October 3, 2013

Lecture 10

Instructor: Arya Mazumdar

Scribe: Arya Mazumdar

Reed Solomon Codes

- q-ary Code.
- Length $n \le q 1$, dimension k.
- Distance d = n k + 1.

Decoding: Berlekamp-Welch

Suppose the defining set is $\mathcal{P} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}, \alpha_i \in \mathbb{F}_q, i = 1, 2, \dots, n$. Let the received vector is $\mathbf{r} = (r_1, r_2, \dots, r_n)$. The transmitted vector is $eval(f) = \mathbf{c} = (c_1, \dots, c_n)$ and the error vector is $\mathbf{e} = (e_1, \dots, e_n)$, and $wt(\mathbf{e}) \leq t = \frac{n-k}{2}$.

Find a polynomial $Q(x, y) \in \mathbb{F}_q[x, y]$ with the following properties:

- 1. $Q(x,y) = Q_0(x) + yQ_1(x)$.
- 2. $\deg(Q_0) \le n t 1$ and $\deg(Q_1) \le n t 1 (k 1)$.
- 3. $Q(\alpha_i, r_i) = 0$ for i = 1, 2, ..., n.

Lemma 1 It is always possible to find a polynomial $Q(x, y) \in \mathbb{F}_q[x, y]$ with the above properties.

Proof The number of unknown coefficients are at most n - t + n - t - (k - 1) = 2n - 2t - (k - 1) = 2n - n + k - k + 1 = n + 1. On the other hand the third condition gives n linear equation involving them. Hence it is always possible to find a solution.

Theorem 2 For a Q(x, y) with the above properties, $f(x) = -\frac{Q_0(x)}{Q_1(x)}$ where c = eval(f).

Proof Note, $\deg(Q(x, f(x)) \le \max(\deg(Q_0), \deg(Q_1) + \deg(f))) = \max(n-t-1, n-t-1-(k-1)+k-1) = n-t-1$. Hence, if there exist n-t or more points where Q(x, f(x)) evaluates to zero, Q(x, f(x)) = 0.

Now, $r_i = f(\alpha_i) + e_i$. As wt(e) = t, there exists n - t such is, that $r_i = f(\alpha_i)$. Therefore, for at least n - t is, $Q(\alpha_i, f(\alpha_i)) = 0$. Hence, $Q(x, f(x)) = 0 \Rightarrow f(x) = -\frac{Q_0(x)}{Q_1(x)}$.

Error-locator polynomial

 Q_1 is called error-locator polynomial as its roots give the locations of errors. Indeed,

$$Q(x,y) = Q_0(x) + yQ_1(x) = -Q_1(x)f(x) + yQ_1(x) = Q_1(x)(y - f(x)).$$

Hence, $Q(\alpha_i, r_i) = 0$ implies $Q_1(\alpha_i)(r_i - f(\alpha_i)) = Q_1(\alpha_i)e_i = 0$. Whenever, $e_i \neq 0$, $Q_1(\alpha_i) = 0$.

Interpolation

Given, *n* points $(\alpha_1, r_1), \ldots, (\alpha_n, r_n) \in \mathbb{F}_q^2$, find a polynomial f(x) of degree at most k - 1 that goes through at least $n - t = \frac{n+k}{2}$ points \implies RS decoding.

List Decoding of RS codes (Sudan)

Consider the following generalization of BW algorithm. Suppose the defining set is $\mathcal{P} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, $\alpha_i \in \mathbb{F}_q, i = 1, 2, \dots, n$. Let the received vector is $\mathbf{r} = (r_1, r_2, \dots, r_n)$. The transmitted vector is $eval(f) = \mathbf{c} = (c_1, \dots, c_n)$ and the error vector is $\mathbf{e} = (e_1, \dots, e_n)$, and $wt(\mathbf{e}) = t$ (some number).

Find a polynomial $Q(x, y) \in \mathbb{F}_q[x, y]$ with the following properties:

- 1. $Q(x,y) = Q_0(x) + yQ_1(x) + y^2Q_2(x) + \dots + y^LQ_L(x).$
- 2. $\deg(Q_j) \le n t 1 j(k 1), j = 0, \dots L.$
- 3. $Q(\alpha_i, r_i) = 0$ for i = 1, 2, ... n.

Theorem 3 It is possible to find a polynomial $Q(x, y) \in \mathbb{F}_q[x, y]$ with the above properties if

$$t < \min\left(\frac{nL}{L+1} - \frac{(k-1)L}{2}, n - L(k-1)\right).$$

Proof Number of coefficients in the polynomial Q(x, y) is

$$(L+1)(n-t) - (k-1)\sum_{j=0}^{L} j = (L+1)(n-t) - (k-1)\frac{L(L+1)}{2} = (L+1)(n-t - (k-1)L/2).$$

If this is greater than or equal to n then the set of equations can be solved to find the polynomial Q. That is, Q can be found if,

$$t < n - \frac{n}{L+1} - (k-1)L/2.$$

At the same time $deg(Q_j)$ must be nonnegative, i.e.,

$$n - t - 1 - L(k - 1) \ge 0.$$

Theorem 4 (y - f(x)) divides Q(x, y).

Proof This will be proved, if Q(x, f(x)) = 0.

Note, $\deg(Q(x, f(x))) \leq n - t - 1$. However, just as before, $r_i = f(\alpha_i) + e_i$. As $\operatorname{wt}(e) = t$, there exists n - t such is, that $r_i = f(\alpha_i)$. Therefore, for at least n - t is, $Q(\alpha_i, f(\alpha_i)) = 0$. Hence, Q(x, f(x)) = 0.

Note that, there are at most L different polynomials f possible that are y-roots of Q(x, y).

Theorem 5 Given any vector \mathbf{r} , Sudan's algorithm finds all codewords that are within distance t from \mathbf{r} . When

$$t < \min\left(\frac{nL}{L+1} - \frac{(k-1)L}{2}, n - L(k-1)\right),$$

there exist at most L such codewords.

This is called List Decoding.

Example: Say, L = 2. Hence, $t < \min\left(\frac{2n}{3} - (k-1), n - 2(k-1)\right)$. When $\frac{k}{n} < \frac{1}{3}$, the decoding radius is $t = \frac{2n}{3} - (k-1) - 1$, say. This is greater than the radius for unique decoding $\frac{n-k}{2}$.