Robust Set Reconciliation SIGMOD 2014

Christian Konrad

Joint work with: Di Chen, Ke Yi (both Hong Kong), Wei Yu (Aarhus), Qin Zhang (Indiana University)

Data Synchronization Problem:

Goal: Alice and Bob learn $S_A \oplus S_B = (S_A \setminus S_B) \cup (S_B \setminus S_A)$

- Well-studied problem: $O(|S_A \oplus S_B|)$ communication cost
- Many applications e.g. data consistency in distributed databases

Techniques:

- Ordered Data: Error Correcting Codes
- Unordered Data: Invertible Bloom Lookup Table

Set Reconciliation (2)

Example:

 $S_A = \{2, 43, 119, 321, 599\}$ $S_B = \{2, 44, 119, 222, 319\}$

Sets can be reconciliated with communication cost $O(|S_A \oplus S_B|)$

Sets are very similar:

- Two exact matches: 2,119
- Two almost matches: $43 \approx 44, 321 \approx 319$
- One true difference: $599 \neq 222$

Our Goal: Reconciliation that only considers the *true* differences with small communication cost

Synchronization of Image Databases

Difficulties:

- Same image, different encodings (bmp, jpeg, ...)
- In general: rounding errors, introduction of noise

Communication Cost Constraint:

Given a communication budget, reconciliate as many true differences as possible

Robust Set Reconciliation

Input:

- Alice and Bob hold $S_A, S_B \subseteq [\Delta]^d$ on *d*-dim. grid of length Δ
- Communication budget k

Similarity measure: Earth-Mover-Distance

 $\text{EMD}(S_A, S_B) :=$ weight of minimum weight matching between S_A and S_B

Robust Set Reconciliation

Input:

- Alice and Bob hold $S_A, S_B \subseteq [\Delta]^d$ on *d*-dim. grid of length Δ
- Communication budget k

Similarity measure: Earth-Mover-Distance

 $\text{EMD}(S_A, S_B) :=$ weight of minimum weight matching between S_A and S_B

 $\mathrm{EMD}(S_A, S_B) =$ Sum of the lengths of the arrows

Robust Set Reconciliation

Input:

- Alice and Bob hold $S_A, S_B \subseteq [\Delta]^d$ on *d*-dim. grid of length Δ
- Communication budget k

Similarity measure: Earth-Mover-Distance

 $\text{EMD}(S_A, S_B) :=$ weight of minimum weight matching between S_A and S_B

 $EMD(S_A, S_B) = Sum of the lengths of the arrows$

Robust Set Reconciliation: Alice sends message M to Bob with $|M| = \tilde{O}(k)$. Then Bob finds a set S'_B so that $EMD(S_A, S'_B)$ is minimized

Optimal Solution

Communication budget limited by $\tilde{O}(k)$:

We cannot expect to reconciliate more than k point-pairs

k-residual EMD:

$$\operatorname{EMD}_k(S_A, S_B) := \min_{S_B^k} \operatorname{EMD}(S_A, S_B^k),$$

where S_B^k is obtained from S_B by relocating at most k points:

 $\operatorname{EMD}(S_A, S'_B) \leq C \cdot \operatorname{EMD}_k(S_A, S_B)$

Results

 $\label{eq: Upper Bound: We have designed a one-way protocol with$

- Communication Cost $\mathrm{O}(kd\log(n\Delta^d)\log\Delta)$ so that
- Bob computes S'_B and

 $\operatorname{EMD}(S_A, S'_B) \leq \operatorname{O}(d) \cdot \operatorname{EMD}_k(S_A, S_B).$

• The runtimes of both Alice and Bob is $O(dn \log \Delta)$.

Lower Bound: Any possibly randomized one-way communication protocol that computes an O(1) approximation has communication cost

 $O(k \log(\Delta^d/k) \log \Delta).$

ightarrow For typical settings $d = \mathrm{O}(1), n = \Delta^{\mathrm{O}(1)}, k = \mathrm{O}(\Delta^{d-\epsilon})$ UB is tight

Experiments:

- Comparision to a baseline method that uses lossy compression
- Image reconciliation

Key Technique 1: Classical (One-way) Reconciliation

Ordered Data:

There is a one-way protocol so that:

- Communication Cost is Õ(k),
- If $d_H(u, v) \leq k$ then Bob can learn Alice's input,
- If $d_H(u, v) > k$ then Bob can report that $d_H(u, v) > k$.
- $(d_H : \text{Hamming distance})$

Technique:

- Forward Error Correction such as a Reed-Solomon code
- Invertible Bloom Lookup Table (near linear time for decoding/decoding)

Key Technique 2: Quad-trees

Quad-trees:

- A layer corresponds to a resolution of the point set
- Alice and Bob construct quad-trees T_A , T_B for their inputs S_A , S_B
- A layer of the difference tree $(T_A T_B)$ indicates "surplus" and "deficit cells"

Correction given layer *L* of Alice's tree:

Subtract this layer from own layer *L* and do corrections as follows: Move points from surplus cells to center of deficit cells Note: Additional error introduced since exact

position is unknown

Key Technique 3: Random Shift

Let $M = (m_i)_i$ be a min-cost perfect matching between S_A and S_B

Interesting Layer: Consider layer in difference tree $(T_A - T_B)$ that reflects the *k* heaviest edges of *M* (Hamming distance = $\Theta(k)$)

Technical Difficulty: False Positives

 \rightarrow Perform a random shift of the grid

Summary: Algorithm

Alice:

- **(**) Random Shift: Alice shifts all points by u.a.r. chosen γ
- Build Quad-tree
- Invertible Bloom Lookup Table: For every layer L of the quad-tree, build an IBLT that allows Bob to recover Alice's layer L if Bob's layers L differs by at most ck (for a constant c)
- **③** Send Message: Alice sends γ and the IBLT's to Bob

Bob:

- Random Shift
- Build Quad-tree
- Decode IBLTs: Bob decodes the IBLTs and determines the highest layer L' so that Hamming distance is at most ck
- Move points: Move points from surplus cells to deficit cells (center)
- Reverse Random Shift

Redundancy factor c: Account for moving points to center of cells

- One-way two-party communication protocol for O(d)-approximation
- Algorithm cannot compute EMD nor residual EMD
- \bullet Computing EMD in one-way two-party communication model is a hard problem: constant approximation has communication cost polynomial in Δ

One dimensional Experiment

- Alice's point set: 1D data set with $n = 10^6$ points
- Inject k = 100 true differences by randomly picking k points and moving them to an arbitrary location
- For all other nodes inject noise in $\left[-1,1\right]$
- Baseline Method based on lossy Haar Wavelet Compression

Reconciliation of Image Database

Data Set:

- Alice has 10.000 high quality JPEG images
- Bob has a copy of this set which is modified as follows:
 - All images are recompressed with 95%-quality JPEG compression
 - k images are replaced by different ones

Adaption of the Algorithm:

- Images are mapped to 6-dimensional feature space
- Algorithm adapted to two-way communication

				Budget		
		2%	4%	6%	8%	10%
	5	0%	56%	92%	100%	100%
	10	2%	34%	84%	100%	100%
k	15	0%	28%	80%	100%	100%
	20	0%	19%	67%	98%	99%
	25	0%	5%	66%	87%	99%

Table: Recovery rate for image reconciliation

Summary:

- Robust set reconciliation method that works well in practice
- Lower Bound illustrating that communication budget is almost tight

Open Questions:

- Can O(d)-approximation be improved? (e.g. $(1 + \epsilon)$ -approx.)
- Improvement via multiple communication rounds?

Summary:

- Robust set reconciliation method that works well in practice
- Lower Bound illustrating that communication budget is almost tight

Open Questions:

- Can O(d)-approximation be improved? (e.g. $(1 + \epsilon)$ -approx.)
- Improvement via multiple communication rounds?

Thank you for your attention.