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Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional
patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity
for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns
patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial
alignment of functional images from different subjects. The algorithm is based on a generative model that
comprises two main layers. At the lower level, we express the functional brain response to each stimulus
as a binary activation variable. At the next level, we define a prior over sets of activation variables in all sub-
jects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specific-
ity shared across the group, which we call functional systems, and estimate the number of these systems.
Inference based on our model enables automatic discovery and characterization of dominant and consistent
functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus
images. The discovered system activation profiles correspond to selectivity for a number of image categories
such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deac-
tivated by face stimuli. In empirical comparisons with previously proposed exploratory methods, our results
appear superior in capturing the structure in the space of visual categories of stimuli.
, rameshvs@mit.edu
-J. Hsieh), ngk@mit.edu

rights reserved.
© 2011 Elsevier Inc. All rights reserved.
Introduction

It is well-known that functional specificity at least partially
explains the functional organization of the brain (Kanwisher, 2010).
In particular, fMRI studies have revealed a number of regions along
the ventral visual pathway that demonstrate significant selectivity
for certain categories of objects such as human faces, bodies, or places
(Kanwisher, 2003; Grill-Spector and Malach, 2004). Most studies
follow the traditional confirmatory framework (Tukey, 1977) for
making inference from fMRI data. This approach first hypothesizes
a candidate pattern of functional specificity. The hypothesis may be
derived from prior findings or the investigator's intuition. An experi-
ment is then designed to enable detection of brain areas that exhibit
the specificity of interest. Unfortunately, fMRI data is extremely
noisy and the resulting detection map does not provide a fully faithful
representation of actual brain responses. In order to confirm the
hypothesis, it is common to consider detection maps across different
subjects and look for contiguous areas located around the same
anatomical landmarks. Anatomical consistency in the detected areas
attests to the validity of the hypothesis.

The traditional confirmatory approach to fMRI analysis comes
with fundamental limitations when employed to search for patterns
of functional specificity. Consider again the case of visual category se-
lectivity. The space of categories that could constitute a likely group-
ing of objects in the visual cortex is large enough to make brute
force confirmatory tests for all likely patterns of selectivity infeasible.
Instead, prior studies only focus on specific categories based on
semantic classifications of objects. Yet, we cannot disregard the possi-
bility that some cortical groupings may not exactly agree with our
conceptual abstractions of object classes.

Another limitation of the traditional method is its reliance on spa-
tial correspondence across subjects for validation. It is possible that
the organization of category-selective areas varies across subjects rel-
ative to anatomical landmarks. Furthermore, it is likely that, instead
of contiguous blob-like structures, category selectivity appears in dis-
tributed networks of smaller regions. Yet, most fMRI analysis tech-
niques are based on the premise that functionally specific areas are
relatively large and tightly constrained by the anatomical landmarks
in all subjects.

Here, we present a model for group fMRI exploratory analysis that
circumvents the limitations above, building on a previously demon-
strated approach (Lashkari et al., 2010b). The key idea is to employ
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a rich experimental design that includes a large number of stimuli
and an analysis procedure that automatically searches for patterns
of specificity in the resulting fMRI data. To explicitly express these
patterns, we define the selectivity profile of a brain area to be a vector
that represents this area's selectivity to different stimuli in the exper-
iment. We employ clustering to identify functional systems defined
as collections of voxels with similar selectivity profiles that appear
consistently across subjects. The method considers all relevant brain
responses to the entire set of stimuli, and automatically learns the
selectivity profiles of dominant systems from the data. This frame-
work eliminates the need for spatial correspondences.

The method presented in this paper simultaneously estimates
voxel selectivity profiles, system profiles, and spatial maps from
the observed fMRI time courses. Moreover, the model refines the
assumptions regarding the group structure of the mixture distribu-
tion by allowing variability in the size of systems and the parameters
of fMRI signals such as the hemodynamic response function (HRF)
across subjects. The model further enables the estimation of the num-
ber of systems from data. Since all variables of interest are treated as
latent random variables, the method yields posterior distributions
that encode uncertainty in the estimates.

Nonparametric Bayesian model for group clustering

We employ Hierarchical Dirichlet Processes (HDP) (Teh et al.,
2006) to share structure across subjects. In our model, the structure
shared across the group corresponds to grouping of voxels with sim-
ilar functional responses. The nonparametric Bayesian aspect of HDPs
enables automatic search in the space of models of different sizes.

Nonparametric Bayesian models have been previously employed
in fMRI data analysis, particularly in modeling the spatial structure
in the significance maps found by confirmatory analyses (Kim and
Smyth, 2007; Thirion et al., 2007b). The probabilistic model intro-
duced in this paper is more closely related to recent applications of
HDPs to DTI data where anatomical connectivity profiles of voxels
are clustered across subjects (Jbabdi et al., 2009; Wang et al., 2009).
In contrast to prior methods that apply stochastic sampling for infer-
ence, we take advantage of a variational scheme that is known to
have faster convergence rate and greatly improves the speed of the
resulting algorithm (Teh et al., 2008).

As before, this approach uses no spatial information other than the
original smoothing of the data and therefore does not suffer from the
drawbacks of voxel-wise spatial normalization.

FMRI signal model for activation profiles

The goal of this work is to employ clustering ideas to automatically
search for distinct forms of functional specificity in the data. Consider
a study of high level object recognition in visual cortex where a num-
ber of different categories of images have been presented to subjects.
Within a clustering framework, each voxel in the image can be repre-
sented by a vector that expresses how selectively it responds to dif-
ferent categories presented in the experiment. We may estimate
the brain responses for each of the stimuli using the general linear
model for fMRI signals and perform clustering on the resulting
response vectors. However, the results of such an analysis may yield
clusters of voxels with responses that only differ in their overall mag-
nitude (as one can observe, e.g., in the results of Thirion and Faugeras,
2004). The vector of brain responses, therefore, does not directly
express how selectively a given voxel responds to different stimuli.

Unfortunately, fMRI signals do not come in well-defined units of
scale, making it hard to literally interpret the measured values. Uni-
variate confirmatory methods avoid dealing with this issue by only
assessing voxel contrasts, differences in signal evaluated separately
in each voxel. Others instead express the values in terms of the per-
cent changes in signal compared to some baseline, but then there is
no consensus on how to define such a baseline (Thirion et al.,
2007a). There is evidence that not only the characteristics of the lin-
ear BOLD response vary spatially within the brain (e.g., Schacter
et al., 1997; Miezin et al., 2000; Makni et al., 2008), but the neuro-
vascular coupling itself may also change from an area to another
(Ances et al., 2008). A wide array of factors can contribute to this
within-subject, within-session variability in fMRI measurements,
from the specifics of scanners to the local tissue properties and rela-
tive distances to major vessels. As might be expected, similar factors
also contribute to within-subject, across-session, as well as across-
subject variations in fMRI signals, although the latter has a more con-
siderable extent likely due to inter-subject variability in brain func-
tion (Wei et al., 2004; Smith et al., 2005).

Given the reasoning above, we aim to transform the brain responses
into a space where they directly express their relative selectivity to dif-
ferent stimuli. Such a space allows us to compare voxel responses from
different areas, and even from different subjects.

To achieve this goal, our framework includes a model for fMRI
time courses that handles the ambiguity in fMRI measurements by in-
troducing a voxel-specific amplitude of response. The model assumes
that the response to each stimulus is the product of the voxel-specific
amplitude of response and an activation variable. While the former
encodes overall magnitude of signal, which may be a byproduct of
physiological confounds such as the distance between the voxel and
nearby veins, the latter measures the size of signal in the voxel in
response to each stimulus when compared to others. Therefore, the
activation profile of a voxel can be naturally interpreted as a signature
of functional specificity: it describes the probability that any stimulus
or task may activate that brain location.

The remainder of the paper is organized as follows. The next sec-
tion presents a review of prior work on exploratory fMRI analysis.
In Methods section, we describe the two main layers of the model,
the fMRI signal model and the hierarchical clustering model, and dis-
cuss the variational procedure for inference on the latent variables of
the model. We present the results of applying the algorithm to data
from a study of human visual object recognition and compare them
with results found by the finite mixture model clustering model
(Lashkari et al., 2010b) and the tensorial group ICA (Beckmann and
Smith, 2005) in Results section. This is followed by discussion in the
Discussion section and conclusions in the Conclusion section.

Prior work on exploratory fMRI analysis

Early work on clustering of fMRI data typically employed fuzzy clus-
tering, which allows soft cluster assignments, in simple fMRI studies
of early visual areas (Baumgartner et al., 1997, 1998; Moser et al.,
1997; Golay et al., 1998, and references therein). Baumgartner et al.
(2000) reported superior performance of clustering compared to PCA
and Moser et al. (1999) suggested that it can be used for removing
motion confounds. Variants of fuzzy clustering (Chuang et al., 1999;
Fadili et al., 2000; Jarmasz and Somorjai, 2003), K-means (Filzmoser
et al., 1999), and other heuristic clustering techniques (Baune et al.,
1999) have been applied to fMRI data, but little evidence exists for
advantages of clustering beyond the experimental settings where they
were first reported. A mixture model formulation of clustering has
been employed in (Golland et al., 2007, 2008) to recover a hierarchy
of large-scale brain networks in resting state fMRI.

Applying clustering directly to the time course data, as described
above, may not be the best strategy when it comes to discovering
task-related patterns. First, the high dimensionality of fMRI time
courses makes the problem challenging since noise represents a
large proportion of the variability in the observed signals. Second,
the spatially varying properties of noise may increase the dissimilar-
ity between the time courses of different activated areas. Third, in
order to interpret the results, one must determine the relationship be-
tween the estimated cluster mean time courses and different
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experimental conditions, usually through a post hoc stage of regression
or correlation.

Alternatively, some clustering methods use information from
the experimental paradigm to define a measure of similarity between
voxels, effectively projecting the original high-dimensional time
courses onto a low dimensional feature space, and then perform clus-
tering in the new space (Goutte et al., 1999, 2001; Thirion and Faugeras,
2003, 2004). The paradigm-dependent feature space represents the
dimensions of interest in fMRI measurements. For instance, if the
experiment involves a paradigm that is rich enough, we can simply
cluster vectors of estimated regression coefficients for all stimuli in
the experiment (Thirion and Faugeras, 2004; Lashkari et al., 2010b).

We previously demonstrated a clustering method that consists of
two separate stages (Lashkari et al., 2010b). We first computed
voxel selectivity profiles using regression estimates from the standard
linear model and then clustered profiles from all subjects together.
This analysis does not account for inter-subject variability and pro-
vides no obvious choice for the number of clusters. The unified
model presented in this paper integrates the two steps into a single
estimation procedure and incorporates model selection.

Independent component analysis (ICA) is another popular explor-
atory technique commonly applied to fMRI data. McKeown et al.
(1998) employed a basic noiseless ICA algorithm for the analysis of
fMRI data and demonstrated improved results compared to PCA
(see also McKeown and Sejnowski, 1998; Biswal and Ulmer, 1999).
Beckmann and Smith (2004) proposed a probabilistic formulation that
includesGaussian noise.When applied directly to fMRI time courses, in-
terpretation of ICA components still requires relating the estimated
component time courses to the experimental conditions. Balslev et al.
(2002) provides an example of regression on component time courses
to identify relevant systems.

Similar to standard confirmatory techniques, most extensions of
exploratory methods to multisubject data rely on voxel-wise corre-
spondence. Using this framework, Beckmann and Smith (2005) pro-
posed a tensorial group factorization of the data within the ICA
framework. This method factorizes the group fMRI data into a num-
ber of components. Each component is characterized by a time course
and a group spatial map defined in the population template. The only
across-subject variability assumed is the differences in the contribu-
tion of each group component to measurements in different individ-
uals. In contrast, our approach to group analysis avoids making any
assumptions about spatial correspondences of functional areas across
subjects. Spatial maps for different clusters are defined in each sub-
ject's native space.

The model developed in the next section can be viewed as a
Bayesian probabilistic extension of simple mixture model clustering
that includes three important elements: 1) a nonparametric prior
that enables estimation of the number of components, 2) a hierarchi-
cal structure that enables group analysis, and 3) an fMRI time course
model that explicitly accounts for the experimental paradigm.
Methods

Consider an fMRI experiment with a relatively large number of dif-
ferent tasks or stimuli, for instance, a design that presents S distinct
images in an event-related visual study. We let yji be the acquired
fMRI time course of voxel i in subject j. The goal of the analysis is
to identify patterns of functional specificity, i.e., distinct profiles of
response that appear consistently across subjects in a large number
of voxels in the fMRI time courses {yji}. We refer to a cluster of voxels
with similar response profiles as a functional system. Fig. 1 illustrates
the idea of a system as a collection of voxels that share a specific func-
tional profile across subjects. Our model characterizes the functional
profile as a vector whose components express the probability that
the system is activated by the stimuli in the experiment.
To define the generative process for fMRI data, we first consider an
infinite number of group-level systems. System k is assigned a prior
probability πk of including any given voxel. While the vector π is
infinite-dimensional, any finite number of draws from this distribu-
tion will obviously yield a finite number of systems. To account for
inter-subject variability and noise, we perturb the group-level system
weight π independently for each subject j to generate a subject-
specific weight vector βj. System k is further characterized by a vector
[ϕk1,⋯,ϕkS]t, where ϕks∈ [0,1] is the probability that system k is acti-
vated by stimulus s. Based on the weights βj and the system probabil-
ities ϕ, we generate binary activation variables xjis∈{0,1} that express
whether voxel i in subject j is activated by stimulus s.

So far, the model has the structure of a standard HDP. The next
layer of this hierarchical model defines how activation variables xjis
generate observed fMRI signal values yjit. If the voxel is activated
(xjis=1), the corresponding fMRI response is characterized by a pos-
itive voxel-specific response magnitude aji; if the voxel is non-active
(xjis=0) the response is assumed to be zero. The model otherwise
follows the standard fMRI linear response model where the HRF is
assumed to be variable across subjects and is estimated from the data.

Below, we present the details of the model starting with the lower
level signal model to provide an intuition on the representation of the
signal via activation vectors and then move on to describe the hierar-
chical clustering model. Table 1 presents the summary of all variables
and parameters in the model; Fig. 2 shows the structure of our graph-
ical model.

Model for fMRI signals

Using the standard linear model for fMRI signals (Friston et al.,
2007), we model measured signal yji of voxel i in subject j as a linear
combination

yji ¼ Gjbji þ F jeji þ ���ji; ð1Þ

where Gj and Fj are the stimulus and nuisance components of the de-
sign matrix for subject j, respectively, and ���ji is Gaussian noise. To fa-
cilitate our derivations, we rewrite this equation explicitly in terms of
columns of the design matrix:

yji ¼ ∑
s
bjisgjs þ∑

d
ejid f jd þ ���ji; ð2Þ

where gjs is the column of matrix Gj that corresponds to stimulus s
and fjd represents column d of matrix Fj.

We devise a model that integrates this representation with binary
activation variables x that connect the signal model with the hier-
archical prior. If voxel i in subject j is activated by stimulus s, i.e., if
xjis=1, its response takes positive value aji that specifies a voxel-
specific amplitude of response; otherwise, its response remains 0.
Using this parametrization, bjis=ajixjis. The response amplitude aji
represents uninteresting variability in fMRI signal due to physiologi-
cal reasons unrelated to neural activity (examples include proximity
of major blood vessels).

To explicitly describe the properties of the hemodynamic re-
sponse, we define gjs=ξjs*hj where ξjs∈RT is a binary indicator vector
that shows whether stimulus s∈S is present during the experiment
for subject j at each of the T acquisition times, and hj∈RL is a finite-
time vector characterization of the hemodynamic response function
(HRF) in subject j.

It is common in fMRI analysis to use a canonical shape for the HRF,
letting hj ¼ h for all subjects j. However, prior research has demon-
strated considerable variability in the shape of the HRF across sub-
jects (Aguirre et al., 1998; Handwerker et al., 2004). We define hj

to be the shape of the HRF for subject j. It is a latent variable that is
inferred from data. To simplify future derivations, we let Ξjs be a
T×L convolution matrix derived from the stimulus indicator vector



Fig. 1. Schematic diagram illustrating the concept of a system. System k is characterized by vector [ϕk1,⋯,ϕkS]t that specifies the level of activation induced in the system by each of
the S stimuli. This system describes a pattern of response demonstrated by collections of voxels in all J subjects in the group.

Table 1
Variables and parameters in the model.

xjis Binary activation of voxel i in subject j for stimulus s
zji Multinomial unit membership of voxel i in subject j
ϕks Activation probability of system k for stimulus s
βj System prior vector of weights in subject j
πk Group-level prior weight for system k
α,γ HDP scale parameters
yjit fMRI signal of voxel i in subject j at time t
ejid Nuisance regressor d contribution to signal at voxel i in subject j
aji Amplitude of activation of voxel i in subject j
hj A finite-time HRF vector in subject j
λji Variance reciprocal of noise for voxel i in subject j
μ j
a,σ j

a Prior parameters for response amplitudes in subject j
μ jd
e ,σ jd

e Prior parameters for nuisance regressor d in subject j
ωϕ, 1,ωϕ, 2 Prior parameters for activation probabilities ϕ
κj,θj Prior parameters for noise variance in subject j
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ξjs such that gjs=Ξjshj. Here, we assume a shared HRF for all voxels in
a subject since our application involves only the visual cortex. For
studies that investigate responses of the entire brain or several corti-
cal areas, the model can be easily generalized to include separate HRF
variables for different areas (Makni et al., 2005).

With all the definitions above, our fMRI signal model becomes

yji ¼ aji ∑
s
xjisΞjs

� �
hj þ∑

d
ejid f jd þ ���ji: ð3Þ

We use a simplifying assumption throughout that ���ji ei:i:d:Normal
0;λ−1

ji I
� �

. In the application of this model to fMRI data, we first apply
temporal filtering to the signal to decorrelate the noise in the preproces-
sing stage (Burock and Dale, 2000; Bullmore et al., 2001; Woolrich et al.,
2001). An extension of the currentmodel to include colored noise is pos-
sible, although it has been suggested that noise characteristics do not
greatly impact the estimation of the HRF (Marrelec et al., 2002).

Priors
We assume a multivariate Gaussian prior for hj, with a covariance

structure that encourages temporal smoothness,

hj ∼Normal h;Λ−1
� �

; ð4Þ

Λ ¼ νIþ ΔtΔ; ð5Þ

where

Δ ¼
1 −1 0 ⋯ 0 0
0 1 −1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 −1

0BB@
1CCA; ð6Þ

and h is the canonical HRF. The definition of the precision matrix above
yields a prior that involves terms of the form∑L−1

l¼1 hl−hlþ1
� �2, penaliz-

ing differences between the values of the HRF at consecutive time
points.
We assume the prior distributions on the remaining voxel response
variables as follows. For the response magnitude, we assume

aji ∼Normalþ μa
j ;σ

a
j

� �
; ð7Þ

where Normal+(η,ρ) is the conjugate prior defined as a normal distri-
bution restricted to positive real values:

p að Þ∝e− a−ηð Þ2=2ρ
; for a≥ 0: ð8Þ

Positivity of the variable aji simply reflects the constraint that the
expected value of fMRI response in the active state is greater than
the expected value of response in the non-active state. For the nui-
sance factors, we let

ejid ∼Normal μe
jd;σ

e
jd

� �
; ð9Þ



Fig. 2. Full graphical model that expresses dependencies among latent and observed variables across subjects. Circles and squares indicate random variables and model parameters,
respectively. Observed variables are shaded. For a description of different variables, see Table 1.
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where Normal(η,ρ) is a Gaussian distribution with mean η and vari-
ance ρ. Finally, for the noise precision parameter, we assume

λji ∼Gamma κj; θj
� �

; ð10Þ

where Gamma(κ,θ) is a Gamma distribution parametrized by shape
parameter κ and scale parameter θ−1:

p λð Þ ¼ 1
θ−κΓ κð Þλ

κ−1e−θλ
: ð11Þ

Hierarchical Dirichlet prior for modeling variability across subjects

Our model assumes a shared clustering structure in the fMRI acti-
vations x that allows inter-subject variability in the size of clusters
across subjects. We further include a nonparametric prior to estimate
the number of clusters supported by the observed data.

Similar to standardmixture models, we define the distribution of a
voxel activation variable xjis by conditioning on the system member-
ship zji∈{1,2,⋯} of the voxel and on the system probabilities of activa-
tion for different stimuli ϕ={ϕks}:

xjis zji;ϕ ei:i:d:Bernoulli ϕzjis

� �
:

��� ð12Þ

This model implies that all voxels within a system have the same
prior probability of being activated by a particular stimulus s.
We place a Beta prior distribution on system-level activation prob-
abilities ϕ:

ϕks ei:i:d:Beta ωϕ;1
;ωϕ;2

� �
: ð13Þ

Parameters ωϕ control the overall proportion of activated voxels
across all subjects. For instance, we can induce sparsity in the results
by introducing bias toward 0, i.e., the non-active state, in the param-
eters of this distribution.

To capture variability in system weights, we assume:

zji βj ei:i:d:Mult βj

� �
;

��� ð14Þ

βj π ei:i:d:Dir απ Þ;ð
��� ð15Þ

where βj is a vector of subject-specific system weights, generated
by a Dirichlet distribution centered on the population-level sys-
tem weights π. The extent of variability in the size of different sys-
tems across subjects is controlled by the concentration parameter
α of the Dirichlet distribution. Finally, we place a prior on the
population-level weight vector π that allows an infinite number of
components:

π γ ∼GEM γð Þ;j ð16Þ

image of Fig.�2
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where GEM(γ) is a distribution over infinitely long vectors π=
[π1,π2,⋯]t, named after Griffiths, Engen and McCloskey (Pitman,
2002). Specifically,

πk ¼ vk ∏
k−1

k′¼1
1−vk′ð Þ;

vk γ ∼i:i:d:Beta 1;γð Þ:
��� ð17Þ

It can be shown that the components of the generated vectors π
sum to 1 with probability 1. With this prior over systemmemberships
z={zji}, the model in principle allows for an infinite number of func-
tional systems; however, for any finite set of voxels, a finite number
of systems is sufficient to include all voxels.

This prior for activation variables corresponds to the stick-
breaking construction of HDPs (Teh et al., 2006), which is particular-
ly suited for the variational inference scheme that we discuss in the
next section.

Variational EM inference

Having devised a full model for the fMRI measurements in a
multi-stimulus experiment, we now provide a scheme for inference
on the latent variables from the observed data. Sampling schemes
are most commonly used for inference in HDPs (Teh et al., 2006). De-
spite theoretical guarantees of convergence to the true posterior,
sampling techniques generally require a time-consuming burn-in
phase. Because of the relatively large size of our problem, we will use
a collapsed variational inference scheme for inference (Teh et al.,
2008), which is known to yield faster algorithms. Here, we provide a
brief overview of the derivation steps for the update rules. Appendix A
contains the update rules and more detailed derivations.

Formulation
To formulate the inference for system memberships, we integrate

over the subject-specific unit weights β={βj} and introduce a set of
auxiliary variables r={rjk} that represent the number of tables corre-
sponding to system k in subject j according to the Chinese Restaurant
Process formulation of HDP in (Teh et al., 2006). Appendix A provides
some insights into the role of these auxiliary variables in our model;
they allow us to find closed-form solutions for the inference update
rules. We let u={x,z,r,ϕ,π,v,a,e,h,λ} denote the set of all latent
variables in our model. In the framework of variational infer-
ence, we approximate the model posterior on u given the observed
data p(u|y) by a distribution q(u). The approximation is performed
through the minimization of the Gibbs free energy function:

F q½ � ¼ E log q uð Þ½ �−E log p y;uð Þ½ �: ð18Þ

Here, and in the remainder of the paper, E[⋅] and V[⋅] indicate
expected value and variance with respect to distribution q. We assume
a distribution q of the form:

q uð Þ ¼ q rð jzÞ ∏k q vkð Þð Þ· ∏k;s q ϕksð Þ
� �

�∏j q hj

� �
∏i q aji

� �
q λji

� �
q zji
� �

∏s q xjis
� �� �

∏d q ejid
� �� �h in o

;

ð19Þ

where we explicitly account for the dependency of the auxiliary vari-
ables r on the system memberships z. Including this structure main-
tains the quality of the approximation despite the introduction of
the auxiliary variables (Teh et al., 2007). We use coordinate descent
to solve the resulting optimization problem. Minimizing the Gibbs
free energy function in terms of each component of q(u) while fixing
all other parameters leads to closed form update rules, provided in
Appendix A.
Initialization
Iterative application of the update rules leads to a local minimum

of the Gibbs free energy. Since variational solutions are known to
be biased toward their initial configurations, the initialization phase
becomes critical to the quality of the results. We can initialize the var-
iables in the fMRI signal model by ignoring higher level structure
of the model and separately fitting the linear model of Eq. (3) to the
observed signal in each subject, starting with the canonical form of
the HRF. Note that these estimates are the same as the traditional
GLM estimates used in most fMRI analyses. Our method begins with
these estimates and modifies them according to the assumptions
made in the model.

The standard least squares regression produces estimates for
coefficients bjis in Eq. (3) that describe the contribution of each condi-
tion to signal in different voxels. In our model, we assume that these
coefficients can be factored as bjis=ajixjis to positive voxel-specific
response amplitudes aji and activation variables xjis. Therefore, for
the initialization we let E aji

	 
 ¼ maxs b̂jis and E xjis
	 
 ¼ b̂jis−mins b̂jis

� �.
maxs b̂jis−mins b̂jis
� �

, where b̂jis is the least squares estimate based on

the standardGLM.We initialize nuisance factors ejidirectly to the values
of the nuisance regressor coefficients obtained via least squares estima-
tion, and variance reciprocals of noise λji to values found based on the
estimated residuals.

To initialize systemmemberships, we introduce voxels one by one
in a random order to the collapsed Gibbs sampling scheme (Teh et al.,
2006) constructed for our model with each stimulus as a separate cat-
egory and the initial x assumed known. In contrast to the initializa-
tion of the other variables, the initialization of system memberships
has a random nature and we repeat it several times to find the config-
uration that yields the best Gibbs free energy.

The update rules for each variable usually depend only on the pre-
vious values of other variables in the model. The exception to this is
the update for q(xjis), which also depends on previous estimates of
x. Therefore, unless we begin by updating x, the first variable to be
updated does not need to be initialized. Due to the coupling of the ini-
tializations for x and a, we can choose to initialize either one of them
first and update the other next. By performing both variants and
choosing the one that provides the lower free energy after conver-
gence, we further improve the search in the space of possible initial-
izations and the quality of the resulting estimates.

Results

This section presents the results of applying our method to data
from an event-related visual fMRI experiment. We compare the results
of our hierarchical Bayesian method with the finite mixture model
(Lashkari et al., 2010b) and the tensorial group ICA of (Beckmann and
Smith, 2005) in a high-level visual experiment.

Data

Ten subjects were scanned in an event-related experiment.
Each subject was scanned in two 2-hour scanning sessions. During the
scanning session, the subjects were presented with images from nine
categories (animals, bodies, cars, faces, scenes, shoes, tools, trees, and
vases) in the event-related paradigm. Images were presented in a
pseudo-randomized design generated by optseq (Dale, 1999) to opti-
mize the efficiency of regression. During each 1.5 s presentation, the
image moved slightly across the field of view either leftward or right-
ward. Subjects were asked to indicate the direction of motion by press-
ing a button. Half of the image set was presented in the first session, and
the other half was presented in the second session. Fig. 3 shows the
stimuli used in this study.

Functional MRI data were collected on a 3T Siemens scanner using
a Siemens 32-channel head coil. The high-resolution slices were
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Fig. 3. The 69 images used as stimuli in the experiment.
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1 We use the open source matlab implementation of the Hungarian algorithm avail-
able at http://www.mathworks.com/matlabcentral/fileexchange/11609.

2 http://www.fmrib.ox.ac.uk/fsl/fnirt/index.html.
3 http://fsl.fmrib.ox.ac.uk/fsl/flirt/.
4 http://www.fmrib.ox.ac.uk/fsl/melodic/index.html.
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positioned to cover the entire temporal lobe and part of the occipital
lobe (gradient echo pulse sequence, TR=2 s, TE=30 ms, 40 slices
with a 32 channel head coil, slice thickness=2 mm, in-plane voxel
dimensions=1.6×1.6 mm). The anatomical scans were obtained at
an isotropic resolution of 1 mm in all three directions, and were sub-
sequently subsampled to an isotropic resolution of 2 mm.

The data was first motion corrected separately for the two ses-
sions (Cox and Jesmanowicz, 1999) and spatially smoothed with a
Gaussian kernel of 3 mm width. We then registered the two sessions
to the subject's native anatomical space (Greve and Fischl, 2009).
We used FMRIB's Improved Linear Model (FILM) to prewhiten
the acquired fMRI time courses before applying the linear model
(Woolrich et al., 2001).

We created a mask for the analysis in each subject using an omni-
bus F-test that determines whether any stimulus regressors signifi-
cantly explain the variations in the measured fMRI time course
(p=10−6). This step essentially removed noisy voxels from the anal-
ysis and only retained areas that are relevant for the experimental
protocol at hand. Since the goal of the analysis is to study high level
functional specificity in the visual cortex, we further removed from
the mask the set of voxels within early visual areas. Furthermore,
we included the average time course of all voxels within early visual
areas as a confound factor in the design matrix of Eq. (3). This proce-
dure selected between 2700 and 6800 voxels for different subjects
and a total of 50,435 voxels for all 10 subjects. Our method works
directly on the temporally filtered time courses of all voxels within
the mask.

Comparison and evaluation

We compare our results with those of the finite mixture model of
(Lashkari et al., 2010b) and tensorial group ICA (Beckmann and
Smith, 2005). Below, we first describe the parameters and settings
used with each of these methods and then introduce measures
employed in our evaluation of their results.

Nonparametric hierarchical model
For HDP scale parameters, we use α=100,γ=5. We show in

Sensitivity analysis section that the results are not sensitive to this
specific choice. We also set ωϕ, 1=ωϕ, 2=1 for the nonparametric
prior to assume a uniform prior on activation probabilities. For the
signal model, we use ν=100, and estimate the remaining hyper-
parameters of the fMRI signal model as follows. Like the initialization
procedure of Initialization section, we begin by applying least
squares regression based on the standard GLM model of the signal.
For each subject, we create empirical distributions for the estimated
values of the fMRI signal variables aji and ejid from the GLM estimates,
and λji from the residuals. Based on the assumptions made in Priors
section, we fit the prior models to these empirical distributions and
find maximum likelihood estimates of the hyperparameters μja, σj

a,
μ jde , σjd

e , κj, and θj.
We run the algorithm 20 times with different initializations for

system memberships and choose the solution that yields the least
Gibbs free energy function.

Finite mixture model
When evaluating the finite mixture model, we apply the standard

regression analysis to find regression coefficients for each stimulus at
each voxel and use the resulting vectors as inputs for clustering. Like
ours, this method is also initialized with 20 random sets of param-
eters and the best solution in terms of log-likelihood is chosen as
the final result.

In (Lashkari et al., 2010b), we provided an approach to quantifying
and validating the group consistency of each profile found by the
finite mixture model. We use this method to provide an ordering of
the resulting systems in terms of their consistency scores. We define
the consistency scores based on the correlation coefficients between
the group-wise profiles with the selectivity profiles found in each
subject. We first match group-wise profiles with the set of profiles
found by the algorithm in each individual subject's data separately.
We employ the Hungarian algorithm (Kuhn, 1955) to find the match-
ing between the two sets of profiles that maximizes the sum of edge
weights (correlation coefficients in this case).1 The consistency score
for each system is then defined as the average correlation coefficient
between the corresponding group-wise profile and its matched coun-
terparts in different subjects.

As we discuss in Discussion section, basic model selection schemes
for finite mixture model fail to provide a reasonable choice for the
number of clusters. However, the results remain qualitatively similar
when we change the number of clusters (Lashkari et al., 2010b).
Given that we expect at least 3 or 4 areas selective for faces, scenes,
and bodies, we choose K=15 clusters to allow for several novel likely
systems. Among the resulting profiles, we select systems whose con-
sistency scores are significant at threshold p=10−3 based on the
group-wise permutation test. We demonstrated in (Lashkari et al.,
2010b) that the finite mixture modeling results are qualitatively in-
sensitive to changes in the numbers of clusters.

Tensorial group ICA
Tensorial group ICA requires spatial normalization of the function-

al data from different subjects to a common spatial template. We em-
ploy FMRIB's nonlinear image registration tool2 (FNIRT) to register
the structural image from each subject to the MNI template (T1
image of MNI152). As an initialization for this registration, we use
FMRIB's linear image registration tool3 (FLIRT). We create a group
mask for the ICA analysis defined as the union of the masks found for
different subjects by the F-test procedure above. We use the Melodic4

implementation of the tensorial group ICA provided within the FSL
package. Since the experiment includes a different number of runs for
each subject, we cannot directly apply the ICA algorithm to the time
courses. Instead, we use vectors of estimated regression coefficients
for the 69 stimuli at each voxel as the input to ICA.

As implemented in the Melodic package, the tensorial group ICA
employs the automatic model selection algorithm of Minka (2001)
to estimate the number of independent components (Beckmann
and Smith, 2004).

ICA provides one group spatial map for each estimated component
across the entire group. In contrast, our method yields subject-
specific maps in each subject's native space. In order to summarize
the maps found by our method in different subjects and compare
them with their ICA counterparts, we apply the same spatial normal-
ization described above to spatial maps of the discovered systems. We
then average these normalized maps across subjects to produce a
group summary of the results.

Classification and consistency scores
As a quantitative way to evaluate the specificity patterns found by

different methods, we define a classification score for each set of sys-
tem (or component) profiles that measures how well they encode
information about stimulus categories. Each system activation profile
in our model represents the probabilities that different stimuli acti-
vate that system. Therefore, the brain response to stimulus s can be
summarized based on our results in terms of a vector of activations
[E[ϕ1s],⋯,E[ϕKs]]t that it induces over the set of all functional systems.
Similarly, finite mixture profiles and ICA component profiles can be
used as stimulus representations, which may in turn be used to

http://www.mathworks.com/matlabcentral/fileexchange/11609
http://www.fmrib.ox.ac.uk/fsl/fnirt/index.html
http://fsl.fmrib.ox.ac.uk/fsl/flirt/
http://www.fmrib.ox.ac.uk/fsl/melodic/index.html
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classify stimuli. We consider all distinct binary classification problems
involving all pairs of the first 8 categories (we do not include the 5
vase images in this analysis since there are fewer samples from this
category). We apply 8-fold cross validation with linear SVM classifiers
trained on the profiles and define the average classification accuracy
for all 28 binary classification problems on the test data as the classi-
fication score.

We also use the consistency scores, which were defined above for
finite mixture modeling, in our sensitivity and reproducibility ana-
lyses. In each of these cases, we aim to quantify the similarity of two
sets of system (or component) profiles, e.g., when assessing the con-
sistency of the results across two subgroups of data. In each case, we
apply the Hungarian algorithm to find the one-to-one matching that
maximizes the pairwise correlation coefficients and define the aver-
age correlation coefficient between matched profiles to be the consis-
tency score of the results.

To test statistical significance of the consistency scores, we
create a permutation-based null distribution for the pairwise correla-
tion coefficients between two groups of matched profiles. For each
sample, we randomly permute the S components of all profiles
Fig. 4. System profiles of posterior probabilities of activation for each system to diffe
independently of each other. We then apply the matching, calculate
pairwise correlation coefficients between matched profiles, and com-
pute their average, i.e., the consistency score.We create 10,000 samples
of the consistency score in this way and use this empirical distribu-
tion to evaluate the significance of the average consistency score of
the original result.

Systems or components found by the methods discussed in this
paper do not come in a unique order or with unique labels. As men-
tioned earlier, for the finite mixture model we use the consistency
scores to create a ranking that allows us to focus on the more relevant
systems. For the two other methods, we use similar measures that
capture the variability in the size of systems across subjects to pro-
vide an ordering of the profiles for their visualization. In tensorial
group ICA results, variable cjk expresses the contribution of compo-
nent k to the fMRI data in subject j. Similarly, variable E[njk] in our
results denotes the number of voxels in subject j assigned to system
k. We define this measure for system (component) k as the standard
deviation of values of E[njk] (or cjk) across subjects when scaled to
have unit average. We rank our profiles based on this measure in
ascending order and label them accordingly.
rent stimuli. The bar height correspond to the posterior probability of activation.
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System functional profiles

We apply our method to the real data from the visual experi-
ment. In the data from ten subjects, the method finds 25 systems.
Fig. 4 presents the posterior activation probability profiles of these
25 functional systems in the space of the 69 stimuli presented in
the experiment. We compare these profiles with the ones found by
the finite mixture model and the group tensorial ICA, presented in
Fig. 5. ICA yields ten components. The profiles in Figs. 4 and 5 are pre-
sented in order of consistency. In the results from all methods, there
are some systems or components that mainly contribute to the results
of one or very few subjects and possibly reflect idiosyncratic charac-
teristics of noise in those subjects.

Qualitatively, we observe that the category structure is more
salient in the results of the nonparametric model. Most of our systems
demonstrate similar probabilities of activation for images that belong
to the same category. This structure is present to a slightly lesser
extent in the results of the finite mixture model, but is much weaker
in the ICA results.
Fig. 5. Left: system selectivity profiles estimated by the finite mixture of functional system
normalized selectivity profiles. Right: profiles of independent components found by the t
value of the independent components. Both sets of profiles are defined in the space of the
More specifically, we identify systems 2, 9, and 12 in Fig. 4 as se-
lective for categories of bodies, faces, and scenes, respectively (note
that animals all have bodies). Among the system profiles ranked as
more consistent, these profiles stand out by the sparsity in their acti-
vation probabilities. Fig. 5 shows that similarly selective systems 1
(faces), 2 (bodies), 3 (bodies), and 5 (scenes) also appear in the
results of the finite mixture model. The ICA results include only one
component that seems somewhat category selective (component 1,
bodies). As discussed in Introduction section, previous studies have
robustly localized areas such as EBA, FFA, and PPA with selectivities
for the three categories above. Automatic detection of these profiles
demonstrates the potential of our approach to discover novel pat-
terns of specificity in the data.

Inspecting the activation profiles in Fig. 4, we find other interest-
ing patterns. For instance, the three non-face images with the highest
probability of activating the face selective system 9 (animals 2, 5 and
7) correspond to the three animals that have large faces (Fig. 3).
Beyond the three known patterns of selectivity, we identify a number
of other notable systems in the results of Fig. 4. For instance, system 1
s (Lashkari et al., 2010b). The bar height corresponds to the value of components of
ensorial group ICA (Beckmann and Smith, 2005). The bar height corresponds to the
69 stimuli.

image of Fig.�5
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shows lower responses to cars, shoes, and tools compared to other
stimuli. Since the images representing these three categories in
our experiment are generally smaller in terms of overall pixel size
and overall image intensity, this system appears selective to lower
level features (note that the highest probability of activation among
shoes corresponds to the largest shoe 2). The correlation coefficient
Fig. 6. Top: membership probability maps corresponding to systems 2, 9, and 12, selectiv
Bottom: map representing significance values − log10p for three contrasts bodies-objects (m
between this profile and the sum of the intensity values of the 69 im-
ages is 0.48, where a correlation value of 0.35 is in this case significant
at p=0.05 with Bonferroni corrections for 25 profiles. System 3 and
system 8 are less responsive to faces compared to all other stimuli.

To quantify how well each set of profiles encodes the category
information in images, we compute the classification scores of the
e respectively for bodies (magenta), scenes (yellow), and faces (cyan) in one subject.
agenta), faces-objects (cyan), and scenes-objects (yellow) in the same subject.

image of Fig.�6
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three methods. For our method, the finite mixture model, and tensor-
ial group ICA, the score, which represents average classification accu-
racy in binary category classification tasks, is equal to 0.95±0.16,
0.97±0.13, and 0.68±0.31, respectively. We also apply the finite
mixture model with K=30 and find the classification score of the
results to be 0.96±0.13. The average classification score of our meth-
od is significantly greater than that of ICA with p=10−4 based on a
nonparametric permutation test. This suggests that while nonpara-
metric and finite mixture models yield similar classification perfor-
mance for encoding category information, they both show much
higher performance than that of ICA.

We investigate the spatial properties of the detected systems in
the next section.

System spatial maps

For each system k in our results, vector {q(zji=k)}i=1
Vj describes

the posterior membership probability for all voxels in subject j. We
can represent these probabilities as a spatial map for the system in
the subject's native space. Fig. 6 (top) shows the membership maps
for the systems 2 (bodies), 9 (faces), and 12 (scenes). For comparison,
Fig. 6 (bottom) shows the significance maps found by applying the
conventional confirmatory t-test to the data from the same subject.
These maps present uncorrected significance values − log10(p) for
each of the three standard contrasts of bodies-objects, faces-objects,
and scenes-objects, thresholded at p=10−4 as is common practice
in the field. While the significance maps appear to be generally spa-
tially larger than the systems identified by our method, close inspec-
tion reveals that the system membership maps include the peak
voxels for their corresponding contrasts. Fig. 7 illustrates the fact
that voxels within our system membership maps are generally asso-
ciated with high significance values for the contrasts that corre-
spond to their respective selectivity. The figure also clearly shows
that there is considerable variability across subjects in the distribu-
tion of significance values.

Our method calculates the spatial maps in each subject's native
anatomical spacewhilewe have to normalize the data before applying
Fig. 7. The distributions of significance values across voxels in systems 2, 9, and 12 for three
for each subject separately. The black circle indicates the mean significance value in the area;
with high significance values for bodies, faces, and scenes contrasts, respectively.
ICA so it finds a group map in the population template. As a result, we
cannot directly compare the spatial properties of maps found by the
two methods. To make an indirect comparison, we normalize the sys-
tem probability maps of different subject to the population template
and then average them to find the proportion of subjects whose sys-
tem maps includes any given voxel in their system maps. Fig. 8 com-
pares this group-average of spatial maps for the body-selective
system 2 with the group-level spatial map of component 1 found by
ICA. Although both maps cover the same approximate anatomical
areas, our group map includes very few voxels with values close to 1
suggesting that areas associated with body-selectivity do not have
high voxel-wise overlap across subjects. In other words, the location
of body-selective system 2 varies across subjects but generally remains
at the same approximate area. This result, which agrees with the find-
ings previously reported in the literature (Spiridon et al., 2006), does
not appear in the ICA map that includes large areas with a maximum
value of 1.

Fig. 9 presents average normalized spatial maps for two other
selective systems 9 and 12. These maps clearly contain previously
identified category selective areas, such as FFA, OFA, PPA, TOS, and
RSC (Kanwisher and Yovel, 2006; Epstein et al., 2007). We also exam-
ine the spatial map for system 1, which we demonstrated to be sensi-
tive to low-level features. As Fig. 10 (left) shows, this system resides
mainly in the early visual areas. Fig. 10 (right) shows the spatial
map for system 8, which exhibits reduced activation to faces and
shows a fairly consistent structure across subjects. To the best of our
knowledge, selectivity similar to that of system 8 has not been reported
in the literature so far.

Sensitivity analysis

We test the sensitivity of our method to different initializations
for system memberships and also to perturbations in values of HDP
scale parameters.

Fig. 11 (left) shows the histogram of classification scores for the
results found from 20 different initializations of the algorithm. We
observe that the performance of all different initializations is very
different contrasts. For each system and each contrast, the plots report the distribution
error bars correspond to 25th and 75th percentiles. Systems 2, 9, and 12 contain voxels

image of Fig.�7


Fig. 8. Left: the proportion of subjects with voxels in the body-selective system 2 at each location after nonlinear normalization to the MNI template. Right: the group probability
map of the body-selective component 1 in the ICA results.
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similar to the results presented in System functional profiles section
that achieve the least Gibbs free energy. In Fig. 11 (right), we show
the correlation coefficients between profiles found by each initializa-
tion and their matching profiles from the best results in terms of the
Gibbs free energy. Please note that in cases where the numbers of sys-
tems in the two results are not equal, we assumed a correlation coef-
ficient of zero for the systems that do not have a match. These zero
correlation coefficients explain why the average consistency scores
are less than the consistency scores of most profiles in the results.
Nevertheless, the average consistency scores are significant for all
20 results at p=10−4. This analysis confirms that the results of our
algorithm are robust across different initializations of the algorithm.

Most hyperparameters of our model have intuitive interpretations
in terms of the parameters of fMRI signal model and are selected
based on the GLM estimates from the data. Selection of HDP scale pa-
rameters, on the other hand, is not as straightforward. For the results
presented in this section so far, we chose (γ,α)=(5,100). To investi-
gate how sensitive the results are with respect to this specific choice,
we run the algorithm with a few different other choices for the HDP
scale parameters. We first perturb each parameter slightly around
the choice (γ,α)=(5,100) by varying the values of γ and α by ±1
and ±10, respectively. We then increase the range of change by
roughly dividing or multiplying each parameter by 2. Table 2 presents
the resulting number of systems and classification scores for all these
changes of HDP scale parameters. We observe that the category infor-
mation remains at similar levels when we change the parameters. To
Fig. 9. Group normalized maps for the face-selective syste
directly assess the similarity of the results to the ones presented in
System functional profiles section, Fig. 12 reports the consistency
scores when matching system profiles found with different HDP
scale parameters to the results reported in System functional profiles
section. All average consistency scores are significant with p=10−4.
This analysis confirms that our results are insensitive to the choice
of HDP scale parameters.

Varying initializations or model parameters in Figs. 11 (right) and
12, although the profiles on average remain consistent with the sys-
tem profiles presented in Fig. 4, we observe some degree of variation
in consistency scores. If we investigate the results more closely, we
find an interesting structure in these variations: the labeling of sys-
tems, which is based on the consistency of their sizes across subjects
(Classification and consistency scores section), is highly correlated
with their consistency across different initializations or model param-
eters. Fig. 13 presents the correlation coefficients between each sys-
tem profile of Fig. 4 and the profiles matched to it in the results
from 20 different initializations or from 8 different configurations of
HDP scale parameters. The figure provides another way for examining
the consistency scores in Figs. 11 (right) and 12. Here, we can see that
higher ranked profiles are generally more consistent. The ranking of
voxels has correlation coefficients−0.74 and−0.65 with the average
consistency of match profiles (blue squares in Fig. 13) across different
initializations and model parameters (both significant with p=10−4

in a permutation test). This result suggest that the systems that are
more relevant in our analysis, i.e., the ones that appear more
m 9 (left), and the scene-selective system 12 (right).

image of Fig.�8
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Fig. 10. Group normalized maps for system 1 (left), and system 8 (right) across all 10 subjects.
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consistently across subjects, remain more consistent in the results
found with different initializations and model parameters.
Reproducibility analysis

In this section, we validate our results based on their reproducibil-
ity across subjects. We split the ten subjects into two groups of five
and apply the analysis separately to each group. The method finds
two sets of 17 and 23 systems in the two groups.

Fig. 14 shows the system profiles in both groups of subjects
matched with the top 13 consistent profiles of Fig. 4. Visual inspec-
tion of these activation profiles attests to the generalization of our
results from one group of subjects to another. Fig. 15 reports corre-
lation coefficients for pairs of matched profiles from the two sets of
subjects for all three methods: our Bayesian nonparametric method,
the finite mixture-model, and the group tensorial ICA. Average con-
sistency scores for both nonparametric and finite mixture models
are significant at p=10−4. In contrast, the p-value for the average
consistency score of ICA profiles is only 0.05. This result suggests
that, in terms of robustness across subjects, our unified model is
more consistent than tensorial group ICA and is comparable to the
finite mixture model. We note that due to the close similarity in
the assumptions of our model and the finite mixture model, we do
Fig. 11. (Left) the histogram of classification scores for 20 different initializations of system
Gibbs free energy (Fig. 4) and tensorial group ICA for comparison. (Right) Consistency score
results in terms of Gibbs free energy. Red squares denote the average consistency score for
not expect a significant change in the robustness of the results
when comparing the two models.

Discussion

The nonparametric nature of the model developed in this paper
represents an important advantage over the finite mixture models
(Golland et al., 2007; Lashkari et al., 2010b). The nonparametric con-
struction enables the estimation of the number of systems from the
data. In our experience, both basic model selection schemes such
as BIC (Schwarz, 1978) and computationally intensive resampling
methods such as that of Lange et al. (2004) yield monotonically in-
creasing measures for the goodness of the finite mixture model up
to cluster numbers in several hundreds. In contrast, our nonparamet-
ric method automatically finds the number of components within the
expected range based on prior information. The estimates depend on
the choice of HDP scale parameters α and γ. The results provide opti-
mal choices within the neighborhood of model sizes allowed by these
parameters. We also showed in our sensitivity analysis in Sensitivity
analysis section that the results remain fairly consistent as we change
the HDP scale parameters.

Like the finite mixture model, the proposed hierarchical Bayesian
model avoids making assumptions about the spatial organization of
functional systems across subjects. This is in contrast to tensorial
memberships. The figure denotes the classification scores for the best result based on
s of all different profiles found by 20 different initializations when matched to the best
each initialization.
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Table 2
Number of systems and the resulting classification scores for the results found when varying the HDP scale parameters around the pair (γ,α)=(5,100).

γ=5, varying α 50 90 100 110 200
Number of systems 15 19 25 22 24
Classification score 0.96±0.15 0.94±0.17 0.95±0.16 0.97±0.13 0.96±0.15
α=100, varying γ 3 4 5 6 10
Number of systems 13 20 25 21 34
Classification score 0.95±0.16 0.96±0.14 0.95±0.16 0.95±0.15 0.95±16
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group ICA, which assumes that independent components of interest
are in voxel-wise correspondence across subjects. Average spatial
maps presented in the previous section clearly demonstrate the
extent of spatial variability in functionally specific areas. This variabil-
ity violates the underlying ICA assumption that independent spatial
components are in perfect alignment after spatial normalization.
Accordingly, ICA results are sensitive to the specifics of spatial nor-
malization. In our experience, changing the parameters of registration
algorithms can considerably alter the profiles of estimated indepen-
dent components.

As mentioned earlier, Makni et al. (2005) also employed an activa-
tion model similar to ours for expressing the relationship between
fMRI activations and the measured BOLD signal. The most important
distinction between the two models is that the amplitude of activa-
tions in the model of Makni et al. (2005) is assumed to be constant
across all voxels. In contrast, we assume a voxel-specific response
amplitude that allows us to extract activation variables as a relative
measure of response in each voxel independently of the overall mag-
nitude of the BOLD response.

Amore subtle difference between the twomodels lies in themodel-
ing of noise in time courses. Makni et al. (2005) assume two types of
noise. First, they include the usual time course noise term �jit as in
Eq. (3). Moreover, they assume that the regression coefficients bis are
generated by a Gaussian distribution whose mean is determined by
whether or not voxel i is activated by stimulus s, i.e., the value of the
activation variable xis. This model assumes a second level of noise char-
acterized by the uncertainty in the values of the regression coefficients
conditioned on voxel activations. Our model is more parsimonious
in that it does not assume any further uncertainty in brain responses
conditioned on voxel activations and response amplitudes.

We emphasize the advantage of the activation profiles in our meth-
od over the cluster selectivity profiles of the finite mixture modeling in
terms of interpretability. Our definition of a classification score uses the
Fig. 12. Consistency scores for the results found with different HDP scale parameters
when matched to the results found with γ=5 and α=100. Red squares denote the av-
erage correlation coefficients for all profiles found with any given parameter pair.
fact that vectors formed by concatenating components of different sys-
tem profiles that correspond to the same stimulus can be used as a rep-
resentation for the stimulus. In the case of our fMRI signal model, this
representation has an intuitive interpretation as the probability that
the stimulus can activate a given system. In contrast, the finite mixture
modeling of (Lashkari et al., 2010b) defines the system profiles as vec-
tors of unit length. As a result, it is not straightforward how we can
interpret different components of each profile vector.

We note at that a preliminary version of the model demonstrated
in this paper was presented elsewhere (Lashkari et al., 2010a).

Conclusion

In this paper, we developed a nonparametric hierarchical Bayesian
model that allows us to infer patterns of functional specificity that
consistently appear across subjects in fMRI data. The model accounts
for inter-subject variability in the size of functionally specific systems.
It enables estimation of the number of systems from the data. In addi-
tion, we endow the model with a layer that explicitly connects fMRI
activations to the observed time courses. We derived a variational in-
ference algorithm for fitting themodel to the data from a group of sub-
jects. Most notably, the method does not require spatial alignment of
the functional data across the group in order to perform group
analysis.

We apply our method to an fMRI study of visual object recognition
that presents 69 distinct images to ten subjects. The algorithm suc-
cessfully discovers system activation profiles that correspond to
well-known patterns of category selectivity along with a number of
novel systems. These systems include one that is deactivated by face
images. We showed that the results of our method are not sensitive
with respect to changes in the initialization and model parameters
and are reproducible across different groups of subjects.
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Appendix A. Derivations of the update rules

In this section, we derive the Gibbs free energy cost function for
variational inference and derive the update rules for inference using
the variational approximation.

A.1. Joint probability distribution

Based on the generative model described in Methods section, we
form the full joint distribution of all the observed and unobserved
variables. For each variable, we use ω̇ to denote the natural param-
eters of the distribution for that variable. For example, the variable
ejid is associated with natural parameters ωjd

e, 1 and ωjd
e, 2.

image of Fig.�12


Fig. 13. (Top) The histogram of classification scores matched to each of the 25 system profiles of Fig. 4 for different initializations. (Bottom) The histogram of classification scores
matched to each of the 25 system profiles of Fig. 4 for different HDP scale parameters. Blue squares denote the average of all consistency scores for each system profile.
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A.1.1. fMRI model
Given the fMRI model parameters, we can write the likelihood of

the observed data y:

p yð jx;a;λ; e;hÞ ¼ ∏
j;i

ffiffiffiffiffiffiffiffi
λ
Tj
ji

2π

s
exp −

λji

2
jjyji−∑

d
ejid f d−aji ∑

s
xjisΞjshj

2
��� o:����

ðA:1Þ

We now express the priors on the parameters of the likelihood
model defined in Priors section in the new notation. Specifically, for
the nuisance parameters e, we have

p ejid
� �

¼ Normal μe
jd;σ

e
jd

� �
ðA:2Þ

∝exp −1
2

ωe;2
jd

� �
e2jid þ

1
2

ωe;1
jd

� �
ejid

� 

; ðA:3Þ

where ωjd
e, 2=(σjd

e )−1 and ωjd
e, 1=μde(σjd

e )−1.
With our definition of the Gamma distribution in Eq. (11), the

natural parameters for the noise precision variables λ are ωjm
λ, 1=κjm

and ωjm
λ, 2=θjm.

The distribution over the activation heights a is given by

p ajim
� �

¼ Normalþ μa
jm;σ

a
jm

� �
ðA:4Þ
∝ exp −1
2

ωa;2
jm

� �
a2jim þ 1

2
ωa;1

jm

� �
ajim

� 

; ajim ≥ 0 ðA:5Þ

We have ωjm
a, 2=(σjm

a )−1 and ωjm
a, 1=μjma (σjm

a )−1.
The distribution Normal+(η,ρ−1) is a member of an exponential

family of distributions and has the following properties:

p að Þ ¼
ffiffiffiffiffiffi
2λ
π

r
1þ erf

ffiffiffi
ρ
2

r
η

� �� �−1

e−ρ a−ηð Þ2=2
; ðA:6Þ

E a½ � ¼ ηþ
ffiffiffiffiffiffiffi
2
πλ

r
1þ erf

ffiffiffi
ρ
2

r
η

� �� �−1

e−ρη2
=2
; ðA:7Þ

E a2
h i

¼ η2 þ ρ−1 þ η

ffiffiffiffiffiffiffi
2
πλ

r
1þ erf

ffiffiffi
ρ
2

r
η

� �� �−1

e−ρη2
=2
: ðA:8Þ

A.1.2. Nonparametric hierarchical joint model for group fMRI data
The voxel activation variables xjis are binary, with prior probability

ϕks given according to cluster memberships. Since ϕ∼Beta(ωϕ, 1,ωϕ, 2),
the joint density of x and ϕ conditioned on the cluster memberships z
is defined as follows:

p x;ϕð jzÞ ¼ ∏
j;k;s

Γ ωϕ;1 þωϕ;2
� �
Γ ωϕ;1� �

Γ ωϕ;2� � ϕωϕ;1−1þ∑i;sxjisδ zji;kð Þ
ks � 1−ϕksð Þω

ϕ;2−1þ∑i;s 1−xjisð Þδ zji;kð Þ
24 35:

image of Fig.�13


Fig. 14. System profiles of activation probabilities found by applying the method to two independent sets of 5 subjects. The profiles were first matched across two groups using the
scheme described in the text, and then matched with the system profiles found for the entire group (Fig. 4).

Hierarchical Model Finite Mixture ICA
0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

Fig. 15. The correlation of profilesmatched between the results found on the two separate
sets of subjects for the three different techniques. Red squares denote the average correla-
tion coefficients for each set of profiles.
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We assume a Hierarchical Dirichlet Process prior over the func-
tional unit memberships, with subject-level weights β. We use a col-
lapsed variational inference scheme (Teh et al., 2008), and therefore
marginalize over these weights:

p zð jπ ;αÞ ¼ ∫βp zð jβÞp βð jπ ;αÞ; ðA:9Þ

¼ ∏
J

j¼1

Γ αð Þ
Γ αþ Nj

� � ∏
K

k¼1

Γ απk þ njk

� �
Γ απkð Þ

24 35; ðA:10Þ

where K is the number of non-empty functional units in the configu-
ration and njk ¼ ∑Nj

i¼1δ zji; k
� �

. To provide conjugacy with the Dirich-
let prior for the group-level functional unit weights π, we prefer the
terms in Eq. (A.10) that include weights to appear as powers of πk .
However, the current form of the conditional distribution makes the
computation of the posterior over π hard. To overcome this challenge,

we note that for 0≤ r≤n, we have ∑n
r¼0

n
r

� �
ϑr ¼ Γ ϑþ nð Þ=Γ ϑð Þ,

where n
r

� �
are unsigned Stirling numbers of the first kind (Antoniak,

1974). The collapsed variational approach uses this fact and the
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properties of the Beta distribution to add an auxiliary variable r={rji}
to the model:

p z; r;ð jπ ;αÞ∝∏
J

j¼1
∏
K

k¼1

njk
rjk

� �
απkð Þrjk ; ðA:11Þ

where rjk∈ {0,1,⋯,nji}. If we marginalize the distribution (Eq. (A.11))
over the auxiliary variable, we obtain the expression in Eq. (A.10).

A.2. Minimization of the Gibbs free energy

Let u={x,z,r,ϕ,π,v,a,e,h,λ} denote the set of all unobserved var-
iables. In the framework of variational inference, we approximate
the posterior distribution p(u|y) of the hidden variables u given the
observed y by a distribution q(u). The approximation is performed
through minimization of the Gibbs free energy function in Eq. (18)
with an approximate posterior distribution q(u) of the form in
Eq. (19). We derive a coordinate descent method where in each
step we minimize the function with respect to one of the components
of q(·), keeping the rest constant.

A.2.1. Auxiliary variables
Assuming that all the other components of the distribution q are

constant, we obtain:

F q rð jz½ Þ� ¼ Ez ∑
r
q rð jz� log q rð jz�þ−∑

j;k
log

njk
rjk

� �
þ rjk E log απkð Þ½ �

� 
" !#
þ const:

ðA:12Þ

The optimal posterior distribution on the auxiliary variables takes
the form

q4 rð jzÞ ¼ ∏
j
∏
k
q rjk
� ���z�: ðA:13Þ

Under q*, we have for the auxiliary variable r:

q rjk
� ���z� ¼

Γ ω̃r
jk

� �
Γ ω̃r

jk þ njk

� � njk
rjk

� �
ω̃r

jk

� �rjk
: ðA:14Þ

This distribution corresponds to the probability mass function for
a random variable that describes the number of tables that njk cus-
tomers occupy in a Chinese Restaurant Process with parameter ω̃r

jk
(Antoniak, 1974). The optimal value of the parameter ω̃r

jk is given by

log ω̃r
jk ¼ E log απkð Þ½ � ¼ logαþ E log vk½ � þ∑k′bkE log 1−vk′ð Þ½ �: ðA:15Þ

As a distribution parameterized by log ω̃r
jk, Eq. (A.14) defines a

member of an exponential family of distributions. The expected value
of the auxiliary variable rjk is therefore:

E rjk
h ���zi ¼ ∂

∂log ω̃r
jk
log

Γ ω̃r
jk þ njk

� �
Γ ω̃r

jk

� � ðA:16Þ

¼ ω̃r
jkΨ ω̃r

jk þ njk

� �
−ω̃r

jkΨ ω̃r
jk

� �
; ðA:17Þ

whereΨ ωð Þ ¼ ∂
∂ω log Γ ωð Þ. This expression is helpful when updating

the other components of the distribution. Accordingly, we obtain
expectation:

E rjk
h i

¼ Ez Er rjk
h ���zh ii

¼ ω̃r
jkEz Ψ ω̃r

jk þ njk

� �
−Ψ ω̃r

jk

� �h i
: ðA:18Þ

Under q(z), each variable njk is the sum of Nj independent Bernoulli
random variables δ(zji,k) for 1≤ i≤Nj with the probability of success
q(zji=k). Therefore, as suggested in (Teh et al., 2008), we can use the
Central Limit Theorem and approximate this term using a Gaussian dis-
tribution for njkN0. Due to the independence of these Bernoulli vari-
ables, we have

Pr njk N 0
� �

¼ 1−∏
Nj

i¼1
1−q zji ¼ k

� �� �
; ðA:19Þ

E njk

h i
¼ E njk

h ���njk N 0
i
Pr njk N 0
� �

; ðA:20Þ

E n2
jk

h i
¼ E n2

jk

h ���njk N 0
i
Pr njk N 0
� �

; ðA:21Þ

which we can use to easily compute E+[njk]=E[njk|njkN0] and
V+[njk]=V[njk|njkN0]. We then calculate E[rjk] using Eq. (A.18) by
noting that

Ez Ψ ω̃r
jk þ njk

� �
−Ψ ω̃r

jk

� �h i
≈

Pr njk N 0
� �

Ψ ω̃r
jk þ Eþ njk

h i� �
−Ψ ω̃r

jk

� �
þ
Vþ njk

h i
2

Ψ″ ω̃r
jk þ Eþ njk

h i� �24 35:
ðA:22Þ

Lastly, based on the auxiliary variable r, we find that the optimal
posterior distribution of the systemweight stick-breaking parameters
is given by vk ∼ Beta ω̃v;1

k ; ω̃v;2
k

� �
, with parameters:

ω̃v;1
k ¼ 1þ∑

j
E rjk
h i

ðA:23Þ

ω̃v;2
k ¼ γþ ∑

j;k′ Nk
E rjk′
h i

ðA:24Þ

A.2.2. System memberships
The optimal posterior over the auxiliary variables defined in

Eq. (A.13) implies:

E log q� rð jz½ Þ−log p z; rð jπ;α Þ� ¼ ∑
j

log Γ αþ Nj

� �
−log Γ αð Þ

� �
þ∑

jk
Ez log Γ ω̃r

jk

� �
−log Γ ω̃r

jk þ njk

� �h i
:

ðA:25Þ

The Gibbs free energy as a function of the posterior distribution
of a single membership variable q(zji) becomes

F q zji
� �h i

¼ ∑
k
q zji ¼ k
� �

log q zji ¼ k
� �

−∑
k
Ez log Γ ω̃r

jk þ njk

� �h i
−∑

k
q zji ¼ k
� �

∑
s

q xjis ¼ 1
� �

E logϕks½ � þ q xjis ¼ 0
� �

E log 1−ϕksð Þ½ �
h i

þ const: ðA:26Þ

We can simplify the second term on the right hand side of
Eq. (A.26) as:

Ez log Γ ω̃rji
þ njk

� �h i
¼ Ez δ zji; k

� �
log ω̃r

jk þ nIji
jk

� �
þ log Γ ω̃r

jk þ nIji
jk

� �h i
;

ðA:27Þ

¼ q zji ¼ k
� �

EzIji log ω̃r
jk þ nIji

jk

� �h i
þ EzIji log Γ ω̃r

jk þ nIji
jk

� �h i
; ðA:28Þ



Table A.1
Update rules for computing the posterior q over the unobserved variables.

ω̃r
jk ¼ exp E logα½ � þ E log vk½ � þ∑k ′ b kE log 1−vk ′ð Þ½ �ð Þ

E rjk
	 
 ¼ ω̃r

jkEz Ψ ω̃r
jk þ njk

� �
−Ψ ω̃r

jk

� �h i

vk ∼ Beta ω̃v;1
k ; ω̃v;2

k

� �
ω̃v;1

k ¼ 1þ∑jE rjk
	 


ω̃v;2
k ¼ E γ½ � þ∑j;k ′ NkE rjk′

	 

ϕk;s∼Beta ω̃ϕ;1

k;s ; ω̃
ϕ;2
k;s

� �
ω̃ϕ;1

k;s ¼ ωϕ;1 þ∑j;iq zji ¼ k
� �

q xjis ¼ 1
� �

ω̃ϕ;2
k;s ¼ ωϕ;2 þ∑j;iq zji ¼ k

� �
q xjis ¼ 0
� �

aji∼Normal ω̃a;1
ji ω̃a;2

ji

� �−1
; ω̃a;2

ji

� �−1
� �

ω̃a;2
ji ¼ σa

j

� �−1
þ E λji
	 


∑s;s′E xjisxjis′
	 


Tr E hjh
t
j

h i
Ξt

jshbfΞjs′

� �
ω̃a;1

ji ¼ μa
j σa

j

� �−1
þ E λji
	 


∑sE xjis
	 


E hj
	 
tΞt

js yji−∑dE ejid
	 


f jd
� �

λji ∼Gamma ω̃λ;1
ji ; ω̃λ;2

ji

� �
ω̃λ;1

ji ¼ κj þ
Tj
2

ω̃λ;2
ji ¼ θj þ ‖yji‖

2 þ∑d E e2jid
h i

‖ f jd‖
2 þ∑d′≠dE ejid

	 

E ejid′
	 


f tjdf jd′

 !

þE a2ji
h i

∑s;s′ E xjisxjis′
	 


Tr E hjh
t
j

h i
Ξt

jsΞjs′

� �
þ E aji
	 


∑s;dE ejid
	 


E xjis
	 


f tjdΞjsE hj
	 


−ytji ∑dE ejid
	 


f jd þ E aji
	 


∑sE xjis
	 


ΞjsE hj
	 
� �

ejideNormal ω̃e;1
jid ω̃e;2

jid

� �−1
; ω̃e;2

jid

� �−1
� �

ω̃e;2
jid ¼ σe

jd

� �−1
þ E λji
	 


‖ f jd‖2

ω̃e;1
jid ¼ μe

jd σe
jd

� �−1
þ E λji
	 


f tjd yji−∑d′≠dE ejid′
	 


f jd′−E aji
	 


∑sE xjis
	 


ΞjsE hj
	 
� �

hjeNormal Ξ−1
j ˜ωh

j ;Ξ
−1
j

� �
Ξj ¼ Λþ∑iE λji

	 

∑s;s′ E xjisxjis′

	 

Ξt

js′Ξjs

ω̃h
j ¼ Λh þ∑i;sE λji

	 

E aji
	 


E xjis
	 


Ξt
js yji−∑dE ejid

	 

f jd

� �
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where njk
¬ji and z¬ji indicate the exclusion of voxel i in subject j and

only the first term is a function of q(zji). Minimizing Eq. (A.26) yields
the following update for membership variables:

q zji ¼ k
� �

∝ exp
n
EzIji log ω̃r

jk þ nIji
jk

� �h i
þ∑

s
q xjis ¼ 1
� �

E logϕk;l

h i
þ q xjis ¼ 0
� �

E log 1−ϕk;s

� �h i� �o
;

In order to compute the first term on the right hand side, as with the
Eq. (A.22), we use a Gaussian approximation for the distribution of njk:

EzIji log ω̃r
jk þ nIji

jk

� �h i
≈log ω̃r

jk þ E nIji
jk

h i� �
−

V nIji
jk

h i
2 ω̃r

jk þ E nIji
jk

h i� �2 : ðA:29Þ

A.2.3. Voxel activation variables
We form the Gibbs free energy as a function only of the posterior

distribution of voxel activation variables x. For notational con-
venience, we define ψjis ¼ ∑k E log ϕksð Þ½ �q zji ¼ k

� �
and ψ jis ¼

∑k;l E log 1−ð½ ϕksÞ�q zji ¼ k
� �

and obtain

F q xð Þ½ � ¼ ∑
x
q xð Þ

(
log q xð Þ−∑

jis

"
1−xjis
� �

ψ jis

þ xjis

  
ψjis þ E λji

h i"
E aji
h i

E hj

h it
Ξt

js yji−∑
d
E ejid
h i

f jd

� �
−1

2
E a2ji
h i

E ht
jΞ

t
jsΞjshj

h i
þ 2 ∑

s′≠s
E xjis′
h i

E ht
jΞ

t
jsΞjs′hj

h i !!#)
þ const:

ðA:30Þ

Minimization of this function with respect to q xð Þ ¼ ∏j;i;s q xjis
� �

yields the update rule:

q xjis ¼ 1
� �

∝ exp

(
ψjis þ E λji

h i"
E aji
h i

E hj

h it
Ξt

js

 
yji−∑

d
E ejid
h i

f jd

!

−1
2
E a2ji
h i

Tr E hjh
t
j

h i
Ξt

jsΞjs þ 2 ∑
s′≠s

E xjis′
h i

Ξt
jsΞjs′

 ! !#)
ðA:31Þ

q xjis ¼ 0
� �

∝ exp ψjis

n o
; ðA:32Þ

where Tr(⋅) is the trace operator.

A.2.4. fMRI model variables
We collect the free energy terms corresponding to the nuisance

variables e:

F q eð Þ½ � ¼ ∫eq eð Þ
 
log q eð Þ þ 1

2
e2jidω

e;2
jd −1

2
ejidω

e;1
jd þ∑

j;i;d

E λji

h i
2

"
e2jid‖ f jd‖

2

−ejih f
t
jd yji− ∑

d′≠d
E ejid′
h i

f jd′−E aji
h i

∑
s
E xjis
h i

ΞjsE hj

h i !#!
þ const:

ðA:33Þ

Recall that we assume a factored form for q eð Þ ¼ ∏j;i;d q ejid
� �

. Mini-
mizing with respect to this distribution yields q ejid

� �
∝

exp
�
− 1

2 ω̃e;2
jid e

2
jid þ 1

2 ω̃
e;1
jid ejid

�
, with the parameters ω̃e;1

jid and ω̃e;2
jid given

in the Table A.1.
For the activation heights a, we find

F q að Þ½ � ¼ ∫aq að Þ
 
log q að Þ þ 1

2
a2jiω

a;2
j −1

2
ajiω

a;1
j þ∑

j;i

E λji

h i
2

"
a2ji ∑

s;s ′
E xjisxjis ′
h i

E ht
jΞ

t
jsΞjs ′hj

h i

−aji ∑
s
E xjis
h i

E hj

h it
Ξt

js yji−∑
d
E ejid
h i

f jd

� �#!
þ const:

ðA:34Þ
Assuming a factored form, minimization yields q aji
� �

∝
exp − 1

2 a2jiω̃
a;2
ji þ 1

2 ajiω̃
a;1
ji

n o
; a≥ 0, with parameters ω̃a;1

ji and ω̃a;2
ji

given in Table A.1.
The terms relating to the noise precisions λ are computed as:

F q λð Þ½ � ¼ ∫λq λð Þ
(
log q λð Þ−∑j;i

 
log λji

� �
ωλ;1

j −1
� �

þ λjiω
λ;2
j

−
Tj
2
log λji

� �
þ λji

2

"
‖yji‖

2 þ E a2ji
h i

∑
s;s ′

E xjisxjis′
h i

E ht
jΞ

t
jsΞjs′hj

h i
þ∑d

 
E e2jid
h i

‖ f jd‖
2

þ∑d′≠d E ejid
h i

E ejid′
h i

f tjdf jd′

!
−ytji ∑d E ejid

h i
f jd þ E aji

h i
∑s E xjis

h i
ΞjsE hj

h i� �
þ E aji

h i
∑s;d E ejid

h i
E xjis
h i

f tjdΞjsE hj

h i#!)
þ const:

ðA:35Þ

Minimization with respect to q(λji) yields q λji
� �

∝ exp log λji
� ���

ω̃λ;1
ji −1

� �
−λjiω̃

λ;2
ji g, where the parameters ω̃λ;1

ji and ω̃λ;2
ji are given

in Table A.1. Finally, we can write the term involving the HRF as:

F q hð Þ½ � ¼ ∫hq hð Þ
 
log q hð Þ þ∑

j

"
1
2
ht
jΛhj þ∑

i
E λji

h i
∑
s;s′

E xjisxjis′
h i

ht
jΞ

t
js′Ξjshj

− ht
jΛh−∑

i;s
E λji

h i
E aji
h i

E xjis
h i

ht
jΞ

t
js yji−∑

d
E ejid
h i

f jd

� �#
þ const:

ðA:36Þ

Assuming an approximate factored posterior distribution q hð Þ ¼
∏j q hj

� �
and minimizing the above cost function shows that the pos-

terior for each HRF is of the form q hj
� �

∝ exp − 1
2 ht

jΞjhj þ 1
2h

t
jω̃

h
j

n o
with parameters ω̃h

j and Ξ presented in Table A.1.
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A.2.5. System activation probabilities
For the system activation profiles, we find

F q ϕksð Þ½ � ¼ ∫vq ϕksð Þ
 
log q ϕksð Þ−∑

k

"
ωϕ;1 þ∑

j;i;s
q zji ¼ k
� �

q xjis ¼ 1
� �( )

logϕks

þ ωϕ;2 þ∑
j;i;s

q zji ¼ k
� �( )

log 1−ϕksð Þ�Þ þ const: ðA:37Þ

The minimum is achieved for ϕks∼Beta ω̃ϕ;1
ks ; ω̃ϕ;2

ks

� �
, with the

following parameters:

ω̃ϕ;1
ks ¼ ωϕ;1 þ∑

j;i;s
q zji ¼ k
� �

q xjis ¼ 1
� �

ðA:38Þ

ω̃ϕ;2
ks ¼ ωϕ;2 þ∑

j;i;s
q zji ¼ k
� �

q xjis ¼ 0
� �

ðA:39Þ
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