BA: Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs PODC 2018

Christian Konrad and Victor Zamaraev

24.07.2018

Minimum Vertex Coloring in the LOCAL Model

Input: Network G = (V, E), n = |V|

- Synchronous communication, individual messages of unbounded sizes
- Running time: Number of communication rounds

Minimum Vertex Coloring in the LOCAL Model

Input: Network G = (V, E), n = |V|

- Synchronous communication, individual messages of unbounded sizes
- Running time: Number of communication rounds

Minimum Vertex Coloring: (MVC)

- Find $\chi(G)$ -coloring, $\chi(G)$: chromatic number
- Hard to approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Distributed MVC via Linial-Saks

General Graphs: Network-decomposition [Linial, Saks, 1993]

- O(log *n*)-approximation in O(log² *n*) rounds
- Nodes run exponential time algorithms

Open Question:

Constant factor approximation in polylog *n* rounds?

Distributed MVC via Linial-Saks

General Graphs: Network-decomposition [Linial, Saks, 1993]

- O(log *n*)-approximation in O(log² *n*) rounds
- Nodes run exponential time algorithms

Open Question:

Constant factor approximation in polylog *n* rounds? Difficult graph structure that prevents us from getting there? Chordal Graphs: Every cycle of at least 4 vertices contains a chord:

Our Results:

- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log n)$ rounds
- Lower Bound: $\Omega(\frac{1}{\epsilon} + \log n)$ rounds
- Similar results for Maximum Independent Set

Chordal Graphs: Every cycle of at least 4 vertices contains a chord:

Our Results:

- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log n)$ rounds
- Lower Bound: $\Omega(\frac{1}{\epsilon} + \log n)$ rounds
- Similar results for Maximum Independent Set

Technique: Tree Decomposition

Main Technique: Tree Decompositions

Distributed Processing:

- Nodes compute local view of (global) clique tree
- Important property: Diameter of each bag is 1
- Peeling Process: In O(log *n*) iterations, peel off interval subgraph, color individual layers, correct coloring where layers meet

Interval Graphs: $(1 + \epsilon)$ -approximation [Halldórsson, Konrad, 2014, 2017]

Distributed MVC:

- $O(\log n)$ -approximation in $O(\log^2 n)$ rounds in general graphs
- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log n)$ rounds in chordal graphs

Outlook:

- A graph has *tree-length* k if there is a tree-decomposition where every bag has diameter at most k
- Work in progress: 2-approximation in $O(k \log n)$ rounds

Distributed MVC:

- $O(\log n)$ -approximation in $O(\log^2 n)$ rounds in general graphs
- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log n)$ rounds in chordal graphs

Outlook:

- A graph has *tree-length* k if there is a tree-decomposition where every bag has diameter at most k
- Work in progress: 2-approximation in $O(k \log n)$ rounds

Thank you very much.