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Abstract In this paper we propose a perturbed proximal primal dual algorithm (PProx-PDA)
for an important class of linearly constrained optimization problems whose objective is the sum
of smooth (possibly nonconvex) and convex (possibly nonsmooth) functions. This family of prob-
lems has applications in a number of statistical and engineering problems, for example in high-
dimensional subspace estimation, and distributed signal processing and learning over networks.
The proposed method is of Uzawa type, in which a primal gradient descent step is performed
followed by an (approximate) dual gradient ascent step. One distinctive feature of the proposed
algorithm is that the primal and dual steps are both perturbed appropriately using past iterates so
that a number of asymptotic convergence and rate of convergence results (to first-order stationary
solutions) can be obtained. Finally, we conduct extensive numerical experiments to validate the
effectiveness of the proposed algorithm.

AMS(MOS) Subject Classifications: 49, 90.

1 Introduction
1.1 The Problem

Consider the following optimization problem

min f(z)+ h(z), st. Az =0b, (1)

zeX

where f(z) : RY — R is a continuous smooth function (possibly nonconvex); A € RM*¥ ig a rank

deficient matrix; b € RM is a given vector; X C R is a convex compact set; h(z) : RV — R is
a lower semi-continuous nonsmooth convex function. Problem is an interesting class that can
be specialized to a number of statistical and engineering applications. We provide a few of these
applications in subsection [1.3

1.2 The Algorithm

In this section, we present the proposed algorithm. The augmented Lagrangian for problem is
given below

Ly(z,y) =f(x)+h($)+<A,Aw—b>+gllA$—b||27 (2)
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where A € RM is the dual variable associated with the equality constraint Az = b, and p > 0 is
the penalty parameter for the augmented term || Az — b||?.

Define B € RM*¥ a5 a scaling matrix, and introduce two new parameters v € (0,1) and 8 > 0,
where 7 is a small positive algorithm parameter that is related to the size of the equality constraint
violation that is allowed by the algorithm, and § is the proximal parameter that regularizes the
primal update. Let us choose v > 0 and p > 0 such that py < 1. The steps of the proposed
perturbed proximal primal dual algorithm (PProx-PDA) are given below (Algorithm .

Algorithm 1: The perturbed proximal primal-dual algorithm (PProx-PDA)

Initialize: A and 2°
Repeat: update variables by

't = arggéi}l(l {(Vf(xr),x —2") + h(z) + ((1 = py)A", Az — b)

P B .
+ Bllda o7 + Fllo — "y (30)
A= (1= py)A" + p (A2"T! —b) (3b)

Until Convergence.

In contrast to the classic Augmented Lagrangian (AL) method [34,/59], in which the primal
variable is updated by minimizing the augmented Lagrangian given in (2]), in PProx-PDA the
primal step minimizes an approximated augmented Lagrangian, where the approximation comes
from: 1) replacing function f(z) with the surrogate function (V f(z"),x — 2"); 2) perturbing dual
variable A by a positive factor 1 — py > 0; 3) adding proximal term ng —2"||%r - We make a
few remarks about these algorithmic choices.

First, the use of the linear surrogate function (V f(z"),x — 2") ensures that only first-order
information is used for the primal update. Also it is worth mentioning that one can replace the
function (Vf(z"),z — z") with a wider class of “surrogate” functions satisfying certain gradient
consistent conditions [60,/64], and our subsequent analysis will still hold true. However, in order
to stay focused, we choose not to present those variations.

Second, the primal and dual perturbations are added to facilitate convergence analysis. In
particular the analysis for the PProx-PDA algorithm differs from the recent analysis on nonconvex
primal/dual type algorithms, which is first presented in Ames and Hong [2] and later generalized
by 28,130,323 7)45,53,69]. Those analyses have been critically dependent on bounding the size of the
successive dual variables with that of the successive primal variables. Unfortunately, this can only
be done when the primal step immediately preceding the dual step is smooth and unconstrained.
Therefore the analysis presented in these works cannot be applied to our general formulation with
nonsmooth terms and constraints.

Our perturbation scheme is strongly motivated from the dual perturbation scheme developed
for the convex case, for example in [43]. Conceptually, the perturbed dual step can be viewed as
performing a dual ascent on certain regularized Lagrangian in the dual space; see [42, Sec. 3.1]. The
main purpose for introducing the dual perturbation/regularization in this reference, and in many
related works, is to ensure that the dual update is well-behaved and easy to analyze. Intuitively,
when adopting and modifying such a perturbation strategy in the non-convex setting of interest
to this work, we no longer need to bound the size of the successive dual variables with that of the
successive primal variables, since the change of the dual variables is now well controlled.

Third, the proximal term ng — 2"||%r 5 is used for two purposes: 1) to make the primal
subproblem strongly convex; 2) for certain applications to ensure that the primal subproblem is
decomposable over the variables. We will discuss how this can be done in the subsequent sections.
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1.3 Motivating Applications

Sparse subspace estimation. Suppose that X € RP*P is an unknown covariance matrix, A; >
A2 > -+ Ap and ug,ug, - ,u, are its eigenvalues and eigenvectors, respectively, and they satisfy
Y =>"%  Nuu/. Principal Component Analysis (PCA) aims to recover uj,us, - ,u, where
k < p, from a sample covariance matrix 3 obtained from i.i.d samples {x;}" ;. The subspace
spanned by {ui}le is called k-dimensional principal subspace, whose projection matrix is given
by II* = Zle u;u; . Therefore, PCA reduces to finding an estimate of IT*, denoted by I, from
the sample covariance matrix Y. In high dimensional setting where the number of data points is
significantly smaller than the dimension i.e. (n < p), it is desirable to find a sparse I , using the
following formulation [26]

min (2, I0) +P,(I), st ITeF" (4)

In the above formulation, F* denotes the Fantope set [68], given by F¥ = {X : 0 < X =
I,trace(X) = k}, which promotes low rankness in X. The function P,(II) is a nonconvex reg-
ularizer that enforces sparsity on II. Typical forms of this regularization are smoothly clipped
absolute deviation (SCAD) [20], and minimax concave penalty (MCP) [72]. For example, MCP
with parameters b and v for some scaler ¢ is given below

¢2 bl/2
Pu(9) = tip|<bw (V|¢ — o ) TUelsee | 5 ) (5)
where, tx denotes the indicator function for convex set X, which is defined as
tx(y) =0, wheny € X, 1x(y) = oo, otherwise. (6)

Notice that P,(II) in problem is an element-wise operator over all entries of matrix II.
One particular characterization for these nonconvex penalties is that they can be decomposed
as a sum of an fj-norm function (i.e. for z € RY, ||z||; = Zfil |z;|) and a concave function
qv(x) as Pu(¢) = v|¢| + g (¢) for some v > 0. In a recent work [26], it is shown that with high
probability, every first-order stationary solution of problem (denoted as II ) is of high-quality.
See |26 Theorem 3] for detailed description. In order to deal with the Fantope and the nonconvex
regularizer separately, one can introduce a new variable ¢ and reformulate problem in the
following manner [68]

. ~ k B
min (X, II)+ P, (D) st. ITeF* II—-&d=0. (7)

Clearly this is a special case of problem (T]), with « = [II, 9], f(z) = <§, Y+, (P), h(z) = ||,
X=Fk A=1I,-1),b=0.

The exact consensus problem over networks. Consider a network which consists of IV agents
who collectively optimize the following problem

N
min f(y) +h(y) = > _ (fi(y) + hi(y)) . (8)

€R
Y i=1

where f;(y) : R — R is a smooth function, and h;(y) : R — R is a convex, possibly nonsmooth
regularizer (here y is assumed to be scalar for ease of presentation). Note that both f; and h; are
only accessible by agent 4. In particular, each local loss function f; can represent: 1) a mini-batch of
(possibly nonconvex) loss functions modeling data fidelity [4]; 2) nonconvex activation functions of
neural networks [1]; 3) nonconvex utility functions used in applications such as resource allocation
[11]. The regularization function h; usually takes the following forms: 1) convex regularizers such as
nonsmooth ¢ or smooth ¢ functions; 2) the indicator function for closed convex set X, i.e. the v x
function defined in @ This problem has found applications in various domains such as distributed
statistical learning [52], distributed consensus [67], distributed communication networking [46\74],
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distributed and parallel machine learning [22}/35] and distributed signal processing [63}(74]; for
more applications we refer the readers to a recent survey [24].

To integrate the structure of the network into problem , we assume that the agents are
connected through a network defined by an undirected, connected graph G = {V, £}, with |[V| =N
vertices and €| = F edges. For agent i € V the neighborhood set is defined as N; := {j €
V s.t. (i,7) € £}. Each agent can only communicate with its neighbors, and it is responsible for
optimizing one component function f; regularized by h;. Define the incidence matrix A € RFXN
as following: if e € £ and it connects vertex ¢ and j with ¢ > j, then A, =1if v =14, Ao, = —1if
v =j and A, = 0 otherwise. Using this definition, the signed graph Laplacian matriz L_ is given
by L_ := ATA € RV*¥ Introducing N new variables z; as the local copy of the global variable

y, and define x := [x1;--- ;2n] € RV, problem can be equivalently expressed as
N
i h = i\Z; hz i)) s 4. Az =0. 9
nin f(z) + h(z) ;(f(a?)Jr (i), st Az (9)

This problem is precisely original problem with correspondence X = RV, b = 0, f(x) :=
S, filwi), and h(z) = YL, ha(w:).

For this problem, let us see how the proposed PProx-PDA can be applied. The first observation
is that choosing the scaling matrix B is critical because the appropriate choice of B ensures that
problem is decomposable over different variables (or variable blocks), thus the PProx-PDA
algorithm can be performed fully distributedly. Let us define the signless incidence matriz B := |A],
where A is the signed incidence matrix defined above, and the absolute value is taken for each
component of A. Using this choice of B, we have BTB = L, € R¥*¥ which is the signless
graph Laplacian whose (4,%)th diagonal entry is the degree of node i, and its (i, j)th entry is 1 if
e =(i,7) € £, and 0 otherwise. Further, let us set p = 8. Then z-update step becomes

N
2" 1= arg min { Z(Vfl(a?:),xz — 2"y 4 (1 = py)N", Az — b) + pazT Dz — prL+xT},

i=1

where D := diag[dy,--- ,dx] € RV*Y is the diagonal degree matrix, with d; denoting the degree
of node i. Clearly this problem is separable over the variable z; for all i = 1,2,--- | N. To perform
this update, each agent i only requires local information as well as information from its neighbors
N;. This is because D is a diagonal matrix and the structure of the matrix LT ensures that the
ith block vector of LTz is only related to z7, where j € N;.

The partial consensus problem. In the previous application, the agents are required to reach
exact consensus, and such constraint is imposed through Az = 0 in @D In practice, however, con-
sensus is rarely required exactly, for example due to potential disturbances in network communi-
cation; see detailed discussion in [42]. Further, in applications ranging from distributed estimation
to rare event detection, the data obtained by the agents, such as harmful algal blooms, network
activities, and local temperature, often exhibit distinctive spatial structure [15]. The distributed
problem in these settings can be best formulated by using certain partial consensus model in which
the local variables of an agent are only required to be close to those of its neighbors. To model
such a partial consensus constraint, we denote £ as the permissible tolerance for e = (4,j) € &,
and define the link variable z, = x; — x;. Then we replace the strict consensus constraint z, = 0
with —& < [ze]x < &, where [2.]r denotes the kth entry of vector z. (for the sake of simplicity we
assume that the permissible tolerance £ is identical for all e € £). Setting

z:={zeteccand Z :={z | |[ze)k| <€V ee€ &, VE}

the partial consensus problem can be formulated as

N
I;lizn Z(fl(xl)—l—hl(xz)) st. Ar—2=0, z€ Z, (10)

=1

which is again a special case of problem .



Perturbed Proximal Primal Dual Algorithm for Nonconvex Nonsmooth Optimization 5

1.4 Literature Review and Contribution.
1.4.1 Literature on Related Algorithms.

The Augmented Lagrangian (AL) method, also known as the methods of multipliers, is pioneered
by Hestenes [34] and Powell [59]. It is a classical algorithm for solving nonconvex smooth con-
strained problems and its convergence is guaranteed under rather week assumptions [7}21,58]. A
modified version of AL has been develped by Rockafellar in [61], in which a proximal term has
been added to the objective function in order to make it strongly convex in each iteration. Later
Wright [40] specialized this algorithm to the linear programming problem. Many existing packages
such as LANCELOT are implemented based on AL method. Recently, due to the need to solve
very large scale nonlinear optimization problems, the AL and its variants regain their popularity.
For example, in [16] a line search AL method has been proposed for solving problem with h =0
and X = {z; | <z <wu}. Also reference |13] has developed an AL based algorithm for nonconvex
nonsmooth optimization, where subgradients of the augmented Lagrangian are used in the primal
update. When the problem is convex, smooth and the constraints are linear, Lan and Monterio [44]
have analyzed the iteration complexity for the AL method. More specifically, the authors analyzed
the total number of Nesterov’s optimal iterations [57] that are required to reach high quality
primal-dual solutions. Subsequently, Liu et al [48] proposed an inexact AL (IAL) algorithm which
only requires an e—approximated solution for the primal subproblem at each iteration. Hong et
al |35] proposed a proximal primal-dual algorithm (Prox-PDA), an AL-based method mainly used
to solve smooth and unconstrained distributed nonconvex problem [by unconstrained we refer to
the problem @ with h; = 0 and X € RY; however, the consensus constraint Az = 0 is always
imposed]. Another AL based algorithm, which is called ALADIN (38|, is designed for nonconvex
smooth optimization problem with coupled affine constraints in distributed setting. In ALADIN
the objective function is separable over different nodes and the loss function is assumed to be
twice differentiable. To implement ALADIN a fusion center is needed in the network to propagate
global variable to the agents. A comprehensive survey about AL-based methods in both convex
and nonconvex setting can be found in [33] Overall, the AL based methods often require sophis-
ticated stepsize selection, and an accurate oracle for solving the primal problem. Further, they
cannot deal with problems that have both nonsmooth regularizer h(z) and a general convex con-
straint. Therefore, it is not straightforward to apply these methods to problems such as distributed
learning and high-dimensional sparse subspace estimation mentioned in the previous subsection.

Recently, the alternating direction method of multipliers (ADMM), a variant of the AL, has
gained popularity for decomposing large-scale nonsmooth optimization problems |12]. The method
originates in early 1970s [23,)25], and has since been studied extensively [9,/18,/36]. The main
strength of this algorithm is that it is capable of decomposing a large problem into a series of small
and simple subproblems, therefore making the overall algorithm scalable and easy to implement.
However, unlike the AL method, the ADMM is designed for convex problems, despite its good
numerical performance in nonconvex problems such as the nonnegative matrix factorization [66],
phase retrieval [70], distributed clustering [22], tensor decomposition [47] and so on. Only very
recently, researchers have begun to rigorously investigate the convergence of ADMM (to first-
order stationary solutions) for nonocnvex problems. Zhang [73] have analyzed a class of splitting
algorithms (which includes the ADMM as a special case) for a very special class of nonconvex
quadratic problems. Ames and Hong in [2] have developed an analysis for ADMM for certain ¢y
penalized problem arising in high-dimensional discriminant analysis. Other works along this line
include [31137,[45./53] and [69]; See Table 1 in [69] for a comparison of the conditions required for
these works. Despite the recent progress, it appears that the aforementioned works still pose very
restrictive assumptions on the problem types in order to achieve convergence. For example it is
not clear whether the ADMM can be used for the distributed nonconvex optimization problem
@D over an arbitrary connected graph with regularizers and constraints, despite the fact that for
convex problem such application is popular, and the resulting algorithms are efficient.
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1.4.2 Literature on Applications.

The sparse subspace estimation problem formulations and have been first considered
in [17,/68] and subsequently considered in [26]. The work [68] proposes a semidefinite convex
optimization problem to estimate principal subspace of a population matrix X based on a sample
covariance matrix. The authors of [26] further show that by utilizing nonconvex regularizers it
is possible to significantly improve the estimation accuracy for a given number of data points.
However, the algorithm considered in [26] is not guaranteed to reach any stationary solutions.

The consensus problem and @[) have been studied extensively in the literature when the
objective functions are all convex; see for example [6[49}/54}/55/65]. Without assuming convexity
of fi’s, the literature has been very scant; see recent developments in [10,[29}/37,/50]. However,
all of these recent results require that the nonsmooth terms h;’s, if present, have to be identical
for all agents in the network. This assumption is unnecessarily strong and it defeats the purpose
of distributed consensus since global information about the objective function has to be shared
among the agents. Further, in the nonconvex setting we are not aware of any existing distributed
algorithm with convergence guarantee that can deal with the more practical problem with
partial consensus.

1.4.3 Contributions of This work.

In this paper we develop an AL-based algorithm, named the perturbed proximal primal dual
algorithm (PProx-PDA), for the challenging linearly constrained nonconvex nonsmooth problem
. The proposed method, listed in Algorithm 1, is of Uzawa type [41] and it has very simple update
rule. Tt is a single-loop algorithm that alternates between a primal (scaled) proximal gradient
descent step, and an (approximate) dual gradient ascent step. Further, by appropriately selecting
the scaling matrix in the primal step, the variables can be easily updated in parallel. These features
make the algorithm attractive for applications such as the high-dimensional subspace estimation
and the distributed learning problems discussed in Section [1.3

One distinctive feature of the PProx-PDA is the use of a novel perturbation scheme for both the
primal and dual steps, which is designed to ensure a number of asymptotic convergence and rate
of convergence properties (to approximate first-order stationary solutions). Specifically, we show
that when certain perturbation parameter remains constant across the iterations, the algorithm
converges globally sublinearly to the set of approximate first-order stationary solutions. Further,
when the perturbation parameter diminishes to zero with appropriate rate, the algorithm converges
to the set of exact first-order stationary solutions. To the best of our knowledge, the proposed
algorithm represents one of the first first-order methods with convergence and rate of convergence
guarantees (to certain approximate stationary solutions) for problems in the form of .

Notation. We use || - ||, || - |l1, and || - ||# to denote the Euclidean norm, ¢;-norm, and Frobenius
norm respectively. For given vector x, and matrix H, we denote ||z||% := 2T Hz. For two vectors a,
b we use (a, b) to denote their inner product. We use opax(A) to denote the maximum eigenvalue
for a matrix A. We use Iy to denote an N x N identity matrix. For a nonsmooth convex function
h(z), Oh(z) denotes the subdifferential set defined by

Oh(x) = {v € RN h(x) > h(y) + (v,x —y) Vy e RV L. (11)

For a convex function h(x) and a constant « > 0 the proximity operator is defined as below

1
prox}ll/a(x) := argmin {m|x —z|* + h(z)} . (12)
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2 Convergence Analysis of PProx-PDA

In this section we provide the convergence analysis for PProx-PDA presented in Algorithm [1} We
will frequently use the following identity

(b,b—a) = 3 (Ib—alP + bl]> — lal]?) (13)
Also, for the notation simplicity we define
w” = (2" —2") — (2" — 2", (14)
To proceed, let us make the following blanket assumptions on problem .

Assumptions A.

A1. The gradient of function f(x) is Lipschitz-continuous on X i.e., there exists L > 0 such that
IVi(@) =Vl < Llz—yl, VayeX (15)

Further, without loss of generality, assume that f(z) > 0 for all x € X.

A2. The function h(z) is nonsmooth lower semi-continuous convex function, lower bounded (for
simplicity we assume h(x) > 0, V 2 € X), and its subgradient is bounded.

A3. The problem is feasible.

A4. The feasible set X is a convex and compact set.

A5. The scaling matrix B is chosen such that A”A + BTB = I.

Our first lemma characterizes the relationship between the primal and dual variables for two
consecutive iterations.

Lemma 1 Under Assumptions A, the following holds true for PProx-PDA

1-— X X .
It = X2 4 S o — a7
2 2
1—
<IN - e =0 e
L L
T L | L R NP DR, (16)

2 2

Proof. From the optimality condition of the xz-update in we obtain
(Vf(z") + ATN (1 = py) + pAT (Aa"+1 —b)
+BBTB(z"™ —a") + & 2™ — 1) <0, Ve X, (17)
for some £"+1 € Oh(2"t1). Using the dual update rule we obtain
(V") + ATA™ 4 BT B(2™ ! —2") + ¢ 2™ — 1) <0, Vo € X. (18)
Using this equation for r — 1, we have
(Vi + ATA" 4+ BBTB(a" — 2" V) + ¢, 2" —2) <0, Vz € X, (19)

for some £" € Oh(a™). Let x = 2" in the first inequality and x = 2" in the second, we can then
add the resulting inequalities to obtain

<Vf((L'T) _ Vf(xr—l)’xr-l-l _ ;UT> + <AT(>\T+1 _ )\r)’xr-',-l i LUT>
+ 5<BTBwr,xr+1 —aTy < (€ — grl gt 2" <0 (20)

where in the first inequality we used equation to obtain
NN = ATX (1 — py) + pAT (Az"™ —b) + ATATH(1 — py) + pAT (Az" — b);
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In the last inequality we have utilized the convexity of h. Now let us analyze each term in .
For the first term we have the following:

(Vf(a"™1) = Vf(z"), 2™ —a") i\\vf(wr’l) = V@I + %le’"“ —a"||?

2

S %er o l,r71||2 4 %“:L’T+1 o l,r||2
L L
= Slla” = a2+ e = a2, (21)

where in the first inequality we applied Young’s inequality for a > 0, the second inequality is due
to the Lipschitz continuity of the gradient of function f, and in the last equality we set @ = L.
For the second term in which is (AT (A" — A7), 2"+ — 27} we have the following series

of equalities

<AT()\T+1 _ /\r)7xr+1 _ l,r> — <A(1,r+1 _ zr)’)\r+1 _ /\r>

— ((AQTT-H —_bh— ,y/\r) _ (Amr —_bh— ,y)\r—l)7)\7'+1 _ )\r> =+ 7()\7" _ )\7‘—17)\7“-',-1 _ )\7’>

@o), @) 1 /1 r - r e

B 2 (2 ) (et = P = o - ¥

AT =) - (- AH)P) AT AT, (22)
For the term 3(BT Bw",z"+t! — 2"), we have

@ s -
BB B o4 = o) © L (et = am ey — o — 2 B+ e )

B . .o
> C (o = a7 — a7 = 2" ) (23
Therefore, combining — , we obtain the desired result in . Q.E.D.

Next we analyze the behavior of the primal iterations. Towards this end, let us define the
following new quantity

T(w,\) = (@) + h(z) + (1= py)A Az = b— 1A + £l| Az —b|]%. (24)

Note that this quantity is identical to the augmented Lagrangian when v = 0. It is constructed to
track the behavior of the algorithm. Even though function f is not convex, below we prove that
T(x,\) + §||:1: — a"||%r 5 is strongly convex with modulus 8 — L when p > 8, and 8 > L. First
let us define g(z, A\;2") = T(x, \) — h(x) + ng — 2"||%r 5, which is a smooth function. For this
function we have

Vg(z, A;a") = Vg(y, A;z")

= (Vf(z) = Vf(y) + pATA(x — y) + BBTB(z — y),x — y)

> (Vf(x) = V(y),z —y) +BATA+ B B)l|lz — y||?

> —L|jz —y|* + B(AT A+ BT B)[|lz —y|®

> (8- L)|lz —yl%, (25)
where the first inequality is true because p > (3, in the second inequality we used the Lipschitz
continuity of V£, and the last inequality is true because we assumed that A” A + BT B > I. This
proves that function g(z, A; ") is strongly convex with modulus f — L when 8 > L. Since h(z) is
assumed to be convex we immediately conclude that T'(z, A) + ng — 2" ||%1  is strongly convex

with modulus 8 — L.
The next lemma analyzes the change of T in two successive iterations of the algorithm.
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Lemma 2 Suppose that § > 3L and p > . Then we have the following

1—
T(gjr+1,/\r+1) + ( p7)7||>\r+1H2

2
royr L—p9)7 ) \r L—py)(@2—py r r
< 13+ S (BB v
P
~3L
_(523) 27 — 272, V>0, (26)

Proof. It is easy to see that if 3 > 3L, then the change of = results in the reduction of T

T(z" T \") = T(z", \")
i)
<AV + €+ (1= pn) ATN + pAT (Az™ —b) + BT B(a"*! — a7),

: : - L
$7+1—$7>—6 5 er-&-l_xr||2

(ii) 8- 3L . .
< (55E) -, (27)

where (i) is true because from we know that when 3 > 3L, p >  and ATA+ BTB > I, the
function T'(z, ) + ng — a"||gr g is strongly convex with modulus 8 — L; (ii) is true due to the
optimality condition for xz-subproblem, and the assumption that f(z) is gradient Lipschitz
continuous . Second, let us analyze T'(x" T \"1) — T'(2"T1 A") as the following

—~

T2 AT — 72"t A7) (28)
=1 —=py) (N =X, Az — b — A7) — (1= py)(FA™FT =97, A7)

(B N(E) Loyr r r r r r
ELED (1 ) (Sr+t = W24 JONTP = 12 = I - X))

Combining the previous two steps, we obtain the desired inequality in . Q.E.D.
Comparing the results of Lemmas |l{and Lemma |2 from we can observe that term %(% —

AL = N7 |12 + gHm”‘l —a"||%r 5 is descending in [\t — \7||? and ascending in |lz" Tt — 2" |2,
while from (26]) we can see that T'(z" 1, \7+1) + w | A"*1]|? is behaving in an opposite manner.
Therefore, let us define the following potential function P, as a conic combination of these two
terms such that it is descending in each iteration. For some ¢ > 0

1—
Pc($r+l,)\r+l;1’r, )\r) = T(errl,)\rJrl) 4 ( 2P’Y)’Y||>\T+1”2
C

1—
+ 5 (LI W 4 Bl = g + Ll a2 (20)

Then according to the previous two lemmas, one can conclude that there are constants a1, as, such
that

PC(CET+1, )\7‘-&-1;1,7'7 )\7) _ PC(Z'T, )\T'; xr—17 /\T'—l)

< —ar [N = AP — agfla™ - a7, (30)
where a; = ((1 —py)3 ey — 17;”), and ay = (&TP’L — cL). Therefore, we can verify that in

order to make the function P. decrease, it is sufficient to ensure that

1—py

y
(1=py)5 +ey—

5 >0, and 8 > (3 +2¢)L. (31)
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Therefore a sufficient condition is that
1
T:=py € (0,1), c>;—1>0, B> (@B+2c)L, p>p. (32)

From the discussion here we can see the necessity for having perturbation parameter v > 0. In
particular, if 7 = 0 the constant in front of the |A\"*! — A"||2 would be L, which is always positive.
Therefore, it is difficult to construct a potential function that has descent on the dual variable.

Next, let us show that the potential function P. is lower bounded, when choosing particular
parameters given in Lemma [2}

Lemma 3 Suppose Assumptions A are satisfied, and the algorithm parameters are chosen accord-
ing to . Then the following statement holds true

JP st P(z" T NTL2" A)>P > 00, Vr>0. (33)

Proof. First, we analyze terms related to T'(z" ™%, A\"*1). The inner product term in can be

bounded as
<>\r+1 _ p,y/\r+1’Axr+1 —_bh— ,YAT+1>

@1/ 1=py . . . .
© 3 <p = (L= o)y ) (N2 = AP+ AT = A7)

(1_/)7)2 r r r T
= TUM FHPZ = T2 4 I = XT)12). (34)

Clearly, the constant in front of the above equality is positive. Taking a sum over R iterations of
T(z" T, A"+, we obtain

iT(er,)\rH zR: ( 2 4 bz g”Aer -~ sz)
r=1 r=1
+ 22”)2 (X2 = A2 + Z A= A 2)
>3 (F@ ) +h@ ) + L Ae — b)) + (12;’”2<||AR+”— IA1)
r=1
> _a 257) L2, (35)

where the last inequality comes from the fact that f and h are both assumed to be lower bounded
by 0. Since A! is bounded, if follows that the sum of the T'(-,) function is lower bounded. From
[B5) we conclude that 2% | P.(z7+1, Am+1: 27 A™) is also lower bounded by — & | AL]|? for any
R, because besides the term Y27 (2", A™+1), the rest of the terms are all posmve. Combined

with the fact that P, is nonincreasing we conclude that the potential function is lower bounded,
that is we have

(1= 12
P>————|N\"
P> S (36)
This proves the claim. Q.E.D.

To present the main result on the convergence of the PProx-PDA, we need the following notion
of approximate stationary solutions for problem .
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Definition 1 Stationary solution. Consider problem . Given € > 0, the tuple (z*, \*) is an
e-stationary solution if the following holds

|[Az* —b||2 <€, (Vf(a*)+ATN +€ 2" —2) <0, VacX, (37)
where z* € X and &* is some vector that satisfies £* € dh(x™*).

We note that the e-stationary solution slightly violates the constraint || Az —b|| = 0. This definition
is closely related to the approximate KKT (AKKT) condition in the existing literature [3/19,/27].
It can be verified that when X = R¥, and h = 0, then the condition in satisfies the stopping
criteria for reaching AKKT condition Eq. (9)-(11) in [3]. We refer the readers to [3, Section 3.1]
for detailed discussion of the relationship between AKKT and KKT conditions.

We show below that by appropriately choosing the algorithm parameters, the PProx-PDA
converges to the set of approximate stationary solutions.

Theorem 1 Suppose Assumptions A hold. Further assume that the parameters «y, p, B3, ¢ satisfy
(132). For any given € > 0, the following is true for the sequence (z",\") generated by the PProx-
PDA

— We have that {z"} and {\"} are bounded, and that
NN 50, 2" —2" —0.

— Let (z*,\*) denote any limit point of the sequence (x",\"). Then (x*,\*) is a (2| *||?)-
stationary solution of problem ,

Proof. Using the fact that set X is a compact set we conclude that the sequence {z"} is

bounded. Further, combining the bound given in with the fact that the potential function P.
is decreasing and lower bounded, we have

N\ 50, 2" —2"— 0. (38)

Also, from the dual update equation we have \"T1 — \" = p (Axr"’l —b— 7)@). Combining
with A"t — A" — 0 we can see that {\"} is also bounded. This proves the first part.

In order to prove the second part let (z*, \*) be any limit point of the sequence (", \"). From
we have N1 — \" = p(Az"T! — b — 4\"). Then combining this with we obtain

Az* —b—~4\" =0. (39)

Thus, we have ||Az* — b||2 < 42||\*||?; which proves the first inequality in (37).

To show the boundedness of the sequences, first note that X has been assumed to be a convex
and compact set, it follows that {z"} is bounded. To show the boundedness of {A"}, note that
(Bb]) also suggests that

(1= py) N FH = N7) = p(Az"*" —b) — pyA"+! (40)

From the boundedness of "™ and A1 — A", we conclude that \"*! is bounded.
To show the second part, from the optimality condition of we have
(V@) + ATA(1 = py) + pAT (Ax"*! — b) + BB B(z"' —2"), 2" —x)
<tz —a2™ Ve X, (41)
From the convexity of function h we have that for all # € X it holds that ("t x — 2™t1) <

h(x)—h(z"*'). Plugging this inequality into (4I), using the update equation and rearranging
the terms we obtain

R(x™) + (Vf(2") + ATN T 4+ BBTB(2" ! — 2™, 2™ — 2) < h(x), V x € X. (42)
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Further, adding and subtracting ™ in "7 — z, and bny utilizing relation , we can get
M) 4 (V)7 =)+ (0 A £ DB — )
< h(@) + (VF(), 2~ 27} + (N A) + 0 B — o), Vo € X.

Let (z*,\*) be a limit point for the sequence {z"+1, \"*1}. Passing limit, and using the fact that
2"t — 2" — 0, we have

h(@®) + (A", Az™) < h(z) +(Vf(2"),x —2%) + (A", Az) + gIIB(x —2)|* Ve X

The above inequality suggests that © = x* achieves the optimality for the right hand side. In
particular, we have

¥ =argmin h(z) +(Vf(z*),z — ") + (\*, Az) + §||B(x — )2 (43)

zeX

The optimality of the above problem becomes
(V") + AT N ¢ 2" —2) <0, Vo eX, (44)
for some &* € Oh(z*). Q.E.D.

2.1 The Choice of Perturbation Parameter

In this section, we discuss how to obtain e-stationary solution. First, note that Theorem [I]indicates
that if the sequence {\"} is bounded, and the bound is independent of the choice of parameters
v, p, B, ¢, then one can choose v = O(y/€) to reach an e-optimal solution. Such boundedness of
A* can be ensured by assuming certain constraint qualification (CQ) at (z*, A*); see a related
discussion in the Appendix. In the rest of this section, we take an alternative approach to argue e-
stationary solution. Our general strategy is to let % and v proportional to the accuracy parameter
€, while keeping 7 = py € (0,1) and ¢ fixed to some e-independent constants.
Let us define the following constants for problem

dy = max{[|[Az = b|* |z € X}, dp =max{]|z —y|* |2,y € X},

45
dy = max{||z — y|%rp | 2,y € X}, dy=max{f(z)+h(z)|z € X}. (45)
The lemma below provides a parameter independent bound for £|| Az’ — b||?.
Lemma 4 Suppose \° =0, Az = b, p > B3, and B — 3L > 0. Then we have
3L
Lt —bl? <di, Sllet - a0 < da+ S (46)

Proof. From Lemma [2} and use the choice of 2 and \°, we obtain

1— ~3L
T(xl,)\l)+( 2/’7)7”)\1H2+/5 23 |2t — 2|2
1—-py v
<T@+ (222 - T ) ) IV

Utilizing the definition of T'(x, A) and (34)), we obtain

Y
Tt X = ft) + ') + EELE 2 4 L st )

T(x%, A% = f(2°) + h(z?).
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Combining the above, we obtain

B—3L

1_ .02
. 2

[

L—py (A=) p
(- = 22 EE2D Y e g Last - o+

< T, \%) - f(&") - h(a")

By simple calculation we can show that ((1 —pY)y — 1_% + %) = 0. By using the assump-
tion f(x') >0, h(z') > 0, it follows that
- 3L
P2 O < dy, DA’ bl < di. (47)
This leads to the desired claim. Q.E.D.

Combining Lemma M| with dual update , we can conclude that
1 p
— A7 = S|l Azt —b|]? < da. 4
35X = BlAst bl <, (48)

Next, we derive an upper bound for the initial potential function P.(x!, A'; 2% A\%). Assuming that
Az =b, \° = 0, we have

Pt A2, 00 B rt A (- PW);W +¢/p) A2

C
+ 5 (Bla" = a"rp + Li* —a°I)

©9.69 1— py)?
R e P

1L —py)(v+¢/p) ¢
$ L=l e 4 € (gt = 00130 + e’ — 7))
3L
< 2420 —-p)*+ (1= py)(c+py)] da+ g (20maX(BTB)(d4 + 7dz) + Ld2>
= P? (49)

It is important to note that P2 does not depend on p, v, 8 individually, but only on py and ¢, both
of which can be chosen as absolute constants. The next lemma bounds the size of || A\"+1[2.

Lemma 5 Suppose that (p,~,3) are chosen according to , and the assumptions in Lemma
hold true. Then the following holds true for all v > 0

1—
W2 e < o, (50)

Proof. We use induction to prove the lemma. The initial step r = 0 is clearly true. In the

inductive step we assume that

y(1 —m)|
2

Using the fact that the potential function is decreasing (cf. ), we have

N2 < PY for some 7 > 1. (51)

P.(z" 1 AT g™ \T) < Po(zt, A 20, \0) < PO, (52)

Combining with , and use the definition of P, function in , we obtain

1—py)?% o, . YA = p7) | yr
CS 2 st = vy + 2852 e < (53)
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If [|A"*]] — |A"|| > 0, then we have

&

1- 1- 1—py)? 1
7( p7)|‘>\r+1||2 S ’7( p’7)||>\r+1||2 + ( p’Y) (H)\r-',-IHZ _ ||)\TH2) S PO

2 2 2 ¢
If A" — |A"|| < 0, then we have

1-— 1-—
W2 ety < T e < o,

where the second inequality comes from the induction assumption . This concludes the proof
of . Q.E.D.
From Lemma [5, and the fact that py =7 € (0,1), we have

A2 < %PS, Vr>0. (54)
Therefore, we get
2|2 < 2Pf&7 for all 7 >0 . (55)
Also note that p and 5 should satisfy , restated below
T:=py € (0,1), c>%—1>0, B>B+2)L, p>p. (56)

Combining the above results, we have the following corollary about the choice of parameters to
achieve e-stationary solution.

Corollary 1 Consider the following choices of algorithm parameters.

1 1 1
'y—min{e,ﬁ}, p—QmaX{ﬁ,e}, B8>T7L, c=2. (57)
Further suppose Assumptions A are satisfied, and that Az® = b, A\’ = 0. Then the sequence of
dual variables {\"} lies in a bounded set, and \"*1 — X', a1 — 2", Further, every limit point
generated by the PProz-PDA algorithm is an e-stationary solution.

Proof. Using the parameters in , we have the following relation

L gl
T = = -
=5 1%

where the first equation is true regardless of whether or not € > 1/8. Then we can bound P by
the following

3L
P)=[2+42(1—py)* + (1= py)(c+py)] da + g(Zomax(BTB)(M + 5 d2) + Ldy)
< (6 4 20max (BT B))dy + (30 max(BTB)L + L)ds.
Therefore using we conclude

2N < 2P31L < 4((6 + 20max (BT B))dy + (30max(BTB)L + L)ds)e.
—py

Note that the constant in front of € is not dependent on algorithm parameters. This implies that
YA L2 = O(e). Q.E.D.
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Remark 1 First, in the above result, the e-stationary solution is obtained by imposing the addi-
tional assumption that the initial solution is feasible for the linear constraint (i.e., Az" = b), and
that A’ = 0. Admittedly, obtaining a feasible initial solution could be challenging, but for problems
such as distributed optimization @D and subspace estimation , finding feasible 20 is relatively
easy. For the former case either the agents can agree on a trivial solution (such as z; = z; = 0),
or they can run an average consensus based algorithm such as [67] to reach consensus. For the
latter case one can just set II = @ = 0. Second, the penalty parameter could be large because
it is inversely proportional to the accuracy. Having a large penalty parameter at the beginning
can make the algorithm progress slowly. In practice one can start with a smaller p and gradually
increase it until reaching the predefined threshold. Following this idea, in the next section we
will design an algorithm that allows p to increase unboundedly, such that in the limit the exact
first-order stationary solution can be obtained.

2.2 Convergence Rate Analysis

In this subsection we briefly discuss the convergence rate of the algorithm.

To begin with, assume that parameters are chosen according to , and Axz® = b, \° = 0. Also
we will choose 1/p and v proportional to certain accuracy parameter, while keeping 7 = py € (0,1)
and c fixed to some absolute constants. To proceed, let us define the following quantities

H(a", ') o= f(a") + h(a") + (N, Az — b), (58a)
Glam, \T) = [VH " A + %IIAT“ T (58D)
Q" \") = [V H(" AP + [ Az” — b|, (58¢)

where VH (2", \") is the proximal gradient defined as

VH(a" ') = 2" — proxl,, o, [+~ %V(H(xr, M) = ha))] . (59)
It can be checked that Q(z",\") — 0 if and only if a stationary solution for problem is
obtained. Therefore we say that an f-stationary solution is obtained if @Q(z",\") < 6. Note that
the #-stationary solution has been used in [37] for characterizing the rate for ADMM method.
Compared with the e-stationary solution defined in Definition 1, its progress is easier to quantify.
Using the definition of proximity operator, the optimality condition of the z-subproblem can
be equivalently written as

2 = proxgﬂ(x) [x”l - %[Vf(mr) + ATX 4 3BT B (2"t — wr)]] :

By using the non-expansiveness of the prox operator, we obtain the following

2

v royr r r 1 To\T T
IVH (z", \")||? = ||z —prox§+L(X) [Jc — BV[H(m JAT) = h(x )]}
1
= ||zt = prongr,,(X) |:.%'T+1 _ B [Vf(.’lir) + AT\t + ﬁBTB(CL'T+1 _ 1,7")]:|
1 2
—z"+ proxf_ﬂ(x) [azr - BV[H(J:T, A") — h(wr)ﬂ

T T 4 T s T T
< 22" — 2" + @IIAT(A =P+ 4 - BYB) (@ — 2|

PN , , 40 max (AT A
< (24402, (BTB))|lz" ! —2"||* + 5(2)

max

H)\r+1 _ )\T‘HQ,
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where in the last inequality we define B := I — BT B. Therefore,

G(z", A7) < by AL = A2 4 bp 2" — 7|2, (60)
where b = %&AT‘A) + ;712’ and by = 2 + 40§1aX(BT§) are positive constants. Combining
with the descent estimate for the potential function P, given in , we obtain

G(a", \") SV [Pe(a”, A5 1 AT = Po(a™ AT, A0 (61)
where we have defined
o max(bl, bg)
~ min(ay,az)’

and one can check that V' is in the order of O(1/7) because a; is in the order of ~; cf. . From
part 1 of Theorem [1| and equation we conclude that G(2",A\") — 0. Let R denote the first
time that G(z"+1, A\"*1) reaches below a given number § > 0. Summing both sides of over R
iterations, and utilizing the fact that P, is lower bounded by P, it follows that

0 V(PO 1 A=p0)? | y\1)2 0 2
V(PY —P) B V(P! + M 1P) @ V(P + (1 - 7)%dy)
0 < < <
- R - R - R
where dy is given in ([45)), and P? is given in (49)). Note that G"*! < 6 implies that 1/p?||\" ! —
A2 = || Az — b —4A"||2 < 6. From (50)) we have that

| 2P
||’y)\r+1|| < ﬁ, Vr>0.

It follows that

e A PP RV B
p —-py
It follows that whenever G(z", A") < 6 we have
2
Q(z", \") == |[VH(z", \")||* 4 || Az" — b]|* < 6 + (\/§+ 12]_3“9;/) . (62)

Let us pick the parameters such that they satisfy , , and the following
2Pco'y _ 2Pcofy _

l—py 1-7

Then whenever G(z",\") < 6, we have Q" < 56. It follows that the total number of iterations it
takes for Q(z", A\") to reach below 56 is given by

RSV(PC()+(1—T)2d4) :(9(1), (63)

0 62
where the last relation holds because V' is in the order of O( %), ~ is chosen in the order of O(6),
and P%,d4 and 7 are not dependent on the problem accuracy. The result below summarizes our
discussion.

Corollary 2 Suppose that Az° = b and \° = 0. Additionally, for a given 6 > 0, and 7 € (0,1),
choose v, p,c, B as follows
0(1—r7) T 1
’}/Zw, p:;, C>;—1, pZﬂ andﬁ>(3—|—20)L

Let R denote the first time that Q" reaches below 56. Then we have R = O (9%)
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3 An Algorithm with Increasing Accuracy

So far we have shown that PProx-PDA converges to the set of approzimate stationary solutions
by properly choosing the problem parameters. The inaccuracy of the algorithm can be attributed
to the use of perturbation parameter . Is it possible to gradually reduce the perturbation so that
asymptotically the algorithm reaches the ezact stationary solutions? Is it possible to avoid using
very large penalty parameter p at the beginning of the algorithm? This section designs an algorithm
that addresses these questions. We consider a modified algorithm in which the parameters (p, 5,7)
are iteration-dependent. In particular, we choose p"+1, 371 and 1/4" ! to be increasing sequences.
The new algorithm, named PProx-PDA with increasing accuracy (PProx-PDA-IA), is listed in
Algorithm [2| Below we analyze the convergence of the new algorithm. Besides assuming that

Algorithm 2: PProx-PDA with increasing accuracy (PProx-PDA-TA)
Initialize: \° and 2°
Repeat: update variables by

271 = arg min {<Vf(x’")7x — ")+ hw) + (1= Iy AT, Az — b)
S

pr+1 ) 6T+1 12
R I P (612
AT = (1 — pr gt AT 4 pr T (Agm Ll —p) (64b)

Until Convergence.

the optimization problem under consideration satisfies Assumptions A, we make the following
additional assumptions:
Assumptions B

B1. Assume that

Py =7 €(0,1), for some fixed constant .

B2. The sequence {p"} satisfies

— 1 — 1

r+1 _ r41 ro_

P = 00, g W—oo, E (pT+1)2<oo,p —p" =D >0,
r=1 1

r=

for some D > 0. A simple choice of p" 1 is p™*1 = r+1. Similarly, the sequence {y" "'} satisfies

T T T - T S T 2
Y =" <0, v 50, Y T =00, Y (4" < o0 (65)
r=1 r=1
B3. Assume that
o> 1st. B =cop™™t, for r large enough. (66)

B4. There exists A > 0 such that for every r > 0 we have |\"|| < A.

We note that Assumption [B4] is somewhat restrictive because it is dependent on the iterates.
In the Appendix we will show that such an assumption can be satisfied under some additional
regularity conditions about problem (T)). We choose to state [B4] here to avoid lengthy discussion
on those regularity conditions before the main convergence analysis.
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The main idea of the proof is similar to that of Theorem [I] We first construct certain po-
tential function and show that with appropriate choices of algorithm parameters, it will decrease
eventually.

Similar to Lemma (] our first step utilizes the optimality condition of two consecutive iterates
to analyze the change of the primal and dual differences.

Lemma 6 Suppose that the Assumptions A and [B1]-[B3] hold true, and that T, D, are constants
defined in assumption B. Then for large enough r, there exists constant Cy such that

%IIN‘+1 R ;(Z:: — DI+ %IW“ — " g

+ %\W“ —a"|Brp

< S - x4 FCE - DI+ E e - e

e e L

Lo+ DL +25r+1||BTB||> 27 = o ey — 2 e (67)

Proof. Suppose that "1 € Oh(x"1). From the optimality condition for z-subproblem (64a]) we
have for all 2 € dom(h)

(Vf(x") + ATATTE 4 grHi BT B (gt — g7) 4 €7 o7t — ) < 0.
Performing the above inequality for the (r — 1)th iteration, we have
(V") + ATN + 8" BTB(z" — 2" V) + €™, 2" —x) <0, V x € dom(h).

Plugging in « = z” in the first inequality, z = 2"t in the second inequality and add them together,
and use the fact that h is convex, we obtain

(Vf(a") = Vfa"™) + AT =)
+ 8 M BTB(a" —2") - B"BTB(a" — 2" 1), 2" —2") <0. (68)

Let us analyze the above inequality term by term. First, using Young’s inequality and the assump-
tion that f is L-smooth i.e. we have

L L
(V@) = Vf@n),a™ —a") < Slla™ =" +

“Naer _ r—1)2
5 A |

g2

Second, note that we have
<AT()\r+1 _ )\T),.’ET-H _ xr> _ <)\r+1 _ )\T,A(QTT-H _ mr»
_ <>\7‘+1 o )\T,AIL‘T+1 o b o ,yr+1)\r + ,_y’r‘Jrl)\r +,y'r)\r71 o ,y'r)\rfl _ AI‘T 4 b>

)\r+1 —\" 2\ — /\r—l
l' <Ar+1 _ )\r’ pr+1 + ,yr—&-l)\r _ ,yr)\r—l _ pr >
_ i )\r-‘rl —\ )\7‘-1-1 AT — (N — )\r—l 1 _ i )\T+1 —\" 2
- pr< ) ( )> + pr+1 ,OT || H

4 <)\7'+1 _ )\7'7>\7' _ )\7‘—1>,yr 4 <)\T'+1 _ >\T7)\T>(’7T+1 _ 77)

@ 1 1 r r r r r— r r r r—
!2(¢,—7)(||A+1—A|2—||A SN [N AT — (7 AP
1 1
r r4+1 T2 r4+1 T2
U +(pr+1—pr) I
1

+ 5O = A AN = XTI = AT = A7)
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Summarizing, we have

o ’)/T) (”)\r+1 o )\7‘”2 o H>‘T o )\r71||2)

DO =
|-

<AT(>\T+1 o )\r)’l,rJrl o

8
<
vV

+

(T =AU = IAT))

1
AR IPGE Y

)
=)
+
—

hS
3

IE
e

=) (I = AP = )
(3 =X A7)

1 1 - -
= (3= 5) 0 =) - X

+

+
N = N =~ N

—

|

| —

+

2

3

+

Third, notice that

<ﬁr+1BTB(xr+1 _ xr) _ ﬂTBTB(IT _ xr71)7xr+1 _ xr>

(57— Bl — " yr o (2 = e — o = 0™ Py + 0 W)
et L [P AR, I PP A T
Therefore, from the above three steps, we can bound by
R L L L e i
<UD - x4 36 =N IP + e = o e
F 20" =R = (3 — = ) = )INH = X e — a?
T A Gl BT [P\ R i W (69)
Multiplying p" on both sides, we obtain
Eo s v 2 — e+ E o — o
+ #”1‘7“4»1 _ xT‘”Q
< S - x4 Ll - o+ E e - e
T Il G R U TNy
L = [P B -
+ (BTH)(P;H —p") ||$r+1 _ xr”zBTB + L(PH; —p") er+1 _ xrnz _ %HwTHQBTB.

where we have used the following fact

0> pr B ,OT B pr pr—i-l 1 - pr+1 .
- pr+2 p'r‘+1 - pr+1 pr+2 — pr+2 :
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Further, by Assumption B we have p"! —p" = D, also we have [|z" ! —a"||%, , < || BT B||[|2" ! —
2"||2. Therefore, we reach

%H)‘TH TP+ ;(Z:: SN2 4 %Hxﬂrl — 2" %
s

< S5 - x4 FE - DI+ E e - e
# e = ar e = Gt e SO ey
L Lo+ DL +2/3r+1uBTBH> I 2 @Wm, (70)

where the last inequality is true using the following relations:

— To bound the term 7" t2 — 471 — (471 — 47) we have

+2 +1 +1 . T T T T
i O —vr)—<pr+2—pr+1—pr+1+pr)
B pr+2 _ pr _ 27_D2

prpr+lpr+2 - prpr+lpr+2 .

Thus there exists a constant C7 such that

IOT r r r r Ch (7T+1)2
7(7+2_7+1_(7+1_7 ))Si
2 2
— For large enough r
D(2 —
T 2 ( 7"+1T)
0
The proof of the lemma is complete. Q.E.D.

Now let us analyze the behavior of T'(z, A) which is originally defined in in order to bound
the descent of the primal variable. In this case, because T is also a function of p and 7 (which is
also time varying), we denote it as T'(z, A; p, ).

Lemma 7 Suppose that the Assumptions Assumptions A and [B1]-[B3] hold true, T and D are
constants defined in Assumption B. Then we have

42 r+2\2
' T T T ’y D’y r r
T ) 4 (= D - 200 e ) e
T o\T r ’YT+1 D ,77"-&-1 2
A T (R e e S IPA
131
_ (ﬁ 5 )”mr+1 _erQ

1 ’YT+1 D(,yr+1)2
+(1=7) <pr+1 T Taeaog
+ (1 - 7)(7r+1 B 7r+2) ||/\r+1H2 _|_ D(7T+2>2
2 2
(v = ()2 +112
DI .

) ||)\r+1 _ /\rH2

I

_|_
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Proof. Following the same analysis as in ], we have that the T function has the following

descent when only changing the primal variable

/Iv(x'r'-‘rl7 )\7';p7'+17,y7'+1) _ T(.,L,T" )\7'; p7'+17,y7'+1)

6T+1*3L , .,
(52 - (72)

IN

Second, following , it is easy to verify that

T($T+1, /\r+1; pr+177r+1) _ T(errl7 )\r; pr+1’7r+1)

H)\r-{-l — A" ||2 ’77'+1 r r T r
su—ﬂ( AT = AT A 2)

pr+1 2
H)\r+1 _ )\7‘”2 ,yr-i-l ,yr+2
< - (B2 T - Ty
r+1 r+2 r+1
gl g T gl r r
e e ] 73)

The most involving step is the analysis of the change of T' when the parameters p and v are
changed. We first have the following bound

T(errl )\r+1,pr+2 ,}/r+2)_T(xr+1 )\r+1,pr+1 ,yr+1) (74)
. r+1 2y 1|2 prtt—pr r4+1 72

1—7)(y TIONNTE A A bl
=) =y A

—~

|
—
-

_|_
| I

D
[(A@™H = b) = F A2 = X 4 DA, Aam )

(a) () (@

The term (a) in is given by

D

D T T T T T
5 (A2 = b) — ™A% = e I = AT (75)
The term (b) in is given by
D, 1. - D, .,
=< TN = = (I (76)
2 2
The term (c) in is given by
)\r+1 —\"
D<’}/r+1/\r7A.’ET+1 _ b> — D<’7T+1)\T, pr+1 + ’YT+1)\T>

r+1\2(1y 7|2 (’7r+1)2 r+1)2 r2 r+1 2
= DOy 4+ D= (AT = AT = AT = AT). (77)
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So collecting terms, we have

: . ) . ™+ D(H"?)?2 D :
R e R (CI R i e N
2 2T 2
i r4+1 D r4+1\2 D
<@ ¥y ) 4 () e = PO D) e
2 2T 2
grtt—3L. . . .
— (et -
1 yrH D(’YT—H)Q r41 |2
+(1—T)(pr+1— 5 —&—72(177) [IA"TH = A7l
L—7 1 T2\ 4112 r42y2 D et 2
e Gl | P N Gl R Pl
(GRS S T
+ DI, (79)
The lemma is proved. Q.E.D.

In the next step we construct and estimate the descent of the potential function. For some given
¢ > 0, we construct the following potential function

PI =T (e N p R ) (79)

r+2 r+2\2
g DGy™)* D . -
+ (=0T - 2OE 4 D) e

(L=7) 41 ez TP 412
R G R R Cas N

Br+1pr+1

4 7”$r+1 _ l,r||2 4 &H r+1 _ r||2
9 BTB 5 N7 T llBTB |-

Lemma 8 Suppose that the Assumptions A and [B1]-[B3] hold true, and let 7 and D be the

constants defined in Assumption B. Then for large enough r we have the following for the potential
function P,

prit_pre (B =8L e pr - BT BB )2 — 2"
o < 5 ph—c c x x

T T AT
TN X 4 Dol — D e, (50)

where Dq is a positive constant.

Proof. According to Lemma [6] and Lemma [7} for large enough r we have

B! - 3L
2

T 1 ’YTJrl D(7T+1)2 r+1 |2
_G2_O_ﬂ<ﬁ“_ ) ) IV

177_ r+1 _ r+2 D r4+2\2 r T
_|_( )(72 Y )||/\r+1||2_|_ (72 ) ||/\r+1H2_C/B2p er||2BTB

Pl pr< —( —cLp" —cDL — c/a’”+1|BTB|> [

2 - (2 G2 s
+ DT e g LA 2

From the properties of perturbation parameter 4" given in we can observe that

TS T L —

D D
,errl _ ATH2 < ? r+1_r+2 < . (’YT+1)2~
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Utilizing this result together with the Assumption [B6] related to dual variable A, we obtain the
following relations for large enough r

(1=7)(y" ' =~
2

(L-7)(y+124
27 ’

IXH* < D (82)

Similarly we also have

r+1\2 r+1\2
CC1(7 ) A2 < cCrA(y"™) .

2 2

Moreover, since (y"+1)2 — (y7+2)2 < (y"+1)2, and y"+2 < 4"+, we have

r+1\2 _ r+2\2 DA
D(7 ) 5 (7 ) ||>\7‘+1||2 S 5 (,\/r+1)2
T T
r D r
(R INHE <

)

DLy, (53)

Let us set

D(1-7m)A 1A DA DA

or 2 27 T3
which adds up the constants in front of (7"*1)2 in the above terms. We can therefore bound the
difference of the potential function by

DO =

r41 T 6T+1 —3L r r+1 T r+1 T2
P —PI < — f—ch —c¢DL —c¢f™||B* B ||| — 2"
T 1 ,y7‘+1 D(,yr+1)2 i
_ (1 - _ )\7"-1-1 _ )\7 2
(g-a-n (- + 2L ||
T AT
+ Doy 12 = L |3 (4)

Since (1 —7) (# _ f;l n %TT);) — 0, we can find rg large enough such that for r > 7

1 ,yr+1 D(,yr+1)2 T
— — <
(=) <p7"+1 2 Tar(i-n) 1 (85)

Thus, for r > ry we have

prtt — 3L
Pl pr<— ( —cLp” — cDL — cﬁr+1||BTB||) lz"tt — 27|
T ks T s /Brpr T
— TN = NI+ Doy = E L e (56)
The claim is proved. Q.E.D.
Note that by Assumption B we have that
[ee]
> ()? < o (87)
r=1

Therefore to ensure the potential function decrease eventually, we need to pick the constants in
the following way [note that by (66]), cop™™* = 7]
cop™ Tt — 3L
2

It is clear that if constant ¢ is picked such that

—cLp” — ¢DL — ccop™ || BT BJ| > 0. (88)

co
2(L + || BTB])

Then the above inequality is satisfied for large enough r.
In this step we show that the potential function is lower bounded.

0<c< (89)
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Lemma 9 Suppose that the Assumptions A and [B1]-[B3] hold true, and that the constant c is
chosen such that

1—
0<c< T

(90)

Then the potential function P! defined in is lower bounded.

Proof. Let us rearrange the terms of the potential function
Pr-‘,—l _ T<xr+1 >\T+1_p7‘+2 ,yr+2) (91)
1— D r+2\2 1—7—¢D r+2
+ <( T) (7 ) + ( T ¢ )’Y > ||)\r+1||2

2T 2

5T+1PT+1 LpTJrl

1 2
]
First of all, we note that if we set 0 < ¢ < 15T then the coefficient in front of [[A"*![|? is positive.
Let us analyze T(z" 1, A"+, pr+2 47+2) We have the following
<)\T+1 _ pr-|-2,}/7"-"-2>\7‘—i-17 ALCT+1 _ b _ ,yr+2)\r+l>
1-—7

1—
+e( U5t e+ o7+~ &+

2 2

= pr+1 <)\r+1’)\r+1 _ /\r> 4 (1 _ 7_)<>\T+17,Yr+1>\r _ ,Yr+2/\r+1>
1—
= T_J<AT+1’AT+1 _ /\r> 4 (1 _ T),Yr+1<)\r+17)\r _ )\T+1>
+(1- 7')(77"*1 _ 7T+2)H>‘T+1”2
1—
Z <r+’1r _ (1 _ T),Yr+1> <)\7‘+1,)\7‘+1 _ )\r>
p
1 , , . .
= g (A= TP U = I+ A7 = WP
(1—-7)2, 1 ., 1.,
= T(pr-‘rl AT — pTHA 12). (92)

It follows that the sum > o T'(z" ", X" +1; p"+2 4" +2) is lower bounded. The claim can then be
proved by using a similar argument as in Lemma Q.E.D.

Finally we put all the previous lemmas together to present the main convergence results for
the PProx-PDA-TA.

Theorem 2 Suppose that Assumptions A-B hold true, and that 7, ¢ and D are picked such that
and are satisfied. Then every limit point of the sequence generated by PProz-PDA-IA is
a stationary solution of problem .

Proof. In this proof we pick a special case of B satisfying BT B = I, in order to avoid unnecessarily

complicated notation. The proof is a modification of the classical result in [8, Proposition 3.5].
Combining Lemma [] and Lemma [9} we have

0o 0o

B e —aT P <o, YOI = AP < oo, (93)
r=1 r=1

DB —aT) = (2" — 2" )| < oo (94)
r=1

From we have ™! — A" — 0, which implies that From , we have
(P (Az"™T —b) —7A” — 0. (95)
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Combined with the fact that A" is bounded, and p"*! — 0o, we conclude
Azt — b — 0. (96)
Let (z*, A*) be a limit point of (2" T, A"*1). Comparing the optimality condition of the problem

and the optimality condition of z-subproblem ([644)), in order to argue convergence to stationary
solutions, we need to show

BTttt — 2| — 0. (97)
Next we show such a claim. To proceed, let us define
oL = gl (g — ). (98)
From , it is easy to show that
ot = = 8 @ = 2) = B (@ — 2" = 0. (99)

From the first inequality in 7 we have

oo 1 .
> G [0 Y2 = 0. (100)
r=1

This relation combined with Assumption [B3] implies: lim inf |[o"*1|| = 0.

Let us pass a subsequence K to (2", A") and denote (z*, A*) as its limit point. For notational
simplicity, in the following the index set {r} all belongs to the set . We already know from the
previous argument that liminf, . |[v"*|| = 0. Then it is clear that lim, . [[v""|| = 0 if and
only the following condition is true

lim o™ — 0" =0, Vit>o0. (101)
T—00
Let us construct a new sequence
2T = ATATHL ot (102)

Clearly liminf,_,o, 2" Tt = AT A*, because along the subsequence A" converges to A\*. It is also easy
to show that (101) is true if and only if the following is true

lim ||zt — 2" =0, Vi¢>0. (103)
r—00
Suppose that (103) is not true. Hence there exists an € > 0 such that ||z"| < [|[ATA*|| + ¢/2 for

infinitely many 7, and [[2"*1|| > ||ATA\*|| + €/2 for infinitely many 7. Then there exists an infinite
subset of iteration indices R such that for each r € R, there exits a t(r) such that

12711 < HATA [ + /2, (|27 > [IATA"] +e,

104
JATX| +e/2 < |28 < [[ATN |+, Vr<t<t(r) (104)

Also from the fact that [[v" Tt —v"|| — 0 and |\"T1—=A"|| — 0, we can conclude that [|z" 1 —2"|| — 0.
Therefore, we must have

oy B .
271> 5 + AT, (105)
Let r be large enough such that

[ATX ] = JATAT| < [ AT (" = AN < (106)

PP
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Then we have

[ < JATA| + JATA* || + € < 2(|| AN +€), Vr <t <t(r), (107a)
ol > 40 = AT B e = =SB v <o) o)
e (105 ¢
ol > ll27 = HATX) > 7 = IATN ) - 5 = < (107c)
From the definition of ¢(r) we have that for all » € R the following is true
t(r)—1
= <[ =12 < Dl =< (108)

Next, we make the following simplification that X = R and A = 0 to avoid lengthy discussion.
The subsequent proof holds true for the general case as well, using the same techniques presented
in [64, Theorem 4]. From the optimality condition (68, and with the above simplification, we
obtain

A =2 = V(') - V'), (109)
which implies that

1 = Il < Lila® — 2= = S [jo|. (110)

Bt
Combining this result with (108 m, we obtain
t(r)—1 t(r)—1 1

Z Itll 2L(IIATA I+ Z 7 (111)

Which implies that

t(r)—1

W > & (112)
Using the descent of the potential function we have, for r € R and r large enough
LSO t(r)—1
FEO B <= 3 gl P 30 GO AN
Cs €2

- L 113
S T LA™ £ o) 64 (113)

where the last inequality we have used the fact that
oo
1~ C t+1\2 )\t+1 2 N 0
lim ZI;O (YT IAT2 = 0,
r=

and equations (107b]) and (112]). This means that the potential function goes to —oo, a contradic-
tion. Therefore we conclude that

lim ||zt — 2" =0, V¢>0. (114)
r—00

which further implies that
lim 0" — 0" =0, Vit>o0. (115)
T—>00

Combined with the fact that liminf [[v" || = 0, we conclude that

; r+1)| —
Tim [0 = 0. (116)

We conclude that every limit point of the sequence is a KKT point. Q.E.D.
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4 Numerical Results

In this section, we customize the proposed algorithms to a number of applications in Section [1.3]
and compare with the state-of-the-art algorithms.

4.1 Distributed Nonconvex Quadratic Problem

In this subsection we consider the nonconvex ¢; penalized, nonnegative, sparse principal component

analysis (SPCA) problem [5]. Distributed version of this problem [which is a special case of problem
(1)] can be modeled as below

N

min Y {-z] Ziz; + ol } (117)
i=1

st |lzl* <1, @,>0, i=1- N

Ar =0; Consensus Constraint

where z; € R? for each i; z := {xz}f\]:l stacks all xz;’s, X; € R4*d ig the covariance matrix
for the mini-batch data in node i; o > 0 is a constant that controls the sparsity. Let us define
_ N _ _ _ N - _ _ _

Ti= %> T, MT) = all@y, f(2) = Y,0, 372z, and X := {z; | [|Z]|? < 1, > 0}. The
stationarity gap and the constraint violation for this problem is defined as below

2

staionary-gap = ||z — prox,,, [T — Vf(z)]| . con-vio= ||Az|>. (118)

At this point, one can certainly use Algorithm 1 or Algorithm 2 to solve problem . However,
the resulting x- subproblems for both algorithms are difficult to solve due to the fact that comput-
ing the proximity operator for nonsmooth function af|z([1 4 ¢|z2<1 (%) 4 te>0(z) does not have a
closed form (where ¢ x (x) represents the indicator function for convex set X). On the contrary, the
proximity operators for the individual component functions all have closed-form. To utilize such
a problem structure, we divide the agents into three subsets, each with a distinctive regularizer.
Let us denote r = | N/3]. The new reformulation is given below

2r N

r
. Na
min Z {:L'ZTZEL + = |xz||1} - Z x) Xiw; — | Z x) Y (119)
=1 1=r+1 1=2r+1
s.t. HSC,LHQSI, i:T+1,"',2T
r; 20, i=2r+1,---,N

Ax =0 Consensus Constraint.

To the best of our knowledge, no existing methods for nonconvex distributed optimization can
effectively deal with the above problem (at least not with theoretical convergence guarantee to
stationary solution). The major difficulty is to deal with the agent-specific nonsmooth terms. For
comparison purpose, we consider the DSG algorithm [56], and the NEXT algorithm [50]. In our
numerical result, the graph G is generated based on the scheme proposed in [71]. In this scheme
a random graph with N nodes and radius R is generated with nodes uniformly distributed over a
unit square, and two nodes connect to each other if their distance is less than R. The test problems
are generated in the following manner. The number of agents, the network radius, the problem
dimension, and the sparsity parameter to be N = 20, R = 0.7,d = 10, « = 0.01, respectively. For
PProx-PDA algorithm we set perturbation parameter v = 10~%, and p and 3 are picked such that
they satisfy the theoretical bounds given in . For PProx-PDA-TA we set the increasing penalty
p = 3 = 40r, and decreasing perturbation v = 1072 /r. For the DSG algorithm the stepsize is set
0.1/r (this choice is made so that DSG has the best performance). The parameters for NEXT are
tuned according to the description in [50, Theorem 3|. Each algorithm is run for 20 independents
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trials, with random initialization and randomly generated data. The results are plotted in Fig.
and [2| In the figures, dashed lines with light colors are used to show the performance for each
individual trial, while the solid dark lines are the average performance over all 20 trials. From the
plots it can be observed that the proposed algorithms, especially the increasing stepsize version,
outperform both DSG and NEXT. To see more numerical results we compare different algorithms

1010

1010 T T T T T T
== PProx-PDA constant p —+=PProx-PDA constant p
—e—PProx-PDA-IA p = O(/1) —e—PProx-PDA-IA p = O(y/r)
DSG p=0(1/r) DSG p=0(1/r)
o 105 1 ——-NEXT q . 10° ——-NEXT
S 2
o €3]
= 1}
= 100 5
3 3
3
@)
- 10

L L L L 10-10 L L L L
100 200 300 400 500 0 100 200 300 400 500

Iteration Number Iteration Number

10710
0

Fig. 1: Comparison of proposed algorithms with DSG |56] Fig. 2: Comparison of proposed algorithms with DSG [56|
and NEXT [50] in terms of stationarity gap for problem and NEXT [50] in terms of constraint violation for problem
with parameters N = 20, R = 0.7,d = 10, a = 0.01. [[T9] with parameters N = 20, R = 0.7,d = 10, o = 0.01.

with different problem setups. The algorithms are run for 20 independent trials with randomly
generated data and random initial solutions in each individual trials. All algorithm parameters are
set to be the same as in the previous experiment. The comparison results are displayed in Table
[[] The first column describes the problem parameters including number of agents N, number of
variables n, and the network radius R, while ‘Algl’” and ‘Alg2’ stand for PProx-PDA and PProx-
PDA-IA, respectively. It can be observed that in all scenarios the proposed algorithms outperform
DSG.

Table 1: Comparison of proposed algorithms with DSG algorithm. Algl and Alg2 denote PProx-PDA and PProx-PDA-TA
algorithms respectively.

Stationarity-Gap Cons-Vio
Parameters Algl Alg2 DSG Algl Alg2 DSG
N=5n=80,R=07 19E4 6.0E-5 9.0E-4 6.0E-6 9.5E-7 4.3E-5
N=20,n=15R=0.7 13E-4 5.0E-8 94E-5 1.7E-3 6.8E-6 0.013
N=30,n=20,R=0.5 63E-5 21E8 26E4 7.0E-3 64E-7 0.06
N =40,n=30,R=0.5 2.0E-4 49E-8 1.5E-3 8.1E-3 15E-6 0.05

4.2 Nonconvex subspace estimation

In this subsection we study the problem of sparse subspace estimation . ‘We compare the pro-
posed PProx-PDA and PProx-PDA-IA with the ADMM algorithm proposed in [26, Algorithm
1]. Note that the latter is a heuristic algorithm that does not have convergence guarantee. We
first consider a problem with the number of samples, problem dimension, and MCP parameters
chosen as n = 80, p = 128, v = 3, b = 3, respectively. For PProx-PDA we set perturbation pa-
rameter v = 1074, and p and 3 are chosen to satisfy the theoretical bounds given in . For
PProx-PDA-IA we set increasing penalty p = 3 = 5r, and decreasing perturbation v = 1074 /r.
The data set is generated following the same procedure as in |26]. In particular, we set s = 5 and
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k =1, the leading eigenvalue of its covariance matrix X is set as v; = 100, and its corresponding
eigenvector is sparse such that only the first s = 5 entries are nonzero, and they take the value
1/ V5. The rest of the eigenvalues are set to be 1, and their eigenvectors are chosen arbitrarily.
For all three algorithms we measure the stationarity gap, the constraint violation, the objective
value, and the distance to the global optimal solution (i.e. || II — IT*||). The results, which are from
20 independent trials with random initial solutions, are plotted in Fig. B}-[6] As shown in these
figures, compared to the ADMM algorithm, the PProx-PDA-IA algorithm converges faster, and

to better solutions.

100 T T - . .
10 . . .
:iﬁﬁ;}’ ?f"éA g ——PProx-PDA-TA
102 F —"—ADI\IM p= 2 w02l —e— ADMM p= 5 1
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Fig. 4: Comparison of proposed algorithms with ADMM in
terms of constraint violation || Az||? for nonconvex subspace
estimation problem with MCP Regularization. The solid
lines and dotted lines represent the single performance and
the average performance, respectively.

Fig. 3: Comparison of proposed algorithms with ADMM
in terms of stationarity gap for nonconvex subspace esti-
mation problem with MCP Regularization. The solid lines
and dotted lines represent the single performance and the
average performance, respectively.
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Fig. 5: Comparison of proposed algorithms with ADMM in
terms of Global Error for non-convex subspace estimation
problem with MCP Regularization. The problem parame-
ters are n = 80, p = 128, v = 3, b = 3. The solid lines
and dotted lines represent the single performance and the

Iteration Number

Fig. 6: Comparison of proposed algorithms with ADMM
in terms of objective value for nonconvex subspace esti-
mation problem with MCP Regularization. The solid lines
and dotted lines represent the single performance and the
average performance, respectively.

average performance, respectively.

Our next experiment is designed to see the effect that the problem parameters (i.e. n, p, k, and
s) have on the solution quality. Here, we compare the PProx-PDA-IA [with p = O(r),y = O(1/7)]
with ADMM algorithm with stepsize p = 5. Both algorithms will be run for 200 iterations. In this
experiment we generate data sets with s = 10, k = 5, and vary other problem parameter. For this
dataset the top five eigenvalues are set as \; = --- = Ay = 100 and A5 = 10. To generate their
corresponding eigenvectors we sample its nonzero entries from a standard Gaussian distribution,
and then orthnormalize them while retaining the first s = 10 rows to be nonzero . The rest of
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the eigenvalues are set as A\g = --- = A, = 1, and the associated eigenvectors are chosen arbitrarily.

The results in terms of the error ||IT — IT*| are shown in Table [2| In all scenarios the proposed
algorithm PProx-PDA-IA outperforms ADMM.

Table 2: Comparison of PPox-PDA-IA with ADMM in terms of Global Error ||IT — IT*|| for nonconvex subspace estimation
problem with MCP Regularization.

[T — 1]
Parameters PProx-PDA-TA ADMM

n=30,p=128,k=1,s=5 0.045 £ 0.02 0.052 £ 0.02
n=80,p=128k=1,s=5 0.024 £0.01 0.028 +£0.08
n=120,p=128k=1,s=5 0.020 £ 0.07 0.021 +£0.06
n=150,p=200,k=1,s=5 0.022 £ 0.07 0.022 +0.07
n=280,p=128,k=1,5s =10 0.048 +0.01 0.062 £ 0.01
n=280,p=128,k=5,5s =10 0.21 +0.05 0.29 4+ 0.02
n=128,p=128,k=5,5s =10 0.18 +0.02 0.25 4+ 0.02
n="70,p=128k=5,s=10 0.26 + 0.03 0.33 +£0.03

Further, the True Positive Rate (TPR) and False Positive Rate (FPR) [39] are measured and
the results are displayed in Table [3| to see the recovery results. For this problem the event of being
zero in vector v = |supp(diag(I]))| (here I denotes the output of the algorithm) is considered as
. Let P denotes the number of positives, and S denotes the number of non-zeros in the ground
truth vector denoted by IT*. Further, let us use FP and TP to denote false positive and true
positive respectively. In particular, F'P counts the number of positive events (i.e. zeros in our case)
in vector IT which are nonzero in ground truth vector I7*. In contrast, TP counts the number of
zeros in IT which are true zeros in IT*. Given these notations, the FPR and T PR are defined as
follows

FP TP
FPR= -, TPR= . (120)

In terms of T PR both algorithms work perfectly well. However, PProx-PDA-TA gets lower FPR
compare to the ADMM algorithm.

Table 3: Recovery results for PPox-PDA-IA and ADMM in terms of TPR and FPR.

TPR FPR
Parameters PProx-PDA-TA  ADMM  PProx-PDA-TA ADMM
n=30,p=128k=1,s=5 1.0+0.0 1.0+0.0 0.00 £ 0.00 0.00 £ 0.00
n=80,p=128k=1,s=5 1.0£+0.0 1.04+0.0 0.00 £ 0.00 0.00 £ 0.00
n=120,p=128k=1,s=5 1.0£0.0 1.0£0.0 0.00 £ 0.00 0.00 £ 0.00
n=150,p=200,k=1,s=5 1.0£0.0 1.0+0.0 0.00 £ 0.00 0.00 £ 0.00
n=2380,p=128,k=1,s =10 1.0+0.0 1.0£0.0 0.00 £ 0.00 0.00 £ 0.00
n=280,p=128,k =5, =10 1.0£+0.0 1.04+0.0 0.53 £ 0.03 0.56 £ 0.04
n=128,p =128,k =5,5s =10 1.0£0.0 1.0£+0.0 0.57 £0.01 0.59 £ 0.02
n="70,p=128,k=5,5s =10 1.0£0.0 1.0£0.0 0.53 £0.05 0.54 +0.01

4.3 Partial Consensus

The partial consensus optimization problem has been introduced in . As stated in the intro-
duction, we are not aware of any existing algorithm that is able to perform nonconvex partial
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consensus optimization with guaranteed performance. Let us consider regularized logistic regres-
sion problem [4] in a network with N nodes, in mini-bach setup i.e. each node stores b (batch size)
data points, and each component function is given by

b M QA2
1 T Bawi,k
filxi) = N [j;log(l + exp(—yijr; vij)) + ]; 15 a2, @xik]’

where v;; € RM and yij € {1, —1} are the feature vector and the label for the jth date point in
i-th agent, & and B are the regularization parameters [4].

We set N =20, M = 10, b = 100, B =0.01, @& =1, and £ = 0.001. The graph G is generated
similar to the problem in subsection The PProx-PDA and PProx-PDA-TA algorithms are
implemented for the above problem. Both algorithms stop after 1000 iterations, and we measure
the averaged performance over 20 trials, where in each trial the data matrix and the initial solutions
are generated randomly independent. In Fig. [7] the stationarity gap for the problem has been
plotted. It can be observed that the gap is vanishing as the algorithm proceeds, and it appears that
PProx-PDA-IA is faster than PProx-PDA. Fig. [§| displays the constraint violation for the PProx-
PDA algorithm with different tolerance £. It is also interesting to observe that when reducing the
constraint violation error (represented by & > 0), the resulting solution indeed achieves higher
degrees of consensus.

10° : ‘ ——
—+—PProx-PDA p = constant —_C = 10’3
=—PProx-PDA-TIA p = O(r) -O-g = 18’
a — 1051
g 0 g +(=10"°
O 10 =
ey S
e -
g 3
9] 3
= -5 =
= 10 %
n g -
10 -10 . . . v v
0 500 1000 1500 2000 07y 100 200 300 00 500
Iteration Number Tteration Number

Fig. 7: The stationarity gap achieved by the proposed meth- Fig. 8: Constraint Yiolation | A]| achieved.by the proposed
ods for the partial consensus problem. The solid lines and method for the partial consensus problem with different per-
dotted lines represent the single performance and the aver- missible tolerance .

age performance, respectively.

5 Conclusion

In this paper, we proposed a perturbed primal-dual based algorithms for optimizing nonconvex
and linearly constrained problems. The proposed methods are of Uzawa type, in which a primal
gradient descent step is performed followed by an (approximate) dual gradient ascent step. We
performed theoretical convergence analysis, and tested their performance on a number of statis-
tical and engineering applications. In the future, we plan to investigate, both in theory and in
practice, whether the perturbation is necessary for primal-dual type algorithms to reach station-
ary solutions. Further, we plan to extend the proposed algorithms to problems with stochastic
objective functions.

Acknowledgment. The authors would like to thanks Dr. Quanquan Gu who provided us with
the codes to perform the numerical results in [26].
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6 Appendix

In this section, we justify Assumption [B4], which imposes the boundedness of the dual variable.
Throughout this section we will assume that Assumptions A and [B1]-[B3] hold. We present two
situations in which the dual variables are guaranteed to be bounded. First we prove that the
sequence 371zt — 27| is bounded (for large enough r). Using Assumption [B3] we have the
following identity
ﬂr+1pr+1
2

From Lemma [8] we have that [also cf. (93)]

T T (/BT+1)2 T r
o7+ — a2 = o a7 (121)

(oo}
SN - NP < o, (122)
r=1
which implies that
1 - 1.,
ﬁ”/\ +1H2*7H)\ 1> = 0. (123)
P P

Plugging this result into , we conclude that the following inner product is lower bounded

<)\7‘+1 _ pT+27T+2>\T+17 ALUT+1 _ b _ ,}/7"-‘,-2>\7‘-|-1>7

and this further implies that T'(z"+1, A\7T1; p7+2 47+2) is lower bounded [by using the definition of
T function in } By Lemma@ (resp. Lemma, we conclude that the potential function is lower
(resp. upper) bounded. Examine the definition of the potential function in and use the choice
of ¢ in we conclude that except T(x" 1, \"+1: pr+2 ~47+2) " all the rest of the terms are all

nonnegative. Using the lower boundedness of T', we conclude that the term %erﬂ — 7|2
in the potential function is bounded. Therefore, there exists D; such that
B o+ — o7 < Dy (124)

Case 1). In this case, we make use of some constraint qualification to argue the boundedness of
the dual variables. The technique used in the proof is relatively standard, see recent works [19}/51].

Assume that the so-called Robinson’s condition is satisfied for problem at |62, Chap. 3].
This means {Ad,, | d, € Tx(2)} = RM™, where d, is the tangent direction for convex set X, and
Tx (Z) is the tangent cone to the feasible set X at the point #. Utilizing this assumption we prove
that the dual variable is bounded. Now we prove that the dual variable is bounded.

Lemma 10 Suppose the Robinson’s condition holds true for problem . Then the sequence of
dual variable X" generated by (64b)) is bounded.

Proof. Let us argue by contradiction. Suppose that the dual variable is not bounded, i.e.,
[IA"|| = oo. (125)
From the optimality condition of 2"+ we have for all z € X
(VF(a") + €+ 4 AT 4 gr+i BT B+t — 47), & — 27 +1)) > 0.

Note that 7 +1||z"! — 27| is a bounded sequence, so does 8771 BT B(z"*1 — 27). Suppose that
{A"} is not bounded, let us define a new bounded sequence as u” = X" /||A"||. Let (z*, u*) be a limit
point of {z"*1, u"t1}. Assume that the Robinson’s condition holds at *. Dividing both sides of
the above inequality by [[A\""1|| we obtain for all z € X

<Vf(x7")/||)\7“+1” +€T+1/H)\r+1H + ATMT-'FI
+ FHBTB( 2N — 2 2 0.
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Passing limit, and utilizing the assumption that |[A\"*!|| — oo, and that X is a compact set, we
obtain

(AT x—2*) >0,V zeX.

Utilizing the Robinson’s condition, we know that there exists x € X and a scaling constant ¢ > 0
that such ¢(A,x — x*) = —pu*. Therefore we must have pu* = 0. However, this contradicts to the
fact that ||p*|| = 1. Therefore, we conclude that {\"} is a bounded sequence. Q.E.D.

Case 2). In this section, we verify Assumption [B4] by further imposing conditions on the con-
straint set and the nonsmooth terms. Specifically we consider the following problem

K K
min f(x) + h(z) = f(x) + Z hi(xg)  s.t. Z Agxy = b, (126)
(e} k=1 k=1

where hj is a convex nonsmooth term that can include both regularizer and indicator functions
for convex set X. Setting K = 1, the above problem is equivalent to the original problem .
Assumption C. Assume that for one of the block, say k € 1,--- K, the following is satisfied:

Xp = R™. (127)
Note that the second of the above condition is possible for example when hg(zx) = |2k ||, for some
constant ¢ > 1. Further, we assume that the partial gradient of f with respect to zj, denoted by
Vi f(x), is bounded for all z;, € dom (hy), and that Ay has full row rank. |

Given the above assumption, the following lemma characterizes the bound for the dual variable.

Lemma 11 Suppose that the Assumption C holds true. Then the sequence of dual variable A"
generated by (64b]) is bounded.

Proof. First, from the optimality condition of z-update (64a) we have that for all k, and for all
xy, € dom(hy)

(Vif(a") + AL 4 375 BT By — o) + 7 afH — ) <0, (128)

where Vi f(2") denotes the partial derivative of f(z) with respect to the block variable zj at

= 2"; and 5,2“ € Ohy (2™ t1). In particular for the block K because it is unconstrained, we have

0=Vgf(a")+ AR 4+ & + BT B(al !t — a%). (129)
Rearranging terms, we obtain
—ARNT = Vi f(a") + 5+ BB B(al! - o). (130)

From Assumption C we know that theres exists My such that ||V f(z") + &5 || < M. Together
with the previous identity, we get

JARNTHZ < 2MG + 287 | BT B2} — 2| V. (131)

Utilizing the fact that o%||[A"T1[|2 < [|[AZAN"H1||2) where 0% denoted the smallest nonzero eigen-
value of AL Ay, we further have

[\)

NP < =5 (B BT Baf! ! — 23 ||* + DF] - V7 (132)

ok
Here ok > 0 because we have assumed that AL is full column rank in Assumption C. Combining
this with equation (124]) one can find constant A such that [[A\"*1||2 < A. The proof is complete.

Q.E.D.
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Appendix B

We show how the sufficient conditions developed in Appendix A can be applied to problems
discussed in Section We will focus on the sparse subspace estimation problem @ and the
partial consensus problem .

We first show that Assumption C is satisfied for sparse subspace estimation problem . Recall
that for this problem we have two block variables (II,®), and h(®) := [|®| = D27, >7_, [#4]-
It is easy to see that the subdifferential of the ¢; function is bounded in [—1,1]. Then we show
that Vg f(II,®) is bounded where f(II,®) = (X,II) + q,(®), and Vg f(II, ) = Veq,(®). For

the MCP regularization with parameter b, we have ¢, (®) = >7_, ?:1 ¢ (¢ij), and we can check
that where
2 — s
q (¢) _ _;l;j if‘¢ij| < by 86]U(¢l’j) _ % if|¢ij| < by;
Y —v|pij| + % ifow. 0di; —v sign(¢i;) o.w.
This is obviously a bounded function. Finally the matrix Ag = —I has full row rank. In summary,

we have validated all the conditions in Assumption C.

Next we consider the partial consensus problem given in . To proceed, we note that the
Robinson’s condition reduces to the well-known Mangasarian-Fromovitz constraint qualification
(MFCQ) if we set X = RY, and write out explicitly the inequality constraints as g(z) < 0 [62}
Lemma 3.16]. To state the MFCQ, consider the following system

pi(y)=0,i=1,--- M (133)

where p; : RY — R and g; : RY — R are all continuously differentiable functions. For given
feasible solution g let us use A(g) to denote the indices for active inequality constraints, that is

A(@) ={1<j <P | g;(y) =0}. (134)
Let us define

p(y) = [P1(¥);p2(); - spm (W), 9(y) = [91(¥); 92(v); - -+ 59P(Y)]-

Then the MFCQ holds for system (133]) at point ¢ if we have: 1) The rows of Jacobian matrix of
p(y) denoted by Vp(7) are linearly independent. 2) There exists a vector d, € RY such that

Vp(i)dy =0, Vg;(H)"dy <0,V jeA®). (135)

See |62, Lemma 3.17] for more details. Below we show that MFCQ holds true for problem at
any point (z,z) that satisfies z € Z.

Comparing the constraint set of this problem with system we have the following specifi-
cations. The optimization variable y = [z; 2], where z € RY stacks all ; € R from N nodes (here
we assume z; € R only for the ease of presentation). Also, z € RF stacks all z, € R for e € £. The
equality constraint is written as p(y) = [A4, —I]y = 0, where A € RE*N and [ is an E x E identity
matrix. Finally, for the inequality constraint we have g.(y) = |z¢| — &, and the active set is given
by A(y) := A*(y) U A~ (y), where

AT (y) ={ec&|z=¢}, A (y) ={ec&|z=—-¢}

Without loss of generality we assume & = 1. To show that MFCQ holds, consider a solution
9 = (&, 2). First observe that the Jacobian of equality constraint is Vp(§) = [A, —I] which has

full row rank. In order to verify the second condition we need to find a vector d, := [d,;d.] € RN TE
such that
Ady =d,, (136a)
[d.]e <0 forec AT(), (136b)

[d.]e >0 foreec A™(9), (136¢)
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where [d.]. denotes the eth component of vector d.. Let us denote an all-one vector and all-zero
vector by 1 and O respectively. To proceed, let us consider two different cases:
Case 1: For the vector 2 € RF we have 2 # 1 and 2 # —1. Let us take

First we can show that d. € col(A). Note that for our problem when the graph is connected, the
only null space of A (which is the incidence of the graph) is spanned by the vector 1 [14]. Using
this fact, we have 17d, = 271—-172 = 0, therefore, Ad, = d, holds true. Second, for e € A" (j)) we

have that Z, = 1. Therefore, we can check that [d.]. = [£(271)1 — 2]6 < 0, because £(271)1 < 1

from the fact that 2 # 1. Condition (136b|) is verified. Using similar argument we can verify
condition ([136c]).

Case 2: Suppose we have 2 =1 (resp. 2 = —1). Since 2 € null(A) let us set d, =0 and d, = —2
(resp. d, = 2). First we have Ad, = d. Second, for e € AT () we have that [d.]. < 0. Similarly,
we have [d.]. > 0 for e € A~ (7). All conditions (136a)—(136¢) are verified. The above proof shows
that MFCQ holds true for the sequence (z", z") generated by the PProx-PDA algorithm, since in
the algorithm it is always guaranteed that 2" € Z.
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