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Streaming Algorithms

sequential access random access

Streaming (1996 -)

Objective: compute some function f (x1, . . . , xn) given only
sequential access

How much RAM is required for the computation of f ?

Applications: Massive data sets (e.g. stored on external memory)
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Matchings in Graph Streams

Graph Streams (1999 -)

Input stream: Sequence of edges of input graph G = (V ,E ) with
n = |V | in arbitrary order

S = e2e1e4e3

Goal: Few passes (preferably one) algorithms with space o(n2)

Matchings, independent sets, cuts, graph sparsifiers, random walks,
bipartiteness testing, counting triangles/subgraphs, . . .

Maximum Matching in Graph Streams:

Greedy Algorithm

Insert e into initially empty matching M if M ∪ {e} is a matching

One-pass 1
2 -approximation streaming algorithm with space O(n log n)
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Matching in Graph Streams (2)

Most Studied Graph Problem in the Streaming Model

Unweighted/weighted, one-pass/multi-pass, adversarial arrival
order/random order

[Feigenbaum et al., Theo. Comp. Sci. 2005], [McGregor, APPROX 2005], [Epstein et al.,

STACS 2010], [Ahn, Guha, ICALP 2011], [Eggert et al., Algorithmica 2012], [Konrad et al.,

APPROX 2012], [Goel et al., SODA 2012], [Zelke, Algorithmica 2012], [Kapralov, SODA

2013], [Crouch, Stubbs, APPROX 2014], [Kapralov et al., SODA 2014], [Esfandiari et al.,

SODA 2015], [Konrad, ESA 2015], [Assadi et al., SODA 2016], [Kale et al., APPROX 2017],
[Cormode et al., ESA 2017] . . .

Open Question: Can we beat 1/2 in one pass?
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Relaxations of the One-pass Adversarial Order Model

Today:

Greedy is best one-pass algorithm known, even with space O(n2−ε)

Relaxations of the One-pass Model: (bipartite graphs)

Random Order: Edges arrive in uniform random order

(1/2 + 0.005)-approximation [Konrad et al., APPROX 2012]

Two Passes: adversarial order

(1/2 + 0.083)-approximation [Esfandiari et al., ICDMW 2016]

Main Technique: Improve Greedy matching

1 M ← Greedy matching

2 F ← additional edges

3 return M augmented with edges from F
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Our Results

Main Result: New Augmentation Method

G = (A,B,E ) bipartite, M ← Greedy(G ), M∗ maximum matching

There is a random subgraph H ⊆ G that depends on M such that w.h.p.
M ∪Greedy(H) contains a matching of size

(2−
√

2)︸ ︷︷ ︸
0.5857

|M∗| − o(|M∗|) .

Applications:

Two-pass Streaming: 0.5857-approximation
(improving on 0.583 [Esfandiari et al., ICDMW 2016])

One-pass Random Order Streaming: 0.5395-approximation
(improving on 0.505 [Konrad et al., APPROX 2012])
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New Augmentation Method for Bipartite
Graphs
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New Augmentation Method for Bipartite Graphs

G = (A,B,E ) bipartite, M← Greedy(G ), M∗ maximum matching

Observations:
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M⊕M∗: Set of augmenting paths

GL := G [A(M) ∪ B(M)]
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GL and GR contain matchings of size
|Aug | = |M∗| − |M|.
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First Attempt

First Attempt: No coordination between ML and MR

ML ← Greedy(GL), MR ← Greedy(GR)

Half of M has left wings, other half of M has right wings:

Observation: If ML and MR were better than 1
2 -approximations then if

|M| ≈ 1
2 |M

∗| then some edges of M have both left and right wings

Problems:

Greedy only guarantees a 1
2 -approximation

Our overall goal is to obtain a > 1
2 -approximation algorithm...
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New Augmentation Method

Main Idea:

Attempt to augment only a random subset of M

M′ ⊆M sample where every e ∈M is included with prob.
√

2− 1

Proceed as before

Theorem: [Konrad et al., APPROX 2012]

G = (A,B,E ), A′ ⊆ A uniform random sample with probability p. Then:

E
A′
|Greedy(G [A′ ∪ B])| ≥ p

1 + p
|M∗| .

Greedy is better than 1/2 when considering a subset of one bipartition!
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New Augmentation Method (2)

Two-pass Streaming Algorithm: 0.5857-approximation

First pass: M← Greedy(G )

Sample M′ ⊆M

Second pass: Compute matchings ML and MR

return M augmented with ML ∪MR

Comments:

Theorem by [Konrad et al., APPROX 2012] only holds in expectation

We give a martingale-based analysis that shows that a similar result
also holds with high probability

Much simpler and more efficient than [Esfandiari et al., ICDMW 2016]

Second augmentation round gives 0.6067-approximation (three
passes), improving on 0.605-approx. by [Esfandiari et al., ICDMW 2016]
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One Pass Random Order Streaming Algorithm
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Random Order

Algorithm by [Konrad et al., APPROX 2012]: 0.505-approximation

If Greedy performs poorly then it converges quickly

Roughly 2
3m edges for finding 3-augmenting paths

1 ∼ m
3

m
Greedy additional edges

Improvements:

1 Use our new augmentation method

2 Enough to run Greedy on first 1
log n -fraction

1 m
log n

m

M← Greedy
new augmentation method

More edges available for finding augmenting paths!
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Residual Sparsity Property of Greedy

Residual Sparsity Lemma: Run Greedy on |E |
log n random edges. Then

residual graph has at most O(n log2 n) edges

Residual graph: Edges that can be added to the matching

Distributed Computing, Dynamic Algorithms, Streaming Algorithms, . . .

Algorithm: 0.5395-approximation

1 M← Greedy(π[1, m
log n ])

2 If M close to maximal then employ new augmentation method

3 Else store O(n log2 n) residual edges E ′, compute OPT in M ∪ E ′
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Summary

Results:

Simple augmentation method that only requires running Greedy
on a random subgraph

Improvement over all known streaming algorithms for matchings
that operate in few passes

Open Questions:

Improve on Greedy in one pass adversarial order setting?

Exploit additional properties of random order Greedy?

[Assadi et al., arXiv 2018] recently gave a 2
3 -approximation random order

algorithm with space Õ(n
√
n). Can we achieve a 2

3 -approximation in

space Õ(n)?

Thank you
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