, ICALP 2011], [Eggert et al., Algorithmica 2012], [Konrad et al., APPROX 2012], [Goel et al., SODA 2012], [Zelke, Algorithmica 2012], [Kapralov, SODA 2013], [Crouch, Stubbs, APPROX 2014], [Kapralov et al., SODA 2014], [Esfandiari et al., SODA 2015], [Konrad, ESA 2015], [Assadi et al., SODA 2016], [Kale et al., APPROX 2017], [Cormode et al., ESA 2017] . . .

Open Question: Can we beat 1/2 in one pass?

Today:

GREEDY is best one-pass algorithm known, even with space $O(n^{2-\epsilon})$

Relaxations of the One-pass Model: (bipartite graphs)

- Random Order: Edges arrive in uniform random order (1/2 + 0.005)-approximation [Konrad et al., APPROX 2012]
- Two Passes: adversarial order (1/2+0.083) -approximation [Esfandiari et al., ICDMW 2016]

Main Technique: Improve GREEDY matching

- $M \leftarrow \text{GREEDY}$ matching
- $\ \, {\it O} \ \, {\it F} \leftarrow {\it additional edges}$
- Some return M augmented with edges from F

Today:

GREEDY is best one-pass algorithm known, even with space $O(n^{2-\epsilon})$

Relaxations of the One-pass Model: (bipartite graphs)

- Random Order: Edges arrive in uniform random order (1/2 + 0.005)-approximation [Konrad et al., APPROX 2012]
- Two Passes: adversarial order (1/2 + 0.083)-approximation [Esfandiari et al., ICDMW 2016]

Main Technique: Improve GREEDY matching (Two passes)

- $M \leftarrow \text{GREEDY}$ matching (first pass)
- $F \leftarrow \text{additional edges (second pass)}$
- Some return M augmented with edges from F

Today:

GREEDY is best one-pass algorithm known, even with space $O(n^{2-\epsilon})$

Relaxations of the One-pass Model: (bipartite graphs)

- Random Order: Edges arrive in uniform random order (1/2 + 0.005)-approximation [Konrad et al., APPROX 2012]
- Two Passes: adversarial order (1/2 + 0.083)-approximation [Esfandiari et al., ICDMW 2016]

Main Technique: Improve GREEDY matching (Random order)

- $M \leftarrow \text{GREEDY}$ matching (first third of edges)
- $F \leftarrow \text{additional edges (remaining edges)}$
- Some term of the second second

Our Results

Main Result: New Augmentation Method

G = (A, B, E) bipartite, $M \leftarrow \text{GREEDY}(G)$, M^* maximum matching

There is a random subgraph $H \subseteq G$ that depends on M such that w.h.p. $M \cup \text{GREEDY}(H)$ contains a matching of size

$$\underbrace{(2-\sqrt{2})}_{0.5857}|M^*|-o(|M^*|)$$
.

Applications:

- Two-pass Streaming: 0.5857-approximation (improving on 0.583 [Esfandiari et al., ICDMW 2016])
- One-pass Random Order Streaming: 0.5395-approximation (improving on 0.505 [Konrad et al., APPROX 2012])

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

• M is maximal

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

• M is maximal

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

- M is maximal
- $\mathbf{M} \oplus \mathbf{M}^*$: Set of augmenting paths

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

- M is maximal
- $\mathbf{M} \oplus \mathbf{M}^*$: Set of augmenting paths

•
$$G_L := G[\underline{A}(\mathbf{M}) \cup \overline{B}(\mathbf{M})]$$

 $G_R := G[\overline{A}(\mathbf{M}) \cup B(\mathbf{M})]$

Lemma:

 G_L and G_R contain matchings of size $|Aug| = |\mathbf{M}^*| - |\mathbf{M}|.$

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

- M is maximal
- $\mathbf{M} \oplus \mathbf{M}^*$: Set of augmenting paths

•
$$G_L := G[A(\mathbf{M}) \cup \overline{B(\mathbf{M})}]$$

 $G_R := G[\overline{A(\mathbf{M})} \cup B(\mathbf{M})]$

Lemma:

 G_L and G_R contain matchings of size $|Aug| = |\mathbf{M}^*| - |\mathbf{M}|.$

Goal: Compute matchings M_L in G_L and M_R in G_R s.t. many edges of M are incident to edges in both M_L and M_R

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

- M is maximal
- $\mathbf{M} \oplus \mathbf{M}^*$: Set of augmenting paths

•
$$G_L := G[\underline{A}(\mathbf{M}) \cup \overline{B}(\mathbf{M})]$$

 $G_R := G[\overline{A}(\mathbf{M}) \cup B(\mathbf{M})]$

Lemma:

 G_L and G_R contain matchings of size $|Aug| = |\mathbf{M}^*| - |\mathbf{M}|.$

Goal: Compute matchings M_L in G_L and M_R in G_R s.t. many edges of M are incident to edges in both M_L and M_R

G = (A, B, E) bipartite, $\mathbf{M} \leftarrow \text{GREEDY}(G)$, \mathbf{M}^* maximum matching

Observations:

- M is maximal
- $\mathbf{M} \oplus \mathbf{M}^*$: Set of augmenting paths

•
$$G_L := G[\underline{A}(\mathbf{M}) \cup \overline{B}(\mathbf{M})]$$

 $G_R := G[\overline{A}(\mathbf{M}) \cup B(\mathbf{M})]$

Lemma:

 G_L and G_R contain matchings of size $|Aug| = |\mathbf{M}^*| - |\mathbf{M}|.$

Goal: Compute matchings M_L in G_L and M_R in G_R s.t. many edges of M are incident to edges in both M_L and M_R First Attempt: No coordination between M_L and M_R

• $M_L \leftarrow \text{GREEDY}(G_L), M_R \leftarrow \text{GREEDY}(G_R)$

First Attempt

First Attempt: No coordination between M_L and M_R

- $M_L \leftarrow \text{GREEDY}(G_L), M_R \leftarrow \text{GREEDY}(G_R)$
- Half of **M** has left wings, other half of **M** has right wings:

First Attempt

First Attempt: No coordination between M_L and M_R

- $M_L \leftarrow \text{GREEDY}(G_L), M_R \leftarrow \text{GREEDY}(G_R)$
- Half of **M** has left wings, other half of **M** has right wings:

Observation: If M_L and M_R were better than $\frac{1}{2}$ -approximations then if $|\mathbf{M}| \approx \frac{1}{2} |\mathbf{M}^*|$ then some edges of \mathbf{M} have both left and right wings

First Attempt

First Attempt: No coordination between M_L and M_R

- $M_L \leftarrow \text{GREEDY}(G_L), M_R \leftarrow \text{GREEDY}(G_R)$
- Half of **M** has left wings, other half of **M** has right wings:

Observation: If M_L and M_R were better than $\frac{1}{2}$ -approximations then if $|\mathbf{M}| \approx \frac{1}{2} |\mathbf{M}^*|$ then some edges of \mathbf{M} have both left and right wings

Problems:

- GREEDY only guarantees a $\frac{1}{2}$ -approximation
- Our overall goal is to obtain a $> \frac{1}{2}$ -approximation algorithm...

- Attempt to augment only a random subset of M
- $\mathbf{M}' \subseteq \mathbf{M}$ sample where every $e \in \mathbf{M}$ is included with prob. $\sqrt{2} 1$
- Proceed as before

- Attempt to augment only a random subset of M
- $M' \subseteq M$ sample where every $e \in M$ is included with prob. $\sqrt{2} 1$
- Proceed as before

- Attempt to augment only a random subset of M
- $M' \subseteq M$ sample where every $e \in M$ is included with prob. $\sqrt{2} 1$
- Proceed as before

- Attempt to augment only a random subset of M
- $M' \subseteq M$ sample where every $e \in M$ is included with prob. $\sqrt{2} 1$
- Proceed as before

Main Idea:

- Attempt to augment only a random subset of **M**
- $M' \subseteq M$ sample where every $e \in M$ is included with prob. $\sqrt{2} 1$
- Proceed as before

Theorem: [Konrad et al., APPROX 2012] $G = (A, B, E), A' \subseteq A$ uniform random sample with probability p. Then: $\mathbb{E}_{A'} |GREEDY(G[A' \cup B])| \ge \frac{p}{1+p} |M^*|$.

 GREEDY is better than 1/2 when considering a subset of one bipartition!

Two-pass Streaming Algorithm: 0.5857-approximation

- First pass: $M \leftarrow \text{GREEDY}(G)$
- Sample $\mathbf{M}' \subseteq \mathbf{M}$
- \bullet Second pass: Compute matchings M_L and M_R
- \bullet return M augmented with $M_L \cup M_R$

Comments:

- Theorem by [Konrad et al., APPROX 2012] only holds in expectation
- We give a martingale-based analysis that shows that a similar result also holds with high probability
- Much simpler and more efficient than [Esfandiari et al., ICDMW 2016]
- Second augmentation round gives 0.6067-approximation (three passes), improving on 0.605-approx. by [Esfandiari et al., ICDMW 2016]

One Pass Random Order Streaming Algorithm

Random Order

Algorithm by [Konrad et al., APPROX 2012]: 0.505-approximation

- $\bullet~\mbox{If GREEDY}$ performs poorly then it converges quickly
- Roughly $\frac{2}{3}m$ edges for finding 3-augmenting paths

$$\frac{1}{G_{\text{REEDY}}} \sim \frac{m}{3} \quad \text{additional edges} \qquad m$$

Improvements:

- Use our new augmentation method
- Solution Science Scie

$$\begin{array}{c|c} & & \\ & & \\ 1 & \frac{m}{\log n} & \text{new augmentation method} & \\ & \mathbf{M} \leftarrow \text{GREEDY} \end{array}$$

More edges available for finding augmenting paths!

Residual Sparsity Property of Greedy

Residual Sparsity Lemma: Run GREEDY on $\frac{|E|}{\log n}$ random edges. Then residual graph has at most $O(n \log^2 n)$ edges

Residual graph: Edges that can be added to the matching

Distributed Computing, Dynamic Algorithms, Streaming Algorithms, ...

Algorithm: 0.5395-approximation

- **1** $\mathbf{M} \leftarrow \text{GREEDY}(\pi[1, \frac{m}{\log n}])$
- (2) If M close to maximal then employ new augmentation method
- **§** Else store $O(n \log^2 n)$ residual edges E', compute OPT in $\mathbf{M} \cup E'$

Residual Sparsity Property of Greedy

Residual Sparsity Lemma: Run GREEDY on $\frac{|E|}{\log n}$ random edges. Then residual graph has at most $O(n \log^2 n)$ edges

Residual graph: Edges that can be added to the matching

Distributed Computing, Dynamic Algorithms, Streaming Algorithms, ...

Algorithm: 0.5395-approximation

- **1** $\mathbf{M} \leftarrow \text{GREEDY}(\pi[1, \frac{m}{\log n}])$
- (2) If M close to maximal then employ new augmentation method
- **③ Else** store $O(n \log^2 n)$ residual edges E', compute OPT in $\mathbf{M} \cup E'$

Residual Sparsity Property of Greedy

Residual Sparsity Lemma: Run GREEDY on $\frac{|E|}{\log n}$ random edges. Then residual graph has at most $O(n \log^2 n)$ edges

Residual graph: Edges that can be added to the matching

Distributed Computing, Dynamic Algorithms, Streaming Algorithms, ...

Algorithm: 0.5395-approximation

- **1** $\mathbf{M} \leftarrow \text{GREEDY}(\pi[1, \frac{m}{\log n}])$
- **If M** close to maximal then employ new augmentation method
- **§** Else store $O(n \log^2 n)$ residual edges E', compute OPT in $\mathbf{M} \cup E'$

Summary

Results:

- \bullet Simple augmentation method that only requires running GREEDY on a random subgraph
- Improvement over all known streaming algorithms for matchings that operate in few passes

Open Questions:

- Improve on GREEDY in one pass adversarial order setting?
- Exploit additional properties of random order GREEDY?
- [Assadi et al., arXiv 2018] recently gave a $\frac{2}{3}$ -approximation random order algorithm with space $\tilde{O}(n\sqrt{n})$. Can we achieve a $\frac{2}{3}$ -approximation in space $\tilde{O}(n)$?

Summary

Results:

- \bullet Simple augmentation method that only requires running GREEDY on a random subgraph
- Improvement over all known streaming algorithms for matchings that operate in few passes

Open Questions:

- Improve on GREEDY in one pass adversarial order setting?
- Exploit additional properties of random order GREEDY?
- [Assadi et al., arXiv 2018] recently gave a $\frac{2}{3}$ -approximation random order algorithm with space $\tilde{O}(n\sqrt{n})$. Can we achieve a $\frac{2}{3}$ -approximation in space $\tilde{O}(n)$?

Thank you