
Improved Distributed Algorithms for Coloring
Interval Graphs with Application to Multicoloring

Trees
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Distributed Vertex Coloring

Input: G = (V ,E ), n = |V |, max. degree ∆

The LOCAL and CONGEST Models:

Nodes host processors and have unique IDs

Synchronous communication along edges, individual messages
LOCAL: messages of unbounded size
CONGEST : messages of size O(log n)

Local computation is free

Running time = number of communication rounds

Minimum Vertex Coloring Problem:

Chromatic number: χ(G )

Output: Upon termination of algorithm, every node knows its color
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Minimum Vertex Coloring

Computational Complexity:

NP-hard [Karp, “Reducibility Among Comb. Problems”, 1972]

Hard to Approximate within factor n1−ε [Håstad, 1999]

How to deal with such a hard problem?

Degree-based quality bound: ∆ + 1-coloring
Extensively studied in distributed algorithmics

Often very poor quality guarantee

Specific graph classes: trees, interval graphs, unit disc graphs, etc.
Much less studied in distributed algorithmics

Exponential time algorithms
nε-approximation in expO( 1

ε ) rounds [Barenboim, Elkin, Gavoille, 2015]
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Distributed Minimum Vertex Coloring

Relevant Previous Works:

LB: Ω(log n) rounds for O(1)-coloring on trees [Linial, 1992]

O(a)-approximation in O(a log n) rounds on graphs with arboricity a
(3-coloring on trees in O(log n) rounds) [Barenboim, Elkin, 2010]

O(1)-approximation in O(log∗ n) rounds on interval graphs
[Halldórsson, Konrad, 2014]

This work: Improvements on [Halldórsson, Konrad, 2014]
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[Halldórsson, Konrad, 2014]

This work: Improvements on [Halldórsson, Konrad, 2014]
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Distributed Coloring of Interval Graphs

Interval Graphs: Intersection graph of intervals on the line

[Halldórsson, Konrad, 2014] :

Constant factor approximation in O(log∗ n) rounds (LOCAL)

Interval boundaries known: adaptation to CONGEST
Every O(1)-approximation requires Ω(log∗ n) rounds (via Linial)

Our Results:
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Outline

1 LOCAL model algorithm

2 Adaptation to CONGEST
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Algorithm in the LOCAL model

Algorithm:

1 I ← distance-k maximal independent set

2 Nodes of I color inclusive neighborhoods optimally

3 Uncolored nodes form connected components of diameter at most 2k

4 The node with smaller ID among u, v completes coloring of
uncolored nodes between u, v optimally

Runtime?

O(?)

O(1)

O(k)

O(? + k)

Approximation Factor? # colors used in coloring completion step
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Magnús M. Halldórsson and Christian Konrad Distributed Coloring of Interval Graphs 8 / 16



Algorithm in the LOCAL model

Algorithm:

1 I ← distance-k maximal independent set

2 Nodes of I color inclusive neighborhoods optimally

3 Uncolored nodes form connected components of diameter at most 2k

4 The node with smaller ID among u, v completes coloring of
uncolored nodes between u, v optimally

Runtime?

O(?)

O(1)

O(k)

O(? + k)

Approximation Factor? # colors used in coloring completion step
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Distance-k MIS

MIS algorithm → distance-k MIS algorithm:

Simulate MIS on G k (nodes adjacent if distance at most k)

MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008]

O(log∗ n) rounds in CONGEST model on BI graphs

Definition: G is of bounded-independence if there exists bounding
function f (r) so that for each v ∈ V , the size of a maximum independent
set in the r -neighborhood of v is at most f (r).

Extract subgraph of proper intervals (= unit interval graph)

Distance-k MIS in O(k log∗ n) rounds O(k log∗ n + k)
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Magnús M. Halldórsson and Christian Konrad Distributed Coloring of Interval Graphs 9 / 16



Distance-k MIS

MIS algorithm → distance-k MIS algorithm:

Simulate MIS on G k (nodes adjacent if distance at most k)

MIS in r rounds gives distance-k MIS in O(kr) rounds

MIS on bounded-independence graphs: [Schneider, Wattenhofer, 2008]

O(log∗ n) rounds in CONGEST model on BI graphs

Definition: G is of bounded-independence if there exists bounding
function f (r) so that for each v ∈ V , the size of a maximum independent
set in the r -neighborhood of v is at most f (r).

Interval Graphs:

(n − 1)-claw, not of bounded-independence

Extract subgraph of proper intervals (= unit interval graph)

Distance-k MIS in O(k log∗ n) rounds

O(k log∗ n + k)
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Approximation Factor

Goal: Prove that color completion with few colors exists

C1 distance ≥ k − 2 C2

Circular Arc Graphs: L(F ) = 3

Load L(G ): Largest subset
containing the same point

Circular cover length l(G ): cardinality
of smallest subset of arcs covering the circle

[Valencia-Pabon, 2003] :

b
(

1 + 1
l(G)−2

)
L(G )c+ 1 colors suffice to color circular arc graph G
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Approximation Factor (2)

Pre-colored Interval Graph G to Circular Arc Graph F :

C1 C2
2

1
1

2

AC1 C2
2

1

2

1

AC1 C2
A

1. 2.

3. 4.

Properties:

1 Load: L(F ) ≤ χ(G )

2 Circular cover: l(F ) ≥ k − 2

Valencia-Pabon: b
(

1 + 1
k−4

)
χ(G )c+ 1 colors suffice

k ∼ 1
ε , ε ≥ 2

χ(G)

Runtime: O(k log∗ n) = O( 1
ε log∗ n)
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Outline

1 LOCAL model algorithm

2 Adaptation to CONGEST
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Algorithm in the CONGEST model

Adapting the LOCAL algorithm:

1 I ← distance-k maximal independent set (identify proper intervals)

2 Nodes of I color inclusive neighborhoods optimally

3 Uncolored nodes form connected components of diameter at most 2k

4 The node with smaller ID among u, v completes coloring of
uncolored nodes between u, v optimally

Assumption:
Interval representation is known

Remaining Difficulty:
Color completion requires knowledge of distance-Θ(k) neighborhood

Implementation in CONGEST via Color Rotations
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Greedy Colorings

C1 C2

Greedy Coloring Sweep:
Traverse intervals with increasing left boundaries, assign smallest
possible color → Optimal coloring

CONGEST model version:

Γ Γ2 Γ3 Γ4 . . .
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Greedy Colorings

C1 C2

Greedy Coloring Sweep:
Traverse intervals with increasing left boundaries, assign smallest
possible color → Optimal coloring

CONGEST model version:

Γ Γ2 Γ3 Γ4 . . .

ni reaches out furthest to the right, u, n1, n2, . . . , ni+1, v forms path P
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Greedy Colorings

C1 C2

Greedy Coloring Sweep:
Traverse intervals with increasing left boundaries, assign smallest
possible color → Optimal coloring

CONGEST model version:

Γ Γ2 Γ3 Γ4 . . .

Simulate Greedy coordinated by vertices in P in O(k) rounds
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Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

Gray: initial colors γ1
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Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

Add εχ(G ) new colors
Recolor vertices with initial colors 1, . . . , εχ(G ) to new colors
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Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

Colors 1, . . . , εχ(G ) are unused

Magnús M. Halldórsson and Christian Konrad Distributed Coloring of Interval Graphs 15 / 16



Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

Starting from Γ2, recolor nodes with target color 1, . . . , εχ(G ) to their
target color
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Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

This leaves unused colors behind
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Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

Run a Greedy left-to-right coloring, recoloring colors {εχ(G ) +
1, . . . , χ(G )(1 + ε)} to {εχ(G ) + 1, . . . , n}
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Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

Repeat from Γ4 onwards
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Color Rotation

Algorithm:

1 u initiates left-to-right Greedy coloring γ1, respecting colors of Γ[u],
not respecting colors of Γ[v ] (initial colors)

2 v initiates right-to-left Greedy coloring γ2, respecting colors of Γ[v ],
not respecting colors of Γ[u] (target colors)

3 Transform γ1 into a coloring that respects colors of Γ[v ]

Coloring completion step can be implemented in O(k) rounds

Overall runtime: O( 1
ε log∗ n)
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Conclusion

We presented:

(1 + ε)-approximation in O( 1
ε log∗ n) rounds

Interval boundaries known: adaptation to CONGEST
LB: Ω( 1

ε ) rounds necessary

(1 + ε)-approx. for multicoloring directed trees in O( 1
ε log∗ n) rounds

Open Problems

Reduce round complexity to O( 1
ε + log∗ n) or prove LB of

Ω( 1
ε log∗ n)

(1 + ε)-approximation on chordal graphs in O( 1
ε log n) rounds?

Thank you
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