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Set Reconciliation

Data Synchronization Problem:

SA ⊆ U SB ⊆ U

Goal: Alice and Bob learn SA ⊕ SB = (SA \ SB) ∪ (SB \ SA)

Well-studied problem: O(|SA ⊕ SB |) communication cost

Many applications e.g. data consistency in distributed databases

Techniques:

Ordered Data: Error Correcting Codes

Unordered Data: Invertible Bloom Lookup Table
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Set Reconciliation (2)

Example:

SA = {2, 43, 119, 321, 599} SB = {2, 44, 119, 222, 319}

Sets can be reconciliated with communication cost O(|SA ⊕ SB |)

Sets are very similar:

Two exact matches: 2, 119

Two almost matches: 43 ≈ 44, 321 ≈ 319

One true difference: 599 6= 222

Our Goal: Reconciliation that only considers the true differences with
small communication cost
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Synchronization of Image Databases

Alice Bob

Difficulties:

Same image, different encodings (bmp, jpeg, . . . )

In general: rounding errors, introduction of noise

Communication Cost Constraint:
Given a communication budget, reconciliate as many true differences as
possible
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Robust Set Reconciliation

Input:

Alice and Bob hold SA,SB ⊆ [∆]d on d-dim. grid of length ∆

Communication budget k

Similarity measure: Earth-Mover-Distance

EMD(SA, SB) := weight of minimum weight matching between SA and SB

EMD(SA, SB) = Sum of the lengths of the arrows

Robust Set Reconciliation: Alice sends message M to Bob with
|M| = Õ(k). Then Bob finds a set S ′B so that EMD(SA,S

′
B) is minimized
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Optimal Solution

Communication budget limited by Õ(k):
We cannot expect to reconciliate more than k point-pairs

k-residual EMD:

EMDk(SA,SB) := min
Sk
B

EMD(SA,S
k
B),

where Sk
B is obtained from SB by relocating at most k points:

EMD(SA,SB) EMD2(SA,SB)
“Remove the k heaviest edges”

Our Goal: Approximation Scheme. Bob finds S ′B so that

EMD(SA,S
′
B) ≤ C · EMDk(SA,SB)
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Results

Upper Bound: We have designed a one-way protocol with

Communication Cost O(kd log(n∆d) log ∆) so that

Bob computes S ′B and

EMD(SA,S
′
B) ≤ O(d) · EMDk(SA,SB).

The runtimes of both Alice and Bob is O(dn log ∆).

Lower Bound: Any possibly randomized one-way communication
protocol that computes an O(1) approximation has communication cost

O(k log(∆d/k) log ∆).

→ For typical settings d = O(1), n = ∆O(1), k = O(∆d−ε) UB is tight

Experiments:

Comparision to a baseline method that uses lossy compression

Image reconciliation
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Key Technique 1: Classical (One-way) Reconciliation

Ordered Data:

u ∈ Un v ∈ Un

There is a one-way protocol so that:

Communication Cost is Õ(k),

If dH(u, v) ≤ k then Bob can learn Alice’s input,

If dH(u, v) > k then Bob can report that dH(u, v) > k.

(dH : Hamming distance)

Technique:

Forward Error Correction such as a Reed-Solomon code

Invertible Bloom Lookup Table (near linear time for
decoding/decoding)
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Key Technique 2: Quad-trees

Quad-trees:

A layer corresponds to a resolution of the point set
Alice and Bob construct quad-trees TA,TB for their inputs SA,SB
A layer of the difference tree (TA − TB) indicates “surplus” and
“deficit cells”

Correction given layer L of Alice’s tree:
Subtract this layer from own layer L
and do corrections as follows: Move
points from surplus cells to center of
deficit cells
Note: Additional error introduced since exact
position is unknown

+5 −3

−11 4

8
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Key Technique 3: Random Shift

Let M = (mi )i be a min-cost perfect matching between SA and SB

Interesting Layer: Consider layer in difference tree (TA − TB) that
reflects the k heaviest edges of M (Hamming distance = Θ(k))

Technical Difficulty: False Positives

→ Perform a random shift of the grid
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Summary: Algorithm

Alice:

1 Random Shift: Alice shifts all points by u.a.r. chosen γ

2 Build Quad-tree

3 Invertible Bloom Lookup Table: For every layer L of the quad-tree,
build an IBLT that allows Bob to recover Alice’s layer L if Bob’s
layers L differs by at most ck (for a constant c)

4 Send Message: Alice sends γ and the IBLT’s to Bob

Bob:

1 Random Shift

2 Build Quad-tree

3 Decode IBLTs: Bob decodes the IBLTs and determines the highest
layer L′ so that Hamming distance is at most ck

4 Move points: Move points from surplus cells to deficit cells (center)

5 Reverse Random Shift

Redundancy factor c: Account for moving points to center of cells
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Summary: Algorithm

One-way two-party communication protocol for O(d)-approximation

Algorithm cannot compute EMD nor residual EMD

Computing EMD in one-way two-party communication model is a
hard problem: constant approximation has communication cost
polynomial in ∆
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One dimensional Experiment

Alice’s point set: 1D data set with n = 106 points
Inject k = 100 true differences by randomly picking k points and
moving them to an arbitrary location
For all other nodes inject noise in [−1, 1]
Baseline Method based on lossy Haar Wavelet Compression
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Reconciliation of Image Database

Data Set:

Alice has 10.000 high quality JPEG images
Bob has a copy of this set which is modified as follows:

All images are recompressed with 95%-quality JPEG compression
k images are replaced by different ones

Adaption of the Algorithm:

Images are mapped to 6-dimensional feature space

Algorithm adapted to two-way communication

Budget
2% 4% 6% 8% 10%

5 0% 56% 92% 100% 100%
10 2% 34% 84% 100% 100%

k 15 0% 28% 80% 100% 100%
20 0% 19% 67% 98% 99%
25 0% 5% 66% 87% 99%

Table: Recovery rate for image reconciliation
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Conclusion

Summary:

Robust set reconciliation method that works well in practice

Lower Bound illustrating that communication budget is almost tight

Open Questions:

Can O(d)-approximation be improved? (e.g. (1 + ε)-approx.)

Improvement via multiple communication rounds?

Thank you for your attention.
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