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Abstract—Embedded systems are subject to timing and power
constraints. To support both, software currently must integrate
multiple tools, resulting in additional complexity. We address
this problem with a unified, portable framework called Bard
which uses control theory to meet the primary constraint and
linear programming to optimize the other. We evaluate Bard
on two embedded platforms that exhibit different performance
and power/energy characteristics and show that it achieves less
than 2% error in meeting power constraints while maintaining
nearly 95% of optimal performance. Additionally, Bard supports
changing the primary constraint type at runtime while still
achieving similar results.

I. INTRODUCTION

Application performance and system power consumption
are important factors influencing embedded system design.
Embedded applications have hard and soft real-time perfor-
mance demands [37]. Managing power consumption is impor-
tant for maximizing battery life and for meeting thermal design
limits to prevent overheating and irreparable system damage
[11, 35, 38].

Meeting timing or power constraints are, individually, well-
studied areas, though the problems become more complex
when meeting one and optimizing the other. For example, it is
common to meet a timing constraint while trying to minimize
power or energy consumption [6, 19, 20, 31, 42, 43]. Similarly,
systems may need to meet a power target while attempting to
maximize performance [8, 9, 15, 23, 25]. Researchers have
proposed a wide variety of solutions, but unfortunately they
do not offer the ability to change the primary constraint, i.e.,
from performance to power and vice versa.

This can negatively impact software and systems that
need to adapt at runtime due to of any number of con-
siderations, including user preferences, pre-determined use
cases, or environmental factors. For example, an application
on a smartphone may need to meet timing constraints when
executing in the foreground to deliver a sufficiently high level
of performance to satisfy users. The same application may
have tasks that execute when running in the background that
are not time-sensitive and would benefit the user by keeping
power consumption low so as not to drain the battery. Other
systems that normally provide timing guarantees must continue
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operating with reduced capacity during hardware failures or
during periods of extremely low energy reserves.

A naive approach to solving this problem is to integrate
two different solutions into the application — one that meets
timing constraints, and another for power. If the libraries are
not properly managed, they may compete for control of system
resources. This can result in failing to meet either goal, causing
poor performance and high power consumption. Furthermore,
it adds additional complexity to the program and increases the
overhead in development and validation testing.

Exacerbating the problem is that many existing solutions
are specific to particular applications or systems, i.e., they are
not portable. For example, controlling power consumption has
become so essential that Intel now has hardware support for
guaranteeing power consumption [8]. This approach obviously
only works on Intel hardware. Software developers must not
only integrate multiple software packages to meet multiple
constraints, they must integrate a different set of packages on
different platforms.

In summary, there is no existing package that (1) meets
either timing or power constraints, (2) optimizes the other,
and (3) remains portable across systems. We address these
challenges with Bard. Bard extends prior work that met
soft real-time constraints by adding the ability to track both
performance and power behavior and allow the user to decide
which constraint/optimization scheme to use. The key technical
contribution of this paper is a demonstration that a control
system that guarantees timing and minimizes energy can be
expanded to guarantee power while maximizing performance.

We evaluate Bard with eight parallel benchmarks on two
different embedded platforms — an ARM big.LITTLE SoC
and an Intel mobile Haswell processor. These two systems
have very different features and power/performance tradeoffs.
Despite these differences, Bard meets timing constraints while
minimizing energy and meets power constraints while maxi-
mizing performance. Additionally, we demonstrate that Bard
rapidly switches between performance and power constraints.

This paper makes the following contributions:

e Motivates the need for a unified framework for managing
performance and power constraints on embedded systems.

e Design and implementation of Bard!.

e Evaluation of Bard on two embedded platforms with dif-
ferent power/performance tradeoffs using 8 applications.

! Available at http://poet.cs.uchicago.edu/
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Fig. 1: Normalized power/performance tradeoffs.

II. BACKGROUND AND MOTIVATION

Embedded hardware exposes resources exhibiting a wide
range of power and performance tradeoffs. For example,
Figure 1 illustrates the power/performance tradeoffs for two
platforms while running a video encoding application. The x-
axes show normalized power and the y-axes show normalized
performance for each resource configuration. There are clear
differences in the tradeoffs’ shapes and sizes even though they
are running the same application — the Intel is close to linear
while the ARM presents a wider, more complicated space and
contains more resource configurations.

Timing and power constraints are conflicting by nature. The
key challenge for portability is finding a common approach
for effectively navigating diverse tradeoff spaces, like those in
Figure 1. Thus, many different resource management systems
have been proposed. Some meet power constraints while
maximizing performance. Others meet performance constraints
while minimizing power or energy. Both capabilities may be
necessary, however, especially for a system in the field which
must deal with changing environmental conditions. We review
related work of both types and demonstrate the need for a
unified system that can meet either constraint while optimizing
the other.

A. Meeting Power Constraints

As thermal dissipation limits multicore scaling, power
constraints are becoming stricter [11, 38]. For example, the
Exynos 5 processor is a system-on-chip based on the ARM
big. LITTLE architecture [24]. It is typical of the type of
heterogeneous design that has emerged for embedded systems,
and it is critically power constrained — its 5.5W peak power
is nearly twice its sustainable heat dissipation, limiting time at
peak speed to less than one second [35].

To support systems with strict power budgets, several
approaches guarantee power consumption while maximizing
performance. Examples include those that manage DVFS for
a processor [25], per-core DVFS in a multicore [23], processor
idle-time [15], and DRAM [9]. Intel recently commercialized
a hardware power controller which accepts a power cap from
software and enforces it with DVFS [8]. The availability
of such commercial power capping techniques signifies their
importance. Other approaches coordinate multiple system com-
ponents to meet a power goal. Examples include processor and
DRAM speed [5, 12], DVFES and core allocation [7, 33, 40],
and recent techniques coordinate arbitrary sets of resources

[18, 44]. Whether managing single or multiple resources,
all of these approaches are concerned strictly with power
consumption. None are capable of providing performance
guarantees.

B. Meeting Performance Constraints

Embedded systems must meet timing constraints. Many
approaches provide timing guarantees through management of
a single resource; e.g., processor speed [41], processor duty
cycle [46], caches [1], DRAM [47], and disks [26]. Other stud-
ies have shown that it is more energy-efficient to coordinate
multiple resources than to manage any one alone [6, 42, 43].
Li et al. manage memory and processor speed [27], Dubach
et al. coordinate several microarchitectural features [10], and
Maggio et al. coordinate core allocation and clock speed [28].
Petrucci et al. coordinate thread scheduling and the use of
heterogeneous cores [31]. Still other approaches focus on
managing a general set of system-level components [19, 20,
32, 36, 45]. None of these approaches, however, can provide
power consumption guarantees.

C. Need for a Unified Framework

None of the above approaches are flexible enough to
support constraints on both performance and power, which is
essential for embedded systems that need to operate in dy-
namically changing environments. We consider two examples:
a system experiencing fan failure and another using harvested
energy.

Consider an embedded system with a fan that provides
real-time guarantees. If the fan fails, the system will need to
switch from providing timing guarantees to providing power
guarantees so that it does not destroy itself. In this case, the
system will miss deadlines, but we would still expect it to
maximize performance under the safe operating power.

The second example concerns a system using harvested
energy. Such systems have batteries that store excess energy.
When the battery is near full, the system will want timing
guarantees. When the battery runs low, it must switch to a
conservative mode that guarantees power to extend battery life.
The system continues in a best-effort capacity until more en-
ergy is available, then switches back to timing guarantees. Such
a system may switch between timing and power guarantees
constantly during deployment.

These are just two of many possible examples demonstrat-
ing how an embedded system benefits from having support for
both power and timing guarantees. However, current practices
use separate solutions for each problem. These solutions must
be validated against each other to ensure that they are com-
patible. This additional engineering effort could be saved by
developing a single system capable of meeting performance or
power constraints and switching between the two.

Some prior approaches have come close, but not quite
fulfilled this need. CoAdapt provides timing and power guar-
antees, but only for approximate computations which can
change their output accuracy [16]. JouleGuard meets energy
guarantees through a combination of power and performance
management [17]. Fu et al. provide real-time and temperature
guarantees [14]. This approach addresses the fan failure ex-
ample, but is not sufficient for the harvested energy case as
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Fig. 2: Overview of the Bard runtime.

it only reacts to rising temperature — it cannot handle power
explicitly. Furthermore, the Fu approach requires tuning for
a specific system, which is not portable. Bard, in contrast,
provides a unified, portable approach that can manage arbitrary
sets of system components to (1) meet a timing constraint
while minimizing energy, (2) meet a power constraint while
maximizing performance, and (3) alternate between the two.

III. A UnirieEp FRAMEWORK

Bard’s predecessor, POET, provides soft real-time guaran-
tees with minimal energy by manipulating application resource
usage. However, its design is independent of any particular
set of resources or tradeoff space, making it portable. Bard
extends this functionality to (1) meet power constraints while
maximizing performance and (2) seamlessly switch between
performance and power constraints as necessary. This section
explains how we formulate these problems and describes
Bard’s design and implementation.

Figure 2 shows Bard’s feedback control design. A user
provides a performance or power constraint goal for an appli-
cation. A period is a fixed-size work interval, composed of a
predetermined number of jobs. After a period completes, Bard
computes the error between the goal and the results from the
last period and passes the result to the controller. The con-
troller computes a generic control signal which the optimizer
uses along with a system-agnostic resource specification to
compute a resource schedule for the next period. A platform-
specific component matches this schedule to actual system
resources and applies it. When all the jobs in the next period
are complete, the process repeats.

A. Controller

The controller computes the error between desired and
actual performance or power, denoted as e,(¢). It also estimates
the application’s base speed, b(7), and base power, b,(f), using
Kalman filters [39]. These are the application’s estimated job
performance and power consumption when using the minimal
resource allocation. Base values can change at runtime for a
number of reasons, including phases in the application input or
environmental changes like temperature fluctuations. The key
to rapidly switching from a performance to a power constraint
and vice versa is that Bard continually estimates both base
values. The controller then generates its generic control signal,
x(t), called speedup or powerup:

ex(r)
ey
by (1)
The x(t — 1) term is the speedup or powerup computed in the

previous period, and « is a user-configurable pole value with
the restriction 0 < @ < 1. The pole determines how reactive

x)=x(t-= 1)+ (1 -a)-

Algorithm 1 Finding an Optimal Configuration Schedule.

Require: C > system configurations
Require: W > workload size
Require: constraint > PERFORMANCE or POWER
Require: x(f) > speedup/powerup, depending on constraint

U ={c| x. < x(t)}

O ={c| x. > x(t)}

candidates = U X O = {{u,0) |u € U,0 € O}

cost = oo

optimal = {(—1,-1)

schedule = (—1,-1)

for (u, o) € candidates do

> loop over all pairs
Xy (xu - x(t))

Ju=W- > jobs spent in each config
) x(1) - (X — Xu)
Jo=W=ju
if constraint = POWER then > cost of this pair
w
newCost = ——— > normalized latency
Ju " Su~t Jo" So

else . ‘i

newCost = W > normalized energy
end if

if newCost < cost then
cost = newCost
optimal = (u, o)
schedule = (j,, jo)
end if
end for

> compare cost to best so far

return optimal » pair of configurations with minimal cost
return schedule > jobs to spend in each configuration

the controller is to external changes, where a low value makes
it very responsive and a high value makes it less responsive.
b.(t) represents either base speed or power, depending on the
constraint.

B. Optimizer

The optimizer translates the generic control signal into a
configuration schedule that optimizes energy or performance.
There is a set C of possible configurations, where each ¢ € C
has a speedup s, and a powerup p.. By convention, ¢ = 0
uses the minimal amount of resources. Speedup and powerup
values are normalized to ¢ = 0, such that s = pg = 1. The
formulation for minimizing energy under a timing constraint
remains unchanged from POET [20]. We formulate maximiz-
ing performance under power constraint P, as:

c-1
maximize T S¢ 2)
c=0
c-1
St ) T perbyH) < Py 3)
c=0
C-1
7. =1 4)
c=0
7. 20, Yce{0,...,C -1} 5)

where 7. is the proportion of time spent in configuration c.

Algorithm 1 computes a minimal-energy or maximal-
performance schedule. It takes as input the configuration set C,



TABLE I: Configurability of our two embedded systems.

Platform Processor Cores Core Types Speeds (GHz) TurboBoost  HyperThreads  Configurations
SVT11226CXB Intel Haswell 2 1 6-1.5 yes yes 44
ODROID-XU3 Samsung Exynos5 Octa 8 2 (Al5 & A7) 2-2.0 (A15) .2-1.4 (A7) no no 128

#id spdup pwrup #id cores frequencies

0 1 1 0 0x01 200000,-,-,-,200000,-,-,- . 1sti

L 15 1.06 1 ox01 300000 - - - 200800 - - - TABLE II: System power characteristics.

2 2.11 1.11 2 0x01 400000,-,-,-,200000,-,-,- .

3 216 1.12 3 0x03 200000 - . - 200000 - - - Syst'em Idle Power  Min Power  Max Power

4 2.66 1.17 4 0x01 500000,-,-,-,200000,-,-,- Vaio 250 W 3.04 W 8.05 W

5 3.36 1.22 5 0x07 200000,-,-,-,200000,-,-,- ODROID 021 W 0.19 W 637 W

6 4.51 1.31 6 0x0F 200000,-,-,-,200000,-,-,- . .

7 5.11 1.37 7 0x87 300000,-,-,-,200000,-,-,- applied to a core, either because the frequency does not matter

Fig. 3: Snippets of actual Bard system-agnostic (left) and
system-specific (right) configuration files.

workload size W, the constraint type, and the generic control
signal x(f). It then partitions C into two pairwise disjoint
subsets, U and O. U contains the configurations with speedup
or powerup values less than or equal to the signal computed
by the controller with Eqn. 1. O contains the rest, with values
greater than the controller’s signal. The algorithm then loops
over all possible pairs of configurations, with one chosen
from each subset (the Cartesian product), and determines the
schedule required to achieve the speedup or powerup given
by the controller. Once the schedule is computed, its cost is
determined. If the constraint is performance, energy is mini-
mized; if the constraint is power, performance is maximized
(latency is minimized). The algorithm remembers the pair with
the lowest cost and returns the optimal pair and their schedule.

Algorithm 1 works because an optimal solution to the linear
program in Eqns. 2-5 has no more than two non-zero 7. [3].
The algorithm accounts for the two 7. values with j, and
Jo» i.e.,, number of jobs to complete in each configuration.
This abstraction supports meeting both performance and power
targets. Algorithm 1’s complexity upper bound is O(|C|*) since
each subset of configurations has at most |C| configurations.

C. Implementation

A user provides four pieces of information to Bard — the
set of configurations, runtime performance and power metrics,
the performance or power target, and the constraint type.

System configurations are split into two data structures.
The first data structure is system-agnostic, containing a config-
uration identifier along with that configuration’s speedup and
powerup values (normalized performance and power behavior).
The second data structure is system-specific. While it can take
any form a user desires for a particular system, the default
format included with Bard contains a configuration identifier,
a core mask, and a comma-delimited list of DVFS frequencies
to apply?. This allows Bard to assign any possible subset of
cores to an application, and if the system supports it, different
cores may use different DVFS settings.

Examples of the data structures are presented in Figure 3.
A dash indicates that a DVFS frequency does not need to be

Bard is not limited to these components — users can write functions to
manage any resources accounted for in the configurations.

or it is already managed through another affected core. In the
system-specific example on the right, state with id = 7 assigns
cpu0, cpul, and cpu2 (core mask 0x07) and sets the DVFS
frequency on cpuO to 300 MHz and cpu4 to 200 MHz. On
this particular system, cores 0-3 are in one DVFS domain and
cores 4-7 are in another. Therefore, applying a DVFS setting
of 300 MHz on cpu0 sets the same frequency on cores 1-
3, and applying a frequency of 200 MHz on cpu4 sets the
same frequency on cores 5-7. We specify a dash for cores 1-3
and 5-7 to prevent setting their frequencies explicitly which
could result in unnecessary overhead. Although cores 4-7 are
not assigned, forcing a low DVFS setting reduces their power
consumption while they idle.

To collect performance and power metrics, Bard relies on
the Application Heartbeats API — recent updates to the API
add power and energy tracking to the original, performance-
based interface [20]. The user also provides the performance
or power target by specifying minimum and maximum values
through the Heartbeats API. Bard uses the average of these
two values as the target.

We add the constraint type (PERFORMANCE or POWER) to
the initialization function of the POET API. If PERFORMANCE
is specified, Bard meets a performance target and minimizes
energy. If POWER is specified, Bard meets the power target
and maximizes performance. We then add a setter function to
support changing the constraint type at runtime.

IV. EXPERIMENTAL DESIGN

This section details the platforms and applications used to
evaluate Bard.

A. Testing Platforms

The first system is the same model Sony Vaio tablet
as POET was originally analyzed with, specifically a
SVT11226CXB. The second is a newer model ODROID
from Hardkernel, called an ODROID-XU3. Both systems run
Ubuntu Linux 14.04. The Vaio uses mainline kernel 3.13.0
and the ODROID uses a modified kernel 3.10.58+. Table I
demonstrates the variety of configurable resources we manage
for each system and Table II shows their power characteristics.

Although not enforced in hardware, the DVFS frequencies
on the Vaio must be the same across all cores to prevent non-
deterministic behavior. We capture power data on the Vaio us-
ing the Intel Haswell processor’s Model-Specific Register [34].

On the ODROID, applying a DVFS setting to any core on a
cluster applies the setting to all cores on that cluster. Embedded



TABLE III: Application input and configurations.

Application Input Jobs Period
blackscholes 10 million options 400 batches 20
bodytrack sequenceB 261 frames 20
facesim Storytelling 100 frames 20
ferret corel:Ish 2,000 queries 20
X264 ducks take off 500 frames 20
dijkstra input_small 1,000 paths 20
sha in_file(1-16) 1,000 hashes 50
STREAM self-generated 500 updates 50

INA-231 power sensors provide power data for the big Cortex-
A15 cluster, the LITTLE Cortex-A7 cluster, the DRAM, and
the GPU [21]. Unlike the ODROID model used previously,
our ODROID’s Exynos5 Octa SoC supports Heterogeneous
Multi-Processing which allows any possible subset of cores to
be allocated to a single task, with each cluster possibly running
at different DVFS frequencies. To provide a fair comparison
with POET, we do not execute on both clusters simultaneously,
so we always set the unused cluster to its lowest DVFES setting
to reduce power consumption.

B. Applications

We test Bard with eight parallel applications, none of which
were originally written to provide predictable timing or power
behavior.

Five applications are from the PARSEC benchmark
suite [2] — blackscholes, bodytrack, facesim, ferret,
and x264. Blackscholes prices financial investment portfolios
using partial different equations, bodytrack and x264 both
process video input, facesim creates animation of a human
face from a model and a time sequence of muscle move-
ments, and ferret performs content-based similarity searches
of non-text data. Dijkstra and sha are from the ParMiBench
benchmark suite [22]. Dijkstra computes single-source shortest
paths in graphs and sha is an efficient encryption algorithm.
STREAM [29] is a synthetic benchmark that represents memory-
bound applications. Each of these applications performs a task
that can reasonably be expected to run on embedded systems.

We instrument the applications with the Heartbeats API
and add Bard calls, which requires only a few additional lines
of code. Table III provides details on the inputs, the total
number of jobs, and the size of the workload (period) for each
Bard iteration. STREAM was previously shown to have low
variance and therefore its runtime is safely shortened to save
unnecessary execution time. Conversely, the blackscholes input
is increased from 1 million to 10 million options, which is the
default input for the application in the PARSEC benchmark
suite. Higher performance and relatively slow sensor refresh
intervals make it difficult to get accurate power readings on the
ODROID when 1 million options are used — see Section V-A
for more details. All inputs are included with the benchmarks,
except the x264 input which is from a standard test set.

V. EXPERIMENTAL EvALUATION

This section presents an empirical evaluation of Bard. Since
POET optimizes energy consumption under timing constraints,
we do not present a standalone analysis for the capability here.
It is demonstrated, though, in switching the constraint type
from performance to power at runtime (Section V-C).
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Prior to testing Bard, we characterize the applications
on our systems by executing each in all configurations. We
then derive an oracle that computes the optimal, dynamic
resource usage for all applications and constraints. The oracle’s
optimal solution always meets the target, but requires perfect
knowledge of the future.

A. Meeting Power Targets

Based on the characterizations, for each application i we
determine the minimum power p"" and maximum power p}"**
consumed, measured in Watts. We then set five power targets
within this range, from 5% to 95% of maximum over the
minimum. For example, if application j has p"" = 1W and
pT‘”‘ = 5W, then a 5% target is 1.2W, a 50% target is 3.0W,
and a 95% target is 4.8W.

To quantify Bard’s ability to meet power targets, we com-
pute the Mean Absolute Percentage Error (MAPE), a standard
metric in control theory [13]. We formulate MAPE such that
it increases when the measured power consumption P,,(f) for
job t exceeds the power requirement P,. For an application
with n jobs:

P m(t) -P r

P,

MAPE = 100% -~ 3" | Pn® > Pr: ‘
n= |l P.o<P.: 0

6)

Figure 4 presents the MAPE results for each application on
the Vaio and the ODROID. During the first period, Bard just
observes application behavior, after which the first action is
taken. The second period is the initial adjustment phase — the
end of this period is the earliest we can expect the controller to
converge. For a fair analysis, the first two periods are ignored.
An additional period of adjustment is required in some cases
for the controller to converge at the 5% target. To prevent
artificially inflating the performance results, the third period is
also ignored in these cases.

Bard achieves, on average for all power targets, 0.81%
MAPE on the Vaio and 1.53% MAPE on the ODROID. The
higher error on the ODROID is due in part to the low refresh
rate of its power sensors (264 ms). The most difficult execution
is the 25% target for blackscholes on the ODROID, resulting
in 11% error. Blackscholes’ power/performance tradeoff space
has an unusually large gap in power between Pareto-optimal
LITTLE and big-core states. The 25% power target falls
in this gap, so Bard must transition between the big and
LITTLE clusters. High variability in this particular transition’s



0o 5% 0o 25% [0 50% [0 75% [0 95%

ﬂ'

@ o e
ENIRS
EAMES

Vaio
Efficiency
o000
NN —

ODROID
Efficiency
Soo0
N~ ONoo—

\\'b

S S @
N\ \
(,96 @ & 6‘&(3’

\&® o

o &
c‘,@‘é\ 00& A
‘o\'b'

Fig. 5: Performance efficiency (higher is better, 1 is optimal).

power overhead in combination with blackscholes’ unmanaged
threading makes it difficult for the controller to converge on
the target.

B. Performance Optimization

Figure 5 demonstrates Bard’s performance efficiency, i.e.,
the actual performance compared to optimal as determined by
our oracle. Since the applications are launched in the highest
performance/power system state, the same periods described
in Section V-A are ignored so as not to overstate Bard’s
performance.

Bard achieves near-optimal performance on both systems
for all applications — efficiency is 93% on the Vaio and
94% on the ODROID. In a few 5% target cases on the
ODROID, the performance efficiency exceeds optimal. The
small error in meeting power targets sometimes pushes the
actual performance over the oracle’s computed optimal when
too many resources are allocated.

C. Responding to Changing Goals

Bard supports both power and timing constraints in a
single, portable framework. To demonstrate this capability,
we launch applications with an initial timing constraint and
then switch to a power constraint. We achieved similar results
switching from power to timing constraints, but due to space
limitations we omit that analysis and present charts for only
four of the applications.

Performance targets are derived in the same way as power
targets, where for each application i there is a minimum speed

57" and a maximum speed s{"**. On both systems, we start

vsl/ith a performance target of 75%. About halfway through the
execution, we switch to a power target. We set the power target
to 25% on the Vaio. The extreme convexity of the ODROID’s
power/performance tradeoff space means that switching from a
75% performance target to a 25% power target does not result
in as significant a change in system behavior as it does on
the Vaio (see Figure 1). Instead, we set a more challenging
power target of 0.5 Watts on the ODROID to illustrate taking
advantage of the low-power LITTLE cores.

Figure 6 has four columns, one for each application. The
top portion has performance data, normalized to the target from
the first half of the execution. The bottom portion of the charts
shows power data, normalized to the target set in the second
half of the execution. The dashed vertical lines indicate when
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Fig. 7: Sub-optimal results using a DVFS-only approach.

the switch from performance to power constraints is made. The
solid black horizontal lines represent the goals.

Bard first keeps the performance at or above the target,
then keeps power at or below the new target. MAPE quantifies
performance deficit in the first half and power cap violations in
the second half. Similarly, our oracle computes the minimal-
energy schedule, then the maximal-performance schedule to
determine the total efficiency of the execution. On the Vaio,
Bard achieves 1.58% MAPE and 92% efficiency on average.
On the ODROID, it achieves 1.97% MAPE and 91% efficiency.
As Figure 6 shows, the time taken to switch between the timing
and power constraints is quite small — just one period. The
small fluctuations seen in the first portion of some executions
(like x264) are not caused by Bard, but rather by the vari-
ability of the application inputs which makes them difficult
to control [20]. These results demonstrate that Bard achieves
its design goal of providing a single, portable framework for
meeting either timing or power constraints and dynamically
switching between the two.

D. Comparison with DVFS

DVES alone is often used to meet performance and power
constraints as it is nearly ubiquitous and is well-understood.
Bard supports both timing and power constraints, and prior
work has already shown that a DVFS-only approach for
minimizing energy under timing constraints is not optimal.
In this section, we limit Bard to DVFS-only configurations
for meeting power targets, which also results in sub-optimal
behavior. This analysis highlights the benefits of Bard’s support
for multiple configurable components.

For brevity, we focus on low power targets, where the dis-
crepancy between a DVFES-only approach and Bard’s support
for managing multiple resources is most pronounced. These
low power targets are particularly important, as we motivated
in Section II, e.g., in case of fan failure. It is more energy-
efficient to use processor cores rather than let them idle [4],
so we test while running on all cores on the Vaio and using
the big cluster on the ODROID, which supports a wide power
range. We use the same targets and analysis techniques as in
Sections V-A and V-B and present the results for 5% and 25%
power targets in Figure 7.

In most cases, the 5% power target is not achievable, hence
the high MAPE values which are off the charts. Performance
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Fig. 6: Changing constraints from timing to power.

efficiency above optimal is meaningless in these cases since the
primary constraint is violated. The ODROID is able to meet
more of the 5% targets than the Vaio, but is still not always
successful. For applications on the ODROID that can actually
achieve this target, the average efficiency is only 52% of
optimal. The LITTLE cores often achieve better performance
for the same power, but they are not available using only
DVEFS.

In Sections V-A and V-B we showed that Bard meets power
targets with low error and near-optimal efficiency by manipu-
lating multiple resources. It is clear here that a DVFS-only
approach is sub-optimal (and often unachievable) for these
low-power targets, highlighting the importance of managing
multiple components.

E. Discussion of Results and Limitations

Bard provides a unified, portable framework capable of
delivering predictable timing with minimum energy or pre-
dictable power while maximizing performance. Our results
hold despite the fact that our test platforms expose different
resources and have very different power/performance tradeoffs.
We stress that the same Bard runtime is executed on both
systems with no code changes. The only required change is
modifying the configuration files indicating what resources are
controllable on the different platforms.

Many systems allow for small violations in performance
and power constraints, so Bard is designed to provide soft
guarantees rather than hard ones. Bard is also sensitive to
the accuracy of the resource specifications provided to it —
the controller can handle large errors, but it is still better to
classify applications by their behavior, e.g., compute-bound or
memory-bound, and use separate configurations. Alternatively,
Bard could be coupled with a learning engine (e.g., LEO
[30]) which could construct the models on the fly. Bard also
does not explicitly model the overhead of changing system
configurations, which can be non-trivial for some types of
resources not examined in this work, like spinning up or
down hard drives. Currently, these overheads are modeled as
inaccuracy in the system configurations and are adapted to
by the controller. Finally, Bard assumes that it has exclusive
control over the system resources. Future work could extend
Bard to support multiple applications and share control with
other actors in the system.

VI. CoNcLUSION

This paper establishes the need for a unified approach
to managing timing and power constraints while optimizing
energy and performance. In response, we build on prior work
to design and evaluate a portable library called Bard. Bard uses
feedback control to meet performance or power constraints,
and linear optimization to either minimize energy or maximize
performance, depending on the primary constraint. Further-
more, users or applications can switch the primary constraint
at runtime to adapt to changing conditions. We evaluate Bard
on two modern embedded systems and demonstrate that it
meets its constraints with low error and is near-optimal in its
optimization. Finally, we release Bard as an open-source C
library, along with the configurations and benchmark patches
used in its evaluation.
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