
A Quantitative Evaluation of the RAPL Power Control
System

Huazhe Zhang and Henry Hoffmann
University of Chicago, Chicago USA

{huazhe,hankhoffmann}@cs.uchicago.edu

ABSTRACT
We evaluate Intel’s RAPL power control system, which allows
users to set a power limit and then tunes processor behavior to re-
spect that limit. We evaluate RAPL by setting power limits and
running a number of standard benchmarks. We quantify RAPL
along five metrics: stability, accuracy, settling time, overshoot, and
efficiency. The first four are standard measures for evaluating con-
trol systems. The last recognizes that any power control approach
should deliver the highest possible performance achievable within
the power limit. Our results show that RAPL performs well on the
four standard metrics, but some benchmarks fail to achieve maxi-
mum performance. At high power limits, the average performance
is within 90% of optimal. At middle power limits, it is 86% of op-
timal. At low power limits, the average performance is less than
65% of optimal.

1. INTRODUCTION
Processor designs are increasingly constrained by power and

thermal dissipation. As a result, several power control systems have
been proposed to guarantee system power consumption operates
within a strict limit [5, 6, 11, 22, 30–32, 40]. In fact, Intel now
supports power control directly in hardware through their Running
Average Power Limit (RAPL) interface [7], which allows software
to set a power limit that hardware ensures.

Any power control system takes a power limit as input and tunes
behavior to ensure that this operating limit is respected. There are
several desirable properties for any control system acting on a com-
puter, which we illustrate in Fig. 1. These properties (identified by
Hellerstein et al. [13]) allow us to quantify the behavior the control
system over time and they include:
• Stability: freedom from oscillation.
• Accuracy: convergence to the limit.
• Settling time: duration until limit is reached.
• Maximum Overshoot: the maximum difference between

the power limit and the measured power.
Collectively, these are referred to as the SASO properties. A power
control system should be stable to avoid power (and thus thermal)
fluctuations. The controller should be accurate to ensure that the
system does not operate above the specified limit. It should have
low settling time and low maximum overshoot to ensure that the
power limit is reached quickly with only small errors.

In addition to these four properties (which are desirable for any
control system), a power controller must also be efficient. That
is, it should not only ensure operation within the power limit, it
should also deliver the maximum possible performance subject to
this power constraint.

This problem of maximizing performance within a power limit
is especially important given the emergence of dark silicon [10,
37]. Dark silicon refers to the fact that modern processors cannot
run at full speed without producing unsustainable power dissipa-
tion. Thus, an efficient power control system will both ensure that
power limits are respected and do so by selecting which of the over-

Figure 1: Illustration of the SASO properties.

abundance of transistors should be powered and at what speed.
This paper quantifies the behavior of the RAPL power control

system. We run a number of benchmarks under a number of power
limits on a Linux/x86 system based on Xeon E5-2690 processors.
For each benchmark and limit, we record the achieved performance
and power consumption. This data allows us to quantify stabil-
ity, accuracy, settling time, maximum overshoot, and efficiency. In
general, we find RAPL to behave well in terms of the SASO prop-
erties. It is generally stable and accurate with low settling time. We
find that almost every benchmark and power target exhibits consid-
erable overshoot, although the potential impact is limited due to the
low settling time. We find RAPL’s efficiency to be very sensitive to
both the power target and the application under control. Very low
power limits produce an average performance of just over 65% of
optimal. Mid-level power caps produce an average performance of
86% of optimal. High power limits produce average performance
close to 95% of optimal. However, for some applications, perfor-
mance may be much lower than average for all limits.

This paper makes the following contributions:
• It proposes using the existing SASO properties to quantify

the behavior of power control systems for processors.
• It proposes adding a fifth property, efficiency, to the study of

processor power control to quantify the controller’s ability to
deliver maximum performance for a given power budget.
• It quantifies RAPL’s behavior for these five properties.
• For each property evaluated, it states some implications of

our findings for RAPL users.
The remainder of the paper is organized as follows. Section 2

provides further detail on the desired properties and our method for
quantifying them. Section 3 describes the system and benchmarks
used in our study. Section 4 presents our findings and describes
their implications. Section 5 discusses related work in power man-
agement. The paper concludes in Section 6.

2. DESIRED PROPERTIES
RAPL is a control system. Its input is a power limit. Given this

input, RAPL tunes system behavior to ensure the limit is respected.
As a control system, RAPL is responsible for reacting to changes
in system dynamics (e.g., the application entering a new phase) to
maintain the power target over time.

We quantify RAPL’s performance in terms of the standard prop-

1



erties one would expect from a control system acting on a computer
system. These properties are defined by Hellerstein et al. [13] and
illustrated in Fig. 1: stability, accuracy, settling time, and maxi-
mum overshoot. Together, these four properties quantify the control
system’s ability to achieve the desired power consumption quickly
and without error. We discuss these further in Section 2.1.

While the SASO properties quantify RAPL’s temporal behavior
in the power dimension, they fail to account for one additional,
and essential, property of a power control system: efficiency. Effi-
ciency refers to the controller’s ability to deliver performance while
respecting the power budget. The more efficient the control system,
the higher the performance it will deliver for a given power limit.
This property is discussed in more detail in Section 2.2.

2.1 Definition of SASO Properties
The SASO properties describe the behavior of a control system

over time. As we are describing a computer system, we adopt a
discrete time model. We assume a given power limit p`, and a
measured power pm. We denote the measured power at time k as
pm(k). We assume that we have power measurements for n distinct
times; i.e., k ∈ 1, . . .n.
Stability A stable system converges to a single value; i.e., the
derivative of the measurements becomes zero. The remaining
SASO properties are defined in terms of a stable system. We quan-
tify the stability of a power controller by computing the standard
deviation of the power measurements over time:

stdev =

√
1
n

n

∑
k=1

[pm(k)− p̄m]
2 (1)

where p̄m is the average measured power; i.e., p̄m =
1
n

∑
n
k=1 pm(k).

Low standard deviation indicates high stability.
Accuracy An accurate power controller converges to the power
limit (or below). Control accuracy may be the most important
property for users, because accurate control means that the limit
is respected. For example, consider a power limit p`. A power con-
troller is accurate if there exists a time kss (for steady-state) such
that the measured power pm converges to p` for all k > kss. Given
power measurements over time, we quantify accuracy by comput-
ing the mean absolute percentage error (MAPE):

MAPE =
1
n

n

∑
k=1


pm(k)> p` :

∣∣∣∣ pm(k)− p`
pm(k)

∣∣∣∣ ·100%

pm(k)≤ p` : 0
(2)

Low MAPE indicates accurate control, while high MAPE repre-
sents inaccuracy. MAPE expresses error as a percentage of the
power target, allowing comparisons across different targets.
Settling Time Settling time refers to the time that passes from
when the limit is set (and control begins) to the point where the
system becomes stable. That is, settling time is quantified as the
difference between the start time k0 and kss:

settle = kss− k0 (3)

Low settling times indicate the desired power is reached quickly.
Max Overshoot The maximum overshoot refers to the largest
amount by which the system exceeds the power limit on its way
to becoming stable. We quantify maximum overshoot as:

maxover = maxk pm(k)− p` (4)

Lower overshoots are better.

2.2 Efficiency
Efficiency represents the performance delivered within a power

limit. Ideally, the power control system should deliver the high-
est possible performance for a given limit. We quantify efficiency
by considering all configurations c of a particular processor, where
each configuration represents a particular resource usage. For ex-
ample, on a processor with two cores and two clock speeds (both
cores must use the same speed), there are four configurations, each
of which may deliver a separate power and performance. We de-
note the set of possible configurations as C = {0 . . .nC−1}, where
nC is the total number of configurations.

We quantify efficiency in terms of a particular workload. We first
measure that workload’s performance rc and power consumption
pc in every possible configuration c ∈C. We then set a power limit
p` and measure the delivered performance at that target r`. With
these values, we compute efficiency as:

Under = {c|c ∈C∧ pc ≤ p`}

e f f iciency =
rc

maxc∈Under rc

(5)

The first equation creates a set Under of all configurations with
power consumptions below the limit. The second equation simply
divides the measured performance under the control system by the
largest performance of any configuration in the set Under. The
higher the efficiency the closer the power manager is to delivering
the best possible performance for a given limit.

3. EXPERIMENTAL SETUP

3.1 System
We use a dual-socket Intel/Linux system with a SuperMICRO

X9DRL-iF motherboard and two Xeon E5-2690 processors. This
motherboard supports setting software power limits through RAPL.
The system runs Linux 3.2.0. We make use of the msr module, al-
lowing access to the model specific registers (MSR) used to set
RAPL power limits and read energy consumption. We use the
cpufrequtils package to set the processor’s clock speed. These
processors have eight cores, fifteen DVFS settings (from 1.2 – 2.9
GHz), hyper-threading, and TurboBoost. In addition, each chip has
its own memory controller, and we use the numactl library to con-
trol access to memory controllers. In total, the system supports
1024 user-accessible configurations, each with its own power/per-
formance tradeoffs1. According to Intel’s documentation, the ther-
mal design power for these processors is 135 Watts.

3.2 Applications
We use 16 benchmark applications from three differ-

ent suites including PARSEC (x264, swaptions, vips,
fluidanimate, blackscholes, bodytrack) [2], Minebench
(ScalParC, kmeans, HOP, PLSA) [29], and Rodinia (cfd, nn, lud,
particlefilter)[4]. We also use a partial differential equation
solver (jacobi) and the swish++ search webserver [16]. These
benchmarks test a range of important modern multicore applica-
tions with both compute-intensive and data-intensive workloads.
All applications run with up to 32 threads (the maximum supported
in hardware on our test machine). In addition, all workloads are
long running, taking at least 10 seconds to complete. This duration
gives us plenty of time to take measurements of system behavior.

116 cores, 2 hyperthreads, 2 memory controllers, and 16 speed set-
tings (15 DVFS settings plus TurboBoost)

2



Figure 2: Example of measurements taken to determine SASO.

3.3 Measurement
We measure performance as throughput – the rate at which an ap-

plication completes. Higher numbers are better. Ideally, throughput
would increase with increasing power consumption.

To evaluate the SASO properties, we measure power by collect-
ing energy data by reading the appropriate MSR at 10ms intervals.
We convert the energy measurement into a power consumption. At
this point we have a series of power measurements at discrete times,
and we use this data to calculate stability, accuracy, settling time,
and max overshoot as described in Section 2.

To evaluate efficiency, we collect the average power consump-
tion and performance data for each benchmark in each of the 1024
possible configurations of the system. Then, we run each bench-
mark while setting RAPL’s power limit. We use 26 different RAPL
power limits from 30W to 110W in 2.5W increments and collect
the average power and performance data for each run. From this
data, we directly calculate efficiency using Eqn. 5.

We use this measurement methodology to evaluate RAPL across
a number of power limits. Specifically, we evaluate five power lim-
its including: 30/50/70/90/110 Watts per processor. This allows
us to test RAPL’s ability to deliver both the SASO and efficiency
properties across a wide range of power goals.

We illustrate the results of the measurement process in Fig-
ures 2–3. These figures show the measurements taken for the
jacobi benchmark application. Fig. 2 shows the time series data
we collect to evaluate the SASO properties. Time is displayed on
the x-axis and the measured power consumption is on the y-axis.
There are five curves corresponding to the five power limits we
evaluate. Fig. 3 shows the power and performance measurements
taken for jacobi, with power on the x-axis and performance (mea-
sured in throughput) on the y-axis. The small gray dots show points
measured for each of the 1024 user-adjustable configurations. The
boxes show measurements taken with RAPL. This benchmark rep-
resents a good case for RAPL, after some initial settling time,
RAPL keeps power consumption close to the limits. Additional,
the RAPL measurements for power and performance are close to
the Pareto-optimal frontier achievable with user-adjustable config-
urations.

4. EVALUATION
In this section, we evaluate RAPL’s SASO (stability, accuracy,

settling time, maximum overshoot) and efficiency. For each one of
these five properties, we offer comparisons between all 16 bench-
marks. Out of the results, we find RAPL serves well in SASO, ex-
cept for few exceptions discussed below. However, RAPL fails to
deliver maximum efficiency for some benchmarks and power lim-
its. For each of the five properties, we present our results and then

Figure 3: Example of measurements taken to determine efficiency.

Figure 4: Stability quantified as standard deviation (lower is better).

discuss their implications.

4.1 Stability
We calculate stability according to Eqn. 1 and display the results

in Fig. 4. This figure shows a somewhat high standard deviations.
On average, all power limits have standard deviations over 5% of
the mean, while all but the 50 Watt limit are over 10% of the mean.

There are two causes of instability. The first comes from large
deviations beyond the limit prior to later becoming stable. This
first cause is illustrated in Fig. 2 which shows that RAPL first over-
shoots low limits by a large amount before then stabilizing within
a small window around the limit. The second cause of instability
is inherently unstable applications. Applications in this class al-
ternate between different phases, during highly parallel phases, the
cpus are fully utilized, and RAPL meets the power limit. During
serial phases, a smaller number of cpus are used and most are in
idle state. Therefore in this phase, the power consumption is much
lower than power limit. Fig. 5 shows an example of this second
type of application which is inherently unstable.

RAPL handles the first case. The instability that may exist dur-
ing start up is amortized by long running applications. We be-
lieve that most of our benchmarks are stable and stability would
increase (standard deviation decrease) as the application runtime
increases. Only two of our benchmarks appear to be inherently un-
stable: bodytrack and particlefilter. Our conclusion is that
RAPL delivers overall good stability, but it does not stabilize in-
herently unstable benchmarks2. This last observation also implies
that RAPL will not provide stability for systems that run many,
short-lived tasks, and thus, constantly oscillate between high and

2We stress that this should not be viewed as a shortcoming of
RAPL, but it is important for RAPL users to be aware of this fact.

3



Figure 5: The inherently unstable bodytrack application. To in-
crease readability, we show the measurements only for the 70 Watt
limit. The other limits exhibit similar oscillations.

Figure 6: Accuracy quantified as MAPE (lower is better).

low CPU utilization.

4.2 Accuracy
We evaluate accuracy by calculating MAPE for each bench-

mark and power limit according to Eqn. 2. Fig. 6 shows the re-
sults. Fourteen of benchmarks have an error under 3% and two
out of sixteen have errors over 5%. The benchmarks with bad ac-
curacy are the two inherently unstable benchmarks: bodytrack
and particlefilter. The inaccuracy for these two applications
arises from their instability. Each time an application changes
phase, RAPL reacts. When the benchmark transitions from low uti-
lization to high utilization, RAPL over-allocates resources causing
the power bound to be temporarily violated. Given frequent phase
changes these overshoots of the power limit are also frequent. This
dynamic is illustrated in Fig. 5, which exhibits frequent overshoots
of the 70 Watt power limit for the bodytrack benchmark.

4.3 Settling Time
We evaluate settling time by computing Eqn. 3. We consider

the steady state to be reached the first time the measured power is
within 5% of the limit. The results are shown in Fig. 7. Overall,
RAPL’s settling time is low; all times are less than 0.9s and on aver-
age below 0.5s, which is quite short compared to the entire running
time for our benchmark applications. These short settling times
will matter more, however, for extremely short-lived applications.

4.4 Maximum Overshoot
We evaluate maximum overshoot by computing Eqn. 4 for each

benchmark and each power limit, with the results shown in Fig. 8.
In general, the lower the power limit, the higher the possible over-
shoot could be (since physical constraints limit maximum power
consumption). However, due to the short setting time, the effect of

Figure 7: Settling time quantified in seconds (lower is better).

Figure 8: Maximum overshoot measured in Watts (lower is better).

large overshoot on the overall power consumption is still small.

4.5 Efficiency
This section evaluates RAPL’s ability to deliver performance

within a power budget. For each benchmark we measure perfor-
mance and power consumption in each configuration of the ma-
chine (without RAPL). We then set the power limits and measure
power and performance with RAPL. Given these measurements,
we calculate efficiency according to Eqn. 5. We regard efficiency
as the second most important property of a power control system
(behind only accuracy) as users will want to know that they are
achieving maximum performance within a power limit.

The results are displayed in Fig. 9. The results demonstrate that
the delivered efficiency is sensitive to both the power limit and the
application under control. For the 30, 50, and 70 Watt limits, the
average efficiency is less than 0.9. For the 90 and 110 Watt limits,
the average efficiency is slightly over 0.9. At the 30 Watt limit, no
benchmark achieves an efficiency of greater than 0.85. At the 50
and 70 Watt limits, only seven benchmarks achieve efficiencies of
greater than 0.9. For the 90 Watt limit, nine benchmarks are above
the 0.9 efficiency threshold, while eleven of the sixteen surpass this
efficiency at the 110 Watt limit.

For higher power limits, many applications achieve high effi-
ciency. These applications all appear to be compute-intensive, in
the sense that their performance scales nearly linearly with in-
creased compute resources. The applications for which RAPL
does not perform well at high power limits appear to be more
communication-intensive. These applications have limitations in
at least one resource. For example, the x264 benchmark does not
perform well when using hyperthreads on our test machine. It is
possible to achieve slightly higher performance for the same power
limit by disabling hyperthreads for x264, but RAPL has no control

4



Figure 9: Efficiency as a proportion of maximum performance
(higher is better).

Figure 10: Pareto-Efficiency for HOP.

over hyperthreads.
Fig. 3 illustrates an application for which RAPL performs well

across all power limits (jacobi). Fig. 10 shows the same pow-
er/performance tradeoff curve for the HOP application. This is an
application for which RAPL achieves low efficiency across all lim-
its. The difference in the two figures is apparent. For almost all
the black boxes representing the power and performance of RAPL,
there are gray dots above those boxes. The presence of those gray
dots indicates that higher performance is achievable for the same
power consumption.

5. RELATED WORK
Multicore scalability is increasingly limited by power and ther-

mal management [10, 37]. These limitations have inspired a num-
ber of techniques for managing power.

Some systems provide performance guarantees while minimiz-
ing power consumption. Examples exist at the cluster level [19,
38], and the node level. At the node level, proposed techniques pro-
vide performance and minimize power by managing DVFS in the
processor [41], core throttling [42], assignment of cores to an ap-
plication [26], caches [1], DRAM [43], and disks [23]. Researchers
have shown that additional power savings can be achieved by coor-
dinating multiple components within a node [27]. For example, Li
et al. propose a method for managing memory and processor [24],
while Dubach et al. coordinate a large collection of microarchi-
tectural features [9]. Maggio et al. develop a control system for
managing core allocation and clock speed [25]. Bitirgen et al. co-
ordinate clock speed, cache, and memory bandwidth [3]. Sharifi et
al. develop an adaptive (but non-general) control scheme (called
METE) for managing cores, caches and off-chip bandwidth [35].

Several approaches coordinate general sets of resources [18, 20,
28]. All these listed techniques provide performance guarantees
(e.g., for meeting quality-of-service or real-time requirements) and
minimize power consumption. None of these techniques, however,
can guarantee power consumption or meet power budgets.

Some systems guarantee power consumption while maximiz-
ing performance subject to the power constraint. Cluster level
solutions which guarantee power consumption include those pro-
posed by Wang et al. [39] and Raghavendra et al. [30]. These
cluster-level solutions require some node-level power management
scheme. Node-level systems for guaranteeing power consumption
have been developed to manage different individual components
including DVFS for a processor [22], per-core DVFS in a multi-
core [21], processor idle-time [12, 42], DRAM [8].

It has been noted that coordinated allocation of multiple compo-
nents should be more efficient than management of components
in isolation [14, 15, 17, 27]. Thus approaches have been pro-
posed which provide power guarantees while increasing perfor-
mance through coordinated management of multiple components,
including processor and DRAM [5, 11], processors speed and core
allocation [6, 32], and combining DVFS and thread scheduling [31,
40]. Despite differences in mechanisms, these techniques all solve
a common problem: select the best configuration for meeting a
given power limit. Given these studies, it is not surprising that
RAPL would not achieve high efficiency for some applications.
We suggest that the methodology described in this paper provides
a general framework for evaluating and comparing different power
control systems in terms of both their temporal behavior (SASO
properties) and delivered performance (efficiency).

We note several other studies have begun to evaluate the RAPL
power management system. Rountree et al. explore RAPL as a
replacement for DVFS in high-performance computing systems
[33]. Sarood et al. use RAPL to set power bounds on across
an over-provisioned cluster running homogeneous application pro-
cesses [34]. Venkatesh et al. use RAPL to measure (but not control)
energy consumption in large message-passing applications [36].
While all these studies measure RAPL, none attempts the system-
atic evaluation of the behavioral measures explored in this paper.
For example, Rountree et al. evaluate RAPL’s accuracy, but not its
stability, settling time, or overshoot. In addition, their efficiency
evaluation only compares to DVFS and they do not evaluate other
available configurations (such as core and memory usage) affecting
performance and power consumption tradeoffs.

6. CONCLUSION & FUTURE WORK
We have evaluated Intel’s Running Average Power Limit

(RAPL) interface as a control system. We have examined its perfor-
mance in the four SASO properties desirable for many control sys-
tems: stability, accuracy, settling time, and maximum overshoot. In
addition, we explored RAPL’s efficiency, or ability to deliver per-
formance within a power limit. We discuss the implications of our
findings for each of these properties below.

RAPL achieves good stability for most long running applica-
tions. Stability can be negatively affected by high overshoots for
short-lived applications operating at low power limits. In addition,
RAPL will not stabilize inherently unstable applications, which is
not surprising but important for users to understand.

Accuracy means the power limits are respected, so it is likely
the most important attribute for RAPL users. Therefore, it is good
to know that RAPL achieves high accuracy in general. The only
applications for which RAPL does not achieve high accuracy are
those which are inherently unstable. Although it is unrealistic to
expect RAPL to stabilize behavior for these applications, it would

5



be nice if their instability did not negatively impact accuracy.
RAPL achieves low settling times for our test applications, rel-

ative to their overall runtime. The measured settling times indicate
that RAPL may not be suitable to manage power in a system run-
ning many short-lived jobs.

RAPL’s maximum overshoot can be high, especially for small
power limits. These overshoots tend to be of short duration. How-
ever, even such short durations could be an issue in a large-scale
distributed system if all nodes simultaneously overshoot their lim-
its by significant amounts.

Users should know RAPL’s efficiency depends on both the ap-
plication running and the power limit. First, RAPL is inefficient at
very low power limits (reaching approximately 65% of optimal per-
formance for the 30 Watt budget). Second, RAPL is inefficient for
some applications even at higher limits. These applications fall into
a class that tend to make inefficient use of one of the other on-chip
resources (e.g., , hyperthreading, cores). For such applications, it is
possible to achieve higher performance within the power limit by
decreasing the resource they use inefficiently and increasing clock
speed.

Our work has evaluated RAPL on a single processor with six-
teen benchmarks. In future work, we hope to expand this study
to multiple machines of different generations, and to explore addi-
tional benchmarks. Finally, we hope to compare RAPL to software
power control systems, especially those (discussed in Section 5)
which are designed to provide greater performance within a power
limit by coordinating multiple on chip resources.

Acknowledgements
This work was performed under the Argo project sponsored by the
U.S. Department of Energy (contract DE-AC02-06CH11357).

References
[1] R. Balasubramonian et al. “Memory hierarchy reconfiguration for energy and

performance in general-purpose processor architectures”. In: MICRO. 2000.
[2] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Archi-

tectural Implications”. In: PACT. 2008.
[3] R. Bitirgen et al. “Coordinated management of multiple interacting resources

in chip multiprocessors: A machine learning approach”. In: MICRO. 2008.
[4] S. Che et al. “Rodinia: A Benchmark Suite for Heterogeneous Computing”. In:

IISWC. 2009.
[5] J. Chen and L. K. John. “Predictive coordination of multiple on-chip resources

for chip multiprocessors”. In: ICS. 2011.
[6] R. Cochran et al. “Pack & Cap: adaptive DVFS and thread packing under power

caps”. In: MICRO. 2011.
[7] H. David et al. “RAPL: Memory Power Estimation and Capping”. In: ISLPED.

2010.
[8] B. Diniz et al. “Limiting the power consumption of main memory”. In: ISCA.

2007.
[9] C. Dubach et al. “A Predictive Model for Dynamic Microarchitectural Adap-

tivity Control”. In: MICRO. 2010.
[10] H. Esmaeilzadeh et al. “Dark silicon and the end of multicore scaling”. In:

ISCA. 2011.
[11] W. Felter et al. “A performance-conserving approach for reducing peak power

consumption in server systems”. In: ICS. 2005.
[12] A. Gandhi et al. “Power capping via forced idleness”. In: Workshop on Energy-

Efficient Design. Austin, TX, 2009.

[13] J. L. Hellerstein et al. Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[14] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines. 1st. Morgan and Claypool
Publishers, 2009.

[15] H. Hoffmann and M. Maggio. “PCP: A Generalized Approach to Optimizing
Performance Under Power Constraints through Resource Management”. In:
ICAC. 2014.

[16] H. Hoffmann et al. “Dynamic Knobs for Responsive Power-Aware Comput-
ing”. In: ASPLOS. 2011.

[17] H. Hoffmann et al. “Self-aware computing in the Angstrom processor”. In:
DAC. 2012.

[18] H. Hoffmann et al. “A Generalized Software Framework for Accurate and Ef-
ficient Managment of Performance Goals”. In: EMSOFT. 2013.

[19] T. Horvath et al. “Dynamic Voltage Scaling in Multitier Web Servers with End-
to-End Delay Control”. In: Computers, IEEE Transactions on 56.4 (2007).

[20] C. Imes et al. “POET: A Portable Approach to Minimizing Energy Under Soft
Real-time Constraints”. In: RTAS. 2015.

[21] C. Isci et al. “An Analysis of Efficient Multi-Core Global Power Management
Policies: Maximizing Performance for a Given Power Budget”. In: MICRO.
2006.

[22] C. Lefurgy et al. “Power capping: a prelude to power shifting”. In: Cluster
Computing 11.2 (2008).

[23] X. Li et al. “Performance directed energy management for main memory and
disks”. In: Trans. Storage 1.3 (2005).

[24] X. Li et al. “Cross-component energy management: Joint adaptation of proces-
sor and memory”. In: ACM Trans. Archit. Code Optim. 4.3 (2007).

[25] M. Maggio et al. “Power optimization in embedded systems via feedback con-
trol of resource allocation”. In: IEEE Transactions on Control Systems Tech-
nology (to appear) ().

[26] M. Maggio et al. “Controlling software applications via resource allocation
within the Heartbeats framework”. In: CDC. 2010.

[27] D. Meisner et al. “Power management of online data-intensive services”. In:
ISCA (2011).

[28] N. Mishra et al. “A Probabilistic Graphical Model-based Approach for Mini-
mizing Energy Under Performance Constraints”. In: ASPLOS. 2015.

[29] R. Narayanan et al. “MineBench: A Benchmark Suite for Data Mining Work-
loads”. In: IISWC. 2006.

[30] R. Raghavendra et al. “No "power" struggles: coordinated multi-level power
management for the data center”. In: ASPLOS. 2008.

[31] K. K. Rangan et al. “Thread motion: fine-grained power management for multi-
core systems”. In: ISCA. 2009.

[32] S. Reda et al. “Adaptive Power Capping for Servers with Multithreaded Work-
loads”. In: Micro, IEEE 32.5 (2012).

[33] B. Rountree et al. “Beyond DVFS: A First Look at Performance under a
Hardware-Enforced Power Bound”. In: IPDPSW. 2012.

[34] O. Sarood et al. “Optimizing power allocation to CPU and memory subsystems
in overprovisioned HPC systems”. In: CLUSTER. 2013.

[35] A. Sharifi et al. “METE: meeting end-to-end QoS in multicores through
system-wide resource management”. In: SIGMETRICS. 2011.

[36] A. Venkatesh et al. “Evaluation of Energy Characteristics of MPI Communica-
tion Primitives with RAPL”. In: IPDPSW. 2013.

[37] G. Venkatesh et al. “Conservation cores: reducing the energy of mature com-
putations”. In: ASPLOS. 2010.

[38] A. Verma et al. “Server workload analysis for power minimization using con-
solidation”. In: USENIX Annual technical conference. 2009.

[39] X. Wang et al. “MIMO Power Control for High-Density Servers in an Enclo-
sure”. In: IEEE Transactions on Parallel and Distributed Systems 21.10 (2010).

[40] J. A. Winter et al. “Scalable thread scheduling and global power management
for heterogeneous many-core architectures”. In: PACT. 2010.

[41] Q. Wu et al. “Formal online methods for voltage/frequency control in multiple
clock domain microprocessors”. In: ASPLOS. 2004.

[42] X. Zhang et al. “A Flexible Framework for Throttling-Enabled Multicore Man-
agement (TEMM)”. In: ICPP. 2012.

[43] H. Zheng et al. “Mini-rank: Adaptive DRAM architecture for improving mem-
ory power efficiency”. In: MICRO. 2008.

6


