Improved Distributed Algorithms for Coloring Interval Graphs with Application to Multicoloring Trees

Magnús M. Halldórsson and Christian Konrad

22.06.2017

Distributed Vertex Coloring

Input: G = (V, E), n = |V|, max. degree Δ

The \mathcal{LOCAL} and $\mathcal{CONGEST}$ Models:

- Nodes host processors and have unique IDs
- Synchronous communication along edges, individual messages *LOCAL*: messages of unbounded size *CONGEST*: messages of size O(log n)
- Local computation is free
- Running time = number of communication rounds

Distributed Vertex Coloring

Input: G = (V, E), n = |V|, max. degree Δ

The LOCAL and CONGEST Models:

- Nodes host processors and have unique IDs
- Synchronous communication along edges, individual messages *LOCAL*: messages of unbounded size *CONGEST*: messages of size O(log n)
- Local computation is free
- Running time = number of communication rounds

Minimum Vertex Coloring Problem:

Output: Upon termination of algorithm, every node knows its color

Computational Complexity:

• NP-hard [Karp, "Reducibility Among Comb. Problems", 1972]

Computational Complexity:

- NP-hard [Karp, "Reducibility Among Comb. Problems", 1972]
- Hard to Approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

Computational Complexity:

- NP-hard [Karp, "Reducibility Among Comb. Problems", 1972]
- Hard to Approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

How to deal with such a hard problem?

Computational Complexity:

- NP-hard [Karp, "Reducibility Among Comb. Problems", 1972]
- Hard to Approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

How to deal with such a hard problem?

• Degree-based quality bound: $\Delta + 1$ -coloring Extensively studied in distributed algorithmics

Computational Complexity:

- NP-hard [Karp, "Reducibility Among Comb. Problems", 1972]
- Hard to Approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

How to deal with such a hard problem?

• Degree-based quality bound: $\Delta + 1$ -coloring Extensively studied in distributed algorithmics

Often very poor quality guarantee

Computational Complexity:

- NP-hard [Karp, "Reducibility Among Comb. Problems", 1972]
- Hard to Approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

How to deal with such a hard problem?

• Degree-based quality bound: $\Delta + 1$ -coloring Extensively studied in distributed algorithmics

Often very poor quality guarantee

• Specific graph classes: trees, interval graphs, unit disc graphs, etc. Much less studied in distributed algorithmics

Computational Complexity:

- NP-hard [Karp, "Reducibility Among Comb. Problems", 1972]
- Hard to Approximate within factor $n^{1-\epsilon}$ [Håstad, 1999]

How to deal with such a hard problem?

• Degree-based quality bound: $\Delta + 1$ -coloring Extensively studied in distributed algorithmics

Often very poor quality guarantee

- Specific graph classes: trees, interval graphs, unit disc graphs, etc. Much less studied in distributed algorithmics
- Exponential time algorithms n^{ϵ} approximation in exp $O(\frac{1}{2})$ re

 n^ϵ -approximation in exp $\mathrm{O}(rac{1}{\epsilon})$ rounds [Barenboim, Elkin, Gavoille, 2015]

• LB: $\Omega(\log n)$ rounds for O(1)-coloring on trees [Linial, 1992]

- LB: $\Omega(\log n)$ rounds for O(1)-coloring on trees [Linial, 1992]
- O(a)-approximation in O(a log n) rounds on graphs with arboricity a (3-coloring on trees in O(log n) rounds) [Barenboim, Elkin, 2010]

- LB: $\Omega(\log n)$ rounds for O(1)-coloring on trees [Linial, 1992]
- O(a)-approximation in O(a log n) rounds on graphs with arboricity a (3-coloring on trees in O(log n) rounds) [Barenboim, Elkin, 2010]
- O(1)-approximation in O(log* n) rounds on interval graphs [Halldórsson, Konrad, 2014]

- LB: $\Omega(\log n)$ rounds for O(1)-coloring on trees [Linial, 1992]
- O(a)-approximation in O(a log n) rounds on graphs with arboricity a (3-coloring on trees in O(log n) rounds) [Barenboim, Elkin, 2010]
- O(1)-approximation in O(log* n) rounds on interval graphs [Halldórsson, Konrad, 2014]
- This work: Improvements on [Halldórsson, Konrad, 2014]

Interval Graphs: Intersection graph of intervals on the line

Interval Graphs: Intersection graph of intervals on the line

[Halldórsson, Konrad, 2014] :

- Constant factor approximation in O(log* n) rounds (*LOCAL*)
- \bullet Interval boundaries known: adaptation to $\mathcal{CONGEST}$
- Every O(1)-approximation requires $\Omega(\log^* n)$ rounds (via Linial)

Interval Graphs: Intersection graph of intervals on the line

[Halldórsson, Konrad, 2014] :

- Constant factor approximation in O(log* n) rounds (*LOCAL*)
- \bullet Interval boundaries known: adaptation to $\mathcal{CONGEST}$
- Every O(1)-approximation requires $\Omega(\log^* n)$ rounds (via Linial)

Our Results:

- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log^* n)$ rounds
- \bullet Interval boundaries known: adaptation to $\mathcal{CONGEST}$
- LB: $\Omega(\frac{1}{\epsilon})$ rounds necessary
- $(1 + \epsilon)$ -approx. for multicoloring directed trees in $O(\frac{1}{\epsilon} \log^* n)$ rounds

Interval Graphs: Intersection graph of intervals on the line

[Halldórsson, Konrad, 2014] :

- Constant factor approximation in O(log* n) rounds (*LOCAL*)
- \bullet Interval boundaries known: adaptation to $\mathcal{CONGEST}$
- Every O(1)-approximation requires $\Omega(\log^* n)$ rounds (via Linial)

Our Results:

- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log^* n)$ rounds
- \bullet Interval boundaries known: adaptation to $\mathcal{CONGEST}$
- LB: $\Omega(\frac{1}{\epsilon})$ rounds necessary
- $(1 + \epsilon)$ -approx. for multicoloring directed trees in $O(\frac{1}{\epsilon} \log^* n)$ rounds

- $\ \, \bullet \ \, {\cal LOCAL} \ \, {\sf model} \ \, {\sf algorithm} \\$
- **2** Adaptation to CONGEST

- $\ \, \bullet \ \, \mathcal{LOCAL} \ \, \mathsf{model} \ \, \mathsf{algorithm} \\$
- **2** Adaptation to CONGEST

Algorithm in the \mathcal{LOCAL} model

Algorithm in the \mathcal{LOCAL} model

Algorithm:

• $I \leftarrow \text{distance-}k \mod \text{independent set}$

- $I \leftarrow \text{distance-}k \text{ maximal independent set}$
- Over the second seco

- $I \leftarrow \text{distance-}k \text{ maximal independent set}$
- Over the second seco
- Solution Uncolored nodes form connected components of diameter at most 2k

- $I \leftarrow \text{distance-}k \text{ maximal independent set}$
- Over the second seco
- Solution Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally

- $I \leftarrow \text{distance-}k \text{ maximal independent set}$
- Over the second seco
- Incolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally

- $I \leftarrow \text{distance-}k \text{ maximal independent set } O(?)$
- Over the second seco
- Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally

- $I \leftarrow \text{distance-}k \text{ maximal independent set } O(?)$
- **②** Nodes of *I* color inclusive neighborhoods optimally O(1)
- Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally

- $I \leftarrow \text{distance-}k \text{ maximal independent set } O(?)$
- Solution Nodes of I color inclusive neighborhoods optimally O(1)
- Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally O(k)

- $I \leftarrow \text{distance-}k \text{ maximal independent set } O(?)$
- Solution Nodes of I color inclusive neighborhoods optimally O(1)
- Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally O(k)

Runtime? O(?+k)

- $I \leftarrow \text{distance-}k \text{ maximal independent set } O(?)$
- Solution Nodes of I color inclusive neighborhoods optimally O(1)
- Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally O(k)

Runtime? O(?+k)

Approximation Factor?

- $I \leftarrow \text{distance-}k \text{ maximal independent set } O(?)$
- Solution Nodes of I color inclusive neighborhoods optimally O(1)
- Solution Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally O(k)

Runtime? O(?+k)

Approximation Factor? # colors used in coloring completion step

MIS algorithm \rightarrow distance-k MIS algorithm:

- Simulate MIS on G^k (nodes adjacent if distance at most k)
- MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS algorithm \rightarrow distance-k MIS algorithm:

- Simulate MIS on G^k (nodes adjacent if distance at most k)
- MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008] $O(\log^* n)$ rounds in CONGEST model on BI graphs

Definition: G is of *bounded-independence* if there exists bounding function f(r) so that for each $v \in V$, the size of a maximum independent set in the *r*-neighborhood of v is at most f(r).

Path/Ring:

MIS algorithm \rightarrow distance-k MIS algorithm:

- Simulate MIS on G^k (nodes adjacent if distance at most k)
- MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008] $O(\log^* n)$ rounds in CONGEST model on BI graphs

Definition: G is of *bounded-independence* if there exists bounding function f(r) so that for each $v \in V$, the size of a maximum independent set in the *r*-neighborhood of v is at most f(r).

Unit Interval Graphs:

MIS algorithm \rightarrow distance-k MIS algorithm:

- Simulate MIS on G^k (nodes adjacent if distance at most k)
- MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008] $O(\log^* n)$ rounds in CONGEST model on BI graphs

Definition: G is of *bounded-independence* if there exists bounding function f(r) so that for each $v \in V$, the size of a maximum independent set in the *r*-neighborhood of v is at most f(r).

Interval Graphs:

MIS algorithm \rightarrow distance-k MIS algorithm:

- Simulate MIS on G^k (nodes adjacent if distance at most k)
- MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008] $O(\log^* n)$ rounds in CONGEST model on BI graphs

Definition: G is of *bounded-independence* if there exists bounding function f(r) so that for each $v \in V$, the size of a maximum independent set in the *r*-neighborhood of v is at most f(r).

Interval Graphs:

MIS algorithm \rightarrow distance-k MIS algorithm:

- Simulate MIS on G^k (nodes adjacent if distance at most k)
- MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008] $O(\log^* n)$ rounds in CONGEST model on BI graphs

Definition: G is of *bounded-independence* if there exists bounding function f(r) so that for each $v \in V$, the size of a maximum independent set in the *r*-neighborhood of v is at most f(r).

Interval Graphs:

- Extract subgraph of *proper intervals* (= unit interval graph)
- Distance-k MIS in O(k log* n) rounds

MIS algorithm \rightarrow distance-k MIS algorithm:

- Simulate MIS on G^k (nodes adjacent if distance at most k)
- MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008] $O(\log^* n)$ rounds in CONGEST model on BI graphs

Definition: G is of *bounded-independence* if there exists bounding function f(r) so that for each $v \in V$, the size of a maximum independent set in the *r*-neighborhood of v is at most f(r).

Interval Graphs:

- Extract subgraph of *proper intervals* (= unit interval graph)
- Distance-k MIS in $O(k \log^* n)$ rounds $O(k \log^* n + k)$

Goal: Prove that color completion with few colors exists

Goal: Prove that color completion with few colors exists

Circular Arc Graphs:

- Load *L*(*G*): Largest subset containing the same point
- Circular cover length *l*(*G*): cardinality of smallest subset of arcs covering the circle

(F) = 3

Goal: Prove that color completion with few colors exists

Circular Arc Graphs:

- Load *L*(*G*): Largest subset containing the same point
- Circular cover length *I*(*G*): cardinality of smallest subset of arcs covering the circle

[Valencia-Pabon, 2003] :

 $\lfloor \left(1 + \frac{1}{l(G)-2}\right) L(G) \rfloor + 1$ colors suffice to color circular arc graph G

(F) = 3

- \mathcal{LOCAL} model algorithm
- **2** Adaptation to CONGEST

Algorithm in the CONGEST model

Adapting the \mathcal{LOCAL} algorithm:

- $I \leftarrow \text{distance-}k \text{ maximal independent set (identify proper intervals)}$
- Over the second seco
- Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally

Assumption:

Interval representation is known

Remaining Difficulty:

Color completion requires knowledge of distance- $\Theta(k)$ neighborhood

Algorithm in the CONGEST model

Adapting the \mathcal{LOCAL} algorithm:

- $I \leftarrow \text{distance-}k \text{ maximal independent set (identify proper intervals)}$
- Over the second seco
- Uncolored nodes form connected components of diameter at most 2k
- The node with smaller ID among u, v completes coloring of uncolored nodes between u, v optimally

Assumption:

Interval representation is known

Remaining Difficulty:

Color completion requires knowledge of distance- $\Theta(k)$ neighborhood

Implementation in CONGEST via Color Rotations

Greedy Colorings

Greedy Coloring Sweep:

Traverse intervals with increasing left boundaries, assign smallest possible color \rightarrow Optimal coloring

 $\mathcal{CONGEST}$ model version:

Greedy Colorings

Greedy Coloring Sweep:

Traverse intervals with increasing left boundaries, assign smallest possible color \rightarrow Optimal coloring

CONGEST model version:

 n_i reaches out furthest to the right, $u, n_1, n_2, \ldots, n_{i+1}, v$ forms path P

Greedy Colorings

Greedy Coloring Sweep:

Traverse intervals with increasing left boundaries, assign smallest possible color \rightarrow Optimal coloring

CONGEST model version:

Simulate Greedy coordinated by vertices in P in O(k) rounds

Algorithm:

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

Gray: initial colors γ_1

Algorithm:

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

Add $\epsilon \chi(G)$ new colors Recolor vertices with initial colors $1, \ldots, \epsilon \chi(G)$ to new colors

Algorithm:

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

Colors $1, \ldots, \epsilon \chi(G)$ are unused

Algorithm:

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

Starting from Γ^2 , recolor nodes with target color $1, \ldots, \epsilon \chi(G)$ to their target color

Algorithm:

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

This leaves unused colors behind

Algorithm:

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

Run a Greedy left-to-right coloring, recoloring colors $\{\epsilon\chi(G) + 1, \ldots, \chi(G)(1+\epsilon)\}$ to $\{\epsilon\chi(G) + 1, \ldots, n\}$

Algorithm:

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

Repeat from Γ^4 onwards

- *u* initiates left-to-right Greedy coloring γ₁, respecting colors of Γ[*u*], not respecting colors of Γ[*v*] (initial colors)
- v initiates right-to-left Greedy coloring γ₂, respecting colors of Γ[v], not respecting colors of Γ[u] (target colors)
- Transform γ_1 into a coloring that respects colors of $\Gamma[v]$

- Coloring completion step can be implemented in O(k) rounds
- Overall runtime: $O(\frac{1}{\epsilon} \log^* n)$

Conclusion

We presented:

- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log^* n)$ rounds
- \bullet Interval boundaries known: adaptation to $\mathcal{CONGEST}$
- LB: $\Omega(\frac{1}{\epsilon})$ rounds necessary
- $(1 + \epsilon)$ -approx. for multicoloring directed trees in $O(\frac{1}{\epsilon} \log^* n)$ rounds

Open Problems

- Reduce round complexity to $O(\frac{1}{\epsilon} + \log^* n)$ or prove LB of $\Omega(\frac{1}{\epsilon} \log^* n)$
- $(1 + \epsilon)$ -approximation on chordal graphs in $O(\frac{1}{\epsilon} \log n)$ rounds?

Conclusion

We presented:

- $(1 + \epsilon)$ -approximation in $O(\frac{1}{\epsilon} \log^* n)$ rounds
- \bullet Interval boundaries known: adaptation to $\mathcal{CONGEST}$
- LB: $\Omega(\frac{1}{\epsilon})$ rounds necessary
- $(1 + \epsilon)$ -approx. for multicoloring directed trees in $O(\frac{1}{\epsilon} \log^* n)$ rounds

Open Problems

- Reduce round complexity to $O(\frac{1}{\epsilon} + \log^* n)$ or prove LB of $\Omega(\frac{1}{\epsilon} \log^* n)$
- $(1 + \epsilon)$ -approximation on chordal graphs in $O(\frac{1}{\epsilon} \log n)$ rounds?

Thank you