Protecting DSP Circuits through Obfuscation

Yingjie Lao and Keshab K. Parhi
Department of Electrical and Computer Engineering, University of Minnesota
Minneapolis, MN, USA
Email: {laoxx025, parhi}@umn.edu

Abstract—This paper presents a novel approach to protect
digital signal processing (DSP) circuits through obfuscation by
using high-level transformations. The goal is to design DSP
circuits that are harder to reverse engineer. High-level trans-
formations of iterative data-flow graphs have been exploited
for area-speed-power tradeoffs. This is the first attempt to
develop a design flow to apply high-level transformations that
not only meet these tradeoffs but also simultaneously obfuscate
the architectures both structurally and functionally. Several modes
of operations are introduced for obfuscation where the outputs
are either meaningful from a signal processing point of view, but
functionally incorrect, or non-meaningful. Experimental results
show that the proposed methodology only introduces relatively
small overhead, while a high level of obfuscation is achieved.
For instance, the area overhead for a (3/)th-order IIR filter
benchmark is only 17.7% with a 128-bit configuration key.

I. INTRODUCTION

The problem of hardware security is a serious concern that
has led to a lot of work on hardware prevention of piracy
and intellectual property (IP), which can be broadly classified
into two main categories: 1) authentication-based approach,
or 2) obfuscation-based approach. The authentication-based
approaches include physical unclonable functions (PUFs)
based authentication [1], digital watermarking [2], [3], key-
locking [4], and hardware metering [5]. Obfuscation-based
approach is of interest in this paper, which is a technique
that transforms an application or a design into one that is
functionally equivalent to the original but is significantly
more difficult to reverse engineer. Some hardware protection
methods are achieved by altering the human readability of the
hardware description language (HDL) code, or by encrypt-
ing the source code based on cryptographic techniques [6].
Recently, a number of hardware protection schemes have
been proposed that modify the finite-state machine (FSM)
representations to obfuscate the circuits [7], [8].

However, to the best of our knowledge, no obfuscation-
based IP protection approach has been proposed for DSP
circuits in the literature. This paper, for the first time, presents
design of obfuscated DSP circuits via high-level transforma-
tions that are harder to reverse engineer. From this standpoint
of view, a DSP circuit is more secure, if it is harder for
the adversary to discover its functionality. In other words,
a high level of security is achieved if the functionality of a
DSP circuit is designed to be hidden to the adversary. Our
goal is to design obfuscated circuits by applying high-level
transformations during the design phase. The key idea of the
proposed work is to generate meaningful design variations by
exploiting high-level transformations.

This paper is organized as follows. Section II presents how
these high-level transformation techniques can be used for
structural obfuscation and functional obfuscation. In Section

III, we propose a novel design methodology for DSP circuit
obfuscation via high-level transformations. A case study is
presented in Section IV. Finally, we illustrate the effectiveness
of the proposed design methodology by experimental results
in Section V.

II. OBFUSCATION VIA HIGH-LEVEL TRANSFORMATIONS
A. Hiding Functionality by High-Level Transformations

High-level transformations have been known for a long
time and have been used in a wide range of applications,
such as pipelining [9], interleaving [9], folding [10] and
unfolding [11], and have been used in synthesis of DSP
systems [12]. These techniques can be applied at the algorithm
or the architecture level to achieve a tradeoff among different
metrics of performance, such as area, speed, and power [13].
However, the use of high-level transformations from a security
perspective has not been studied before. In fact, high-level
transformations naturally provide a means to obfuscate DSP
circuits both structurally and functionally. Structural obfusca-
tion and functional obfuscation are defined as follows:

(a) structural obfuscation: achieved by structural modifica-
tion, which is realized by altering the structure of a DSP
circuit by using high-level transformations. This is a
so-called “’passive” technique, which does not directly
affect the functionality of the DSP circuit.

(b) functional obfuscation: achieved by functional modi-
fication, which is realized by encrypting the normal
functionality of a DSP circuit with a key. The DSP
circuit cannot function correctly without the key. This
is an “active” technique, which directly alters the func-
tionality.

High-level transformations alter the structure of a DSP cir-
cuit, while maintaining the original functionality. For instance,
different folding sets lead to a family of folded architectures;
this can be exploited for structural obfuscation. As a result,
circuits with the same functionality may have very different
structures. Furthermore, high-level transformations may lead
to architectures whose functionalities are not obvious. Take
an extreme case for example, many filters can be folded into
one multiply-accumulator (MAC), but their functionalities are
not the same. In other words, one MAC with proper switches
can implement many digital filters. It is important to note
this kind of structural obfuscation can be applied beyond
the architecture level. For example, at the HDL level or the
gate-level netlist, high-level transformations can also lead to
an obfuscated version of a DSP circuit. Therefore, circuits
with different functionalities could have a similar structure by
employing high-level transformations. Comparing the folded
structures (a) and (b) in Figure 1, it can be observed that

the two structures are exactly the same, except the switch
instances. However, their functionalities are different, i.e., the
former implements a lst-order IIR filter, while the latter a
2nd-order IIR filter. In conclusion, if the switch instances are
invisible to the adversary, the DSP systems will be hard to
reverse engineer. The adversary who only has knowledge of
the structural information but lacks knowledge of the switch
instances cannot easily discover the functionality of a DSP
circuit [14].

@ :

(b)

Fig. 1: (a) Folded 1st-order IR filter: S={A, B, (), 0} (b) Folded 2nd-
order IIR filter: S={A, B, C, D}. The switch instance " corresponds
to clock cycle 41 + i.

B. Design of Secure Switch

The DSP circuits can be obfuscated via high-level transfor-
mations by appropriately designing the switches in a secure
manner, which are often modeled as FSMs. Indeed, existing
works have demonstrated that functional obfuscation can be
achieved by embedding a well-hidden FSM (i.e., obfuscating
FSM) in the circuit to control the functionality based on
a key [8], [15]. In contrast to these existing methods, we
propose a novel functional obfuscation scheme along with
structural obfuscation by using high-level transformations,
which improves the security of DSP circuits by providing a
two-level protection.

The detailed implementation is shown in Figure 2. Note that
other secure switch designs, whose detailed switch instances
are hidden to the adversary, can also be adopted in the frame-
work. We employ the idea of hardware design obfuscation
as an activation sequence required before configuration. A
reconfigurator is introduced to control the output function G,
next-state function F, and the initial state Sy. At the beginning
of a successful configuration, the reset signal will be generated
to reset the initial state of the FSM. At the same time, the
output function and the next-state function are reconfigured
based on the signals from the reconfigurator. In our design, the
operation of the secure switch is determined by a configuration
key, which consists of two parts: an L-bit initialization key and
a K-bit configure data. The initialization key is used as the
input of the obfuscating FSM, while the configure data are
applied to the reconfigurator to control the operation of the
switches. As the configuration of the switch is only enabled
after receiving a correct initialization key, hostile attempts of
the configure data can be avoided by the obfuscating FSM.

III. DESIGN FLOW OF THE PROPOSED DSP CIRCUIT
OBFUSCATION APPROACH

A. Design Methodology

In this section, we propose a novel DSP hardware protection
methodology through obfuscation by hiding functionality via
high-level transformations. This approach helps the designer
to protect the DSP design against piracy by controlling the
circuit configuration among the generated variation modes

connection 1 —»| vr
connection 2 —# U |(switeh instances)

X
select
signal

connection k —|

Reconfigurator ‘

configuration FSM
key

J: ObfuscatingE L

Fig. 2: Proposed secure switch design.

of the original design. The detailed design flow is described
below:

Step 1: DSP algorithm. This step generates the DSP
algorithm based on the DSP application.

Step 2: High-level transformation selection. Based on
the specific application, appropriate high-level transformation
should be chosen according to the performance requirement
(e.g., area, speed, power or energy).

Step 3: Obfuscation via high-level transformation. Se-
lected high-level transformations are applied simultaneously
with obfuscation where variation modes, and different config-
urations of the switch instances are designed.

Step 4: Secure switch design. The secure switch is
designed based on the variations of high-level transformations.
Note that different configure data could be mapped into the
same mode, which only involves simple combinational logic
synthesis.

Step 5: Two-level FSM generation. The reconfigurator and
the obfuscating FSM are incorporated into the DSP design as
shown in Figure 2. The configuration key is generated at this
step.

Step 6: Design specification. This step includes the HDL
and netlist generation and synthesis of the DSP system.

The proposed design methodology does not require signif-
icant changes to established verification and testing flows. In
fact, the obfuscated DSP circuit with the correct key behaves
just like the original circuit.

B. Architecture of the Proposed Obfuscated DSP Circuit

The complete system of the proposed obfuscated DSP cir-
cuit is illustrated in Figure 3. The DSP circuits are obfuscated
by introducing a FSM whose state is controlled by a key. The
FSM enables a reconfigurator that configures the functionality
mode of the DSP circuit. High-level transformations lead to
many equivalent circuits and all these create ambiguity in the
structural level. High-level transformations also allow design
of circuits using same datapath but different control circuits.
For example, a datapath may implement a 3rd-order or a 6th-
order digital filter, or in general a (3/)th-order filter, where [is
a positive integer. These correspond to different modes. While
these modes generate outputs that are functionally incorrect,
these may represent correct outputs under different situations,
since the output is meaningful from a signal processing point
of view. Finally, other modes lead to non-meaningful outputs.
The initialization key and the configure data must be known for
the circuit to work properly. Consequently, the circuit behaves
as an obfuscated circuit.

The obfuscating FSM and a portion of non-meaningful
variation modes (i.e., we denote as alarm modes) can both be
utilized for security check purpose. If the circuit continuously
receives wrong initialization key or configure data, the adver-
sary is prevented from further attempts of the configuration
key by the permanent denial of use block.

DSP
Algorithm/

e L. Application
Initialization Configure

key data

| y
Yes & Proposed Design
Correct?

o
Meaningful
¥d
Correct? Obfuscated
| Permanent Designs
Denial of

on-Meaningful
Obfuscated
Designs

Use

Obfuscated Designs
Obtained by High-

ILevel Transformations|

Fig. 3: Architecture of the proposed obfuscated DSP circuit.

IV. A CASE STUDY: HIERARCHICAL CONTIGUOUS
FOLDING ALGORITHM

The variation modes are generated based on the selected
transformation algorithm, which are different for various high-
level transformations. It is difficult to cover very large number
of existing high-level transformations in this paper. We just
present an example in this paper for demonstration. The
proposed design methodology can also be extended to other
high-level transformations.

Hierarchical folding approach is a novel folding technique
that combines folding of M cascaded stages to one hardware
block, and folding N operations inside each section to a
hardware functional unit. Two hierarchical folding algorithms
are presented in [16], which include hierarchical interleaved
folding (HIF) and hierarchical contiguous folding (HCF). In
this paper, we only address hierarchical contiguous folding,
while it is also applicable to hierarchical interleaved folding.
Hierarchical contiguous folding transformation executes all
operations of one section before starting execution of oper-
ations of next section. The details are referred to [16].

We propose a design obfuscation algorithm for generating
variation modes by varying the number of sections in the
cascade structure based on the HCF algorithm. For example,
if the number of sections for a DSP system is [, then the
algorithm can be described as (the total number of operations
is still NM, where M > [):

Design Obfuscation Algorithm based on the HCF Algorithm

1) Fold Alg® by factor N M, with the folding set
{Xo, X1, ...Xn_1,0,0,...0}, where the number of null
operations corresponds to (NM — N).

2) Replace each switch instance s by s,s+ N,s+2N,...s+
(I—1)N, and assign switch instances from [N to M N —
1 to null operations.

3) Compute Dp(Alg? 5 Alg/th), for j = 0,1,2...1 — 2,
and use these folded edges to replace the external inputs.

It | = M, this algorithm reduces to the hierarchical
contiguous folding algorithm. From this algorithm, we can
generate M/ meaningful modes correspond to [= 1,2, ..., M.
Furthermore, the reconfigurator can also be designed based on
the variations of the HCF algorithm, which is a simple 2K _to-
M combinational logic design problem. Figures 1(a) and 1(b)
illustrate examples of two variation modes generated by this
modified obfuscation algorithm with a parameter M/ = 2. Note
that this algorithm can be easily extended to other types of
DSP systems where the sub-circuits are not directly connected.

V. EVALUATION OF THE PROPOSED METHODOLOGY

Component overhead of the proposed obfuscation design
includes: (a) additional control logic of switches, (b) recon-
figurator, and (c) obfuscating FSM. These additional circuits
only affect the switches of an obfuscated DSP circuit. In this
paper, we present the area overhead results of the proposed
obfuscating methodology for two DSP benchmark circuits:
(3D)th-order IIR filter and (12])-tap FIR filter. All circuits were
synthesized using Synopsys Design Compiler with optimiza-
tion parameters set for minimum area and mapped to a 65
nm standard cell library. We employ the design obfuscation
algorithm based on the HCF algorithm to obfuscate the
circuits. In our experiments, the (3/)th-order IIR filter is folded
to 1 multiplier and 1 adder, while the (12[)-tap FIR filter is
folded to 3 multiply-accumulators.

We take the (3!)th-order IIR filter benchmark as an example
to illustrate the obfuscated design approach. Here, one section
of the (30)th-order IIR filter is a 3rd-order IIR filter as shown
in Figure 4. We assume the desired functionality is an 18th-
order IIR filter realized as a cascade of six 3rd-order IIR filter.
In our experiment, the proposed design obfuscation algorithm
based on the HCF algorithm is applied to the original 18th-
order IIR filter to obfuscate this DSP circuit. In order to
generate 8 meaningful variation modes, the parameters M = 8
and N = 4 are used to the structure with 6 sections of 3rd-
order IIR filter (i.e., the original 18th-order IIR filter) and 2
additional sections of null operations. The switch instances
of this folded design are periodic with period 32. The 8
meaningful modes correspond to (3/)th-order IIR filter where
l=1,2,...,8, respectively. 8 non-meaningful variation modes
are also incorporated. Each secure switch is controlled by
the reconfigurator independently. Figure 5 shows an example
of the switch connected to the input of the multiplier in the
obfuscated design. This switch has 5 possible input paths, as
the null operations are also integrated to the switches. Finally,
an obfuscating FSM is also added into the secure switch design
to provide the second-level protection of the obfuscated DSP
circuit.

We present the area overhead for the two DSP circuit
benchmarks as shown in Table I and Table II, respectively. The
overhead percentages are computed based on the folded de-
signs instead of the original circuits. The results are averaged
area overheads over a number of different implementations.
For certain lengths of initialization key and configure data,
the patterns of the state transition graph in the design of
obfuscating FSM and the input-output mappings in the design
of reconfigurator would also affect the design overhead of the
proposed obfuscated DSP circuit.

>
>

y(n)

u(n)
5

D]

M, M;

L

Fig. 4: A 3rd-order IIR filter.
e

M,

As

select signal -t
9]

0 @%@»@

Fig. 5: The obfuscated design of the original 18th-order IIR filter.

It can be seen from Tables I and II that the overall overhead
is about 17.7% for the (3l)th-order IIR filter with a 128-
bit (64+64) configuration key, while the overhead is only
about 7.1% for the (12)-tap FIR filter also with a 128-
bit configuration key. In the meanwhile, a high level of
obfuscation is achieved, as the chance for an adversary to enter
the DSP circuit into the desired mode is only ﬁ = 21% =
2.94 x 1073, Note that these two DSP circuit benchmarks
are both small circuits. In practice, as the DSP circuits are
more complex, the overhead percentage would be even smaller.
Moreover, when we compare the effects between L and K, it
can be seen that the overhead increases more significantly with
the increase of L. Thus, in order to achieve lower overhead, we
should employ a longer configure data in designing obfuscated
DSP circuits when the total length of the configuration key is
bounded.

Discussion. As this paper is the first attempt to develop
a methodology to obfuscate DSP circuits by utilizing high-

TABLE I: Overhead (%) of the (3l)th-order IIR filter benchmark
L A S O I A !
4 3.8 4.0 4.3 4.8 5.9
8 4.9 5.0 5.4 5.9 6.9
16 6.6 6.7 7.0 7.6 8.7
32 9.7 9.8 10.2 | 10.8 | 11.9
64 154 | 15.7 | 16.0 | 16.6 | 17.7
TABLE II: Overhead (%) of the (120)-tap FIR filter benchmark
K

4 8 16 | 32 | 64

4 16 | 1.7 | 1.8 | 1.9 | 2.1
8 20 | 21 | 22|24 |25
16 28 |29 30|32 |35
32 4.1 | 42 | 43 | 44 | 47
64 6.6 | 6.7 | 68 | 69 | 7.1

L

level transformations, it is hard to compare with other existing
obfuscation methods which are general to a wide variety of
designs. Most of the hardware obfuscation techniques in the
literature can also be applied to DSP circuits. However, the
use of high-level transformations from a security perspective
has not been incorporated into any of these prior hardware
obfuscation techniques. The main advantage of the proposed
methodology is the generation of meaningful variation modes
from a signal processing point of view, since the meaningful
modes create ambiguity to the adversary such that it is
hard for the adversary to distinguish the desired functionality
from other variation modes. While considering the metrics of
the design performance, our proposed methodology is also
superior. Area consumption is only slightly increased as the
additional control logic is only built on the switches, instead
of inserting additional states based on the entire circuit.

ACKNOWLEDGMENT

The authors gratefully acknowledge numerous discussions
on this topic with Prof. Chris Kim.

REFERENCES

[11 G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proceedings of the 44th
annual Design Automation Conference, 2007, pp. 9-14.

[2] D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and J. Cong, “Intellectual
property protection by watermarking combinational logic synthesis
solutions,” in Proceedings of International Conference on Computer
Aided Design (ICCAD), 1998, pp. 194-198.

[3] F. Koushanfar and Y. Alkabani, “Provably secure obfuscation of diverse
watermarks for sequential circuits,” in Proceedings of International
Symposium on Hardware-Oriented Security and Trust (HOST), 2010,
pp. 42-47.

[4] J. A. Roy, F. Koushanfar, and I. Markov, “EPIC: Ending piracy of
integrated circuits,” in Proceedings of Design, Automation and Test in
Europe (DATE), 2008.

[5] Y. M. Alkabani and F. Koushanfar, “Active hardware metering for
intellectual property protection and security,” in Proceedings of the
USENIX Security Symposium, 2007, pp. 1-16.

[6] T. Batra, “Methodology for protection and licensing of HDL IP,”
[Online]. http://www.design-reuse.com/articles/12745, 2005.

[71 R. S. Chakraborty and S. Bhunia, “Hardware protection and authentica-
tion through netlist level obfuscation,” in Proceedings of International
Conference on Computer Aided Design ICCAD, 2008, pp. 674-677.

[8] R. S. Chakraborty and S. Bhunia, “RTL hardware IP protection using
key-based control and data flow obfuscation,” in Proceedings of 23rd
International Conference on VLSI design, 2010, pp. 405-410.

[9] K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving and

parallelism in recursive digital filters, part I: Pipelining using scattered

look-ahead and decomposition,” IEEE Transactions on VLSI systems,

vol. 37(7), pp. 1099-1117, 1989.

K. K. Parhi, C.-Y. Wang, and A. P. Brown, “Synthesis of control circuits

in folded pipelined DSP architectures,” IEEE Journal of Solid State

Circuits, vol. 27, no. 1, pp. 29-43, 1992.

K. K. Parhi and D. G. Messerschmitt, “Static rate-optimal scheduling of

iterative data flow programs via optimum unfolding,” IEEE Transactions

on Computers, vol. 40, no. 2, pp. 178-195, 1991.

C.-Y. Wang and K. K. Parhi, “High-level DSP synthesis using concurrent

transformations, scheduling, and allocation,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 14,

no. 3, pp. 274-295, 1995.

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation. John Wiley and Sons, 1999.

K. K. Parhi, “Verifying equivalence of digital signal processing circuits,”

in Proceedings of Conference on Signals, Systems and Computers

(ASILOMAR), 2012, pp. 99-103.

Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote activation of ICs

for piracy prevention and digital right management,” in Proceedings of

International Conference on Computer-Aided Design (DAC), 2007, pp.

674-677.

K. K. Parhi, “Hierarchical folding and synthesis of iterative data flow

graphs,” IEEE Trans. Circuits and Systems-1I: Transactions Briefs,

vol. 60, no. 9, pp. 597-601, 2013.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

