
Enumeration of Domino Tilings on the Projective Grid Graph

A Thesis

Presented to

The Division of Mathematics and Natural Sciences

Reed College

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Arts

Wyatt K. Alt

May 2013





Approved for the Division
(Mathematics)

Dave Perkinson





Acknowledgements

Tremendous thanks to Dave Perkinson for guidance and advice throughout the process
of writing this thesis, and for suggesting the topic in the first place. Thanks also to
Albyn Jones, Tom Wieting, and Suzy Renn for the shaping influence they have had
on my undergraduate experience. Additional thanks to the rest of the Reed math
faculty, Cathy D’Ambrosia, and the other students in the department. Finally, I am
extremely grateful to my parents for raising and supporting me through college and
life thus far.





Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1: 2× n Recurrence Solution . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Classical Approach . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Classical Approach Applied to the Möbius Grid . . . . . . . . . . . . 21
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Abstract

We provide an overview of Tesler’s [8] findings on the enumeration of perfect matchings on nonorientable surfaces,
and discuss the following theorems and conjectures.

Theorem. The number of domino tilings of the 2× 2k projective plane equals

1. Ck +Ck−1, where Ck is the number of tilings of a 2× (k+1) projective grid with the center four tiles covered.
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3. 2Uk(2) + 2Uk−2(2), where Un(x) is the nth Chebyshev polynomial of the second kind.

Theorem. The number of domino tilings of the 2× (2k + 1) projective plane equals

1. 4Uk(2).
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Theorem. [10] The number of domino tilings of the 2M × 2N Möbius strip equals

M∏
m=1

N∏
n=1

[
4 cos2

(
mπ

2M + 1

)
+ 4 sin2

(
(4n− 1)π

4N

)]
Theorem. The number of domino tilings of the 2M × 2N projective plane can be reduced to the computation of a
skew-Hermitian M ×N matrix.

Conjecture. Every 2M × 2N projective grid can be associated with a sequence of rational numbers that multiplies
to the number of domino tilings. This sequence in turn can be associated with an integer sequence terminating in the
number of tilings.

Conjecture. In the case of the 2×N projective plane, with N even,

1. If the Aitken sequence is taken to start at the final element of the first chunk, the Nth element of the sequence
is Un−1(2).

2. With the exception of the final element, the second chunk of the Aitken list converges to 2 +
√

3.

3. As N increases, the final element of the 2× 2N Aitken list converges to 2 + 2
√

3.

4. As N increases, the final element of the 2n×N Aitken list converges to 2 + 2
√

3.

5. The kth element of the 2n× 2 Aitken sequence is the kth Fibbonacci number.

6. The final element of the Aitken sequence is equal to 2Un−1(2)− 2Un−2(2).

Conjecture. In the case of the 4×N projective plane, when N is even,

1. The N
2

through Nth elements of the Aitken sequence are given by

Uk

(
3

2

)
− Uk−1

(
3

2

)
for k ≥ 1.

2. The kth element of the first chunk of a 4×N Aitken sequence is the number of domino tilings of the 2× 2k
rectangular grid.





Introduction

Problems related to enumerating domino tilings of grids arose in the field of physical
chemistry in the investigation of arrangements of dimer molecules over crystal lattices.
In 1961, P.W. Kastelyn derived

Z2M,2N
Rect =

M∏
m=1

N∏
n=1

[
4 cos2

(
mπ

2M + 1

)
+ 4 cos2

(
nπ

2N + 1

)]

for the number of domino tilings of the 2M×2N rectangular grid [3]. Tesler [8] made
significant contributions to the theory for graphs embedded in more general surfaces
in 1998, and Lu and Wu found solutions for the Möbius strip and Klein bottle in 1999
and 2002 [10, 9]. We attempt to do the same for the projective plane.

Figure 1: The 4× 3 projective plane grid graph.

The graph in Figure 1 is the 4 × 3 projective grid. We refer to the intersecting
edges outside the ordinary grid as crossing edges. Removing the blue set of crossing
edges from the graph leaves a 3× 4 Möbius strip, and removing the black set leaves a
4×3 Möbius strip. Removing both sets yields a rectangular grid. We treat the double
edges on the corners as single edges of weight two, so an alternative representation of
the graph is shown in Figure 2.
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Figure 2: 4× 3 projective plane with double edges

Figure 3 contains pasting maps for the projective plane and Möbius strip, respec-
tively.

Figure 3: Pasting maps for projective plane (left) and Möbius strip (right).

If the sides of the inner rectangle associated with arrows are glued to their oppo-
sites so the arrows match in direction, the corresponding surface is produced. More
generally, pasting maps may be formed from polygons with any number of sides [8].

If the vertices of the graph in Figure 2 were replaced with checkerboard squares, a
domino tiling would be an arrangement of dominoes over the resulting checkerboard
that covers every square and leaves no dominoes overlapping. Naturally, dominoes
would be allowed to straddle the crossing edges.

Domino tilings are also known as perfect matchings. A perfect matching of a graph
is a set of edges that collectively touch every vertex but have no vertices in common.

To be explicit, suppose we wish to describe the perfect matching σ drawn in
Figure 4. The vertices are numbered left-to-right and top-to-bottom, and the four
tiles in the picture are really two “dominoes” wrapping around crossing edges.
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Figure 4: A domino tiling on the 2× 2 projective plane grid graph.

The perfect matching σ can be associated with a permutation in S4:

σ =

(
1 2 3 4
4 3 2 1

)
= (14)(23).

By representing pairs of “covered” vertices as transpositions, it is apparent that
perfect matchings on an M ×N graph are products of disjoint transpositions of ad-
jacent vertices of G in SMN , with no fixed points.

As an aside, since both edges straddled by dominoes in Figure 4 are double edges,
which each represent a choice of two possible edges, this tiling would have weight
2 · 2 = 4 in a full enumeration.

A statement of the problem should now be clear: we wish to enumerate weighted
perfect matchings of the M ×N projective plane grid graph.





Chapter 1

2× n Recurrence Solution

We determine the number of domino tilings of a 2 × n projective grid graph by
evaluating a mutual recurrence relation. The cases of even and odd n are treated
separately in Theorems 1 and 2, respectively.

Definition 1.

The Chebyshev polynomials of the second kind are defined by the recurrence

U0(x) = 1

U1(x) = 2x

Un+1(x) = 2xUn(x)− Un−1(x).

Theorem 1. The number of domino tilings of the 2× 2k projective plane equals

1. Ck +Ck−1, where Ck is the number of tilings of a 2× (k+1) projective grid with
the center four tiles covered.

2.
(

3 + 5
√

3
3

) (
2 +
√

3
)k

+
(

3− 5
√

3
3

) (
2−
√

3
)k

.

3. 2Uk(2) + 2Uk−2(2), where Un(x) is the nth Chebyshev polynomial of the second
kind.

Proof of Theorem 1.1. Let Tn equal the number of tilings of a 2×n projective plane,
where n is even, and define recurrence relations C,D, and F for the possible place-
ments of tiles over the middle four squares, as in Figure 1.1.

In reference to Figure 1.1, it is easy to reason that the fifth case leads to no viable
tilings, so by assigning the labels Cn−2, Dn−2, and Fn−3 to the number of tilings of
the first three cases, we write

Tn = 3Cn−2 + 2Dn−2 + 2Fn−3 + Cn−4 (1.1)

with Tn standing for the number of tilings of the even 2× n projective grid.

Similarly, we derive an expanded recurrence for Cn−k. We start by conditioning
on the placement of a tile over the square marked with an orange dot in the grid
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Figure 1.1: Possible arrangements of dominoes over the center of an even 2 × n
projective plane.

labeled Cn−k in Figure 1.2. The recurrences we have already defined are sufficient to
describe Cn−k.

Figure 1.2: Possible initial tilings of Cn−k.

From this we conclude that

Cn−k = Dn−k + Fn−k−1 +Dn−k−2 + Fn−k−3 + Cn−k−4 . (1.2)

We examine Dn−k and Fn−k−1 by conditioning on the tile placed over the orange dot
in the grids labeled Dn−k and Fn−k−1, and find that both D and F are mutually
recursive with C.
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Figure 1.3: Possible initial tilings of Dn−k and Fn−k−1

Reading from Figure 1.3,

Dn−k = Cn−k−2 +Dn−k−2

and

Fn−k−1 = Cn−k−2 + Fn−k−3.

We define D0 = C0 = 1, as these configurations are already tiled. Solving the two
equations above for Cn−k−2 yields

Cn−k−2 = Dn−k −Dn−k−2 (1.3)

= Fn−k−1 − Fn−k−3,

indicating that the differences between successive terms of D and F are equal.

Now, D2 = 2:

Figure 1.4: Configurations of D2

and F1 = 1:

Figure 1.5: Single configuration of F1
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Since D0 = 1, (1.3) gives us Dk = Fk−1 + 1 for all k > 0. Furthermore,

Dn−k = Cn−k−2 +Dn−k−2

= Cn−k−2 + (Cn−k−4 + (Cn−k−6 + (. . . C2 +D2)) . . . ))

= 1 + Cn−k−2 + (Cn−k−4 + (Cn−k−6 + (. . . C2 + C0)) . . . ))

= 1 +

n
2∑

j= k
2

+1

Cn−2j. (1.4)

Turning to Fn−k−1,

Fn−k−1 =Cn−k−2 + Fn−k−3

=Cn−k−2 + (Cn−k−4 + (Cn−k−6 + (. . . C2 + F1)) . . . )).

Since F1 = C0,

Fn−k−1 =Cn−k−2 + (Cn−k−4 + (Cn−k−6 + (. . . C2 + C0)) . . . ))

=

n
2∑

j= k
2

+1

Cn−2j, (1.5)

as expected.

Making use of the relationship between F and D, we revisit Cn−k:

Cn−k =Dn−k + Fn−k−1 +Dn−k−2 + Fn−k−3 + Cn−k−4

= 2Dn−k + 2Dn−k−2 + Cn−k−4 − 2.

Removing the F terms leaves only even indices, so we adjust by letting k = n−k
2

:

Ck = 2Dk + 2Dk−1 + Ck−2 − 2

= 2
k−1∑
j=0

Cj + 2
k−2∑
j=0

Cj + Ck−2 + 2

= 4
k−2∑
j=0

Cj + 2Ck−1 + Ck−2 + 2. (1.6)

Note that C0 = 1 and C1 = 5:

Figure 1.6: Possible configurations of C1
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Given these starting values, the first ten values in this sequence are

1, 5, 17, 65, 241, 901, 3361, 12545, 46817, 174725.

Searching the Online Encyclopedia of Integer Sequences (OEIS) for this sequence
suggests only that it satisfies the recurrence

an = 3 an−1 + 3 an−2 − an−3. (1.7)

To prove that Ck satisfies the recurrence (1.7), we evaluate the recurrence on (1.6).

K ..= 3Cn−1 + 3Cn−2 − Cn−3

= 3

(
4
k−3∑
j=0

Cj + 2Ck−2 + Ck−3 + 2

)
+ 3

(
4
k−4∑
j=0

Cj + 2Ck−3 + Ck−4 + 2

)

− 4
k−5∑
j=0

Cj − 2Ck−4 − Ck−5 − 2

= 12
k−3∑
j=0

Cj + 6Ck−2 + 9Ck−3 + 12
k−4∑
j=0

Cj + Ck−4

− 4
k−5∑
j=0

Cj − Ck−5 + 10

=

(
4
k−2∑
j=0

Cj + Ck−2 + 2

)
+ 8

k−3∑
j=0

Cj + Ck−2 + 9Ck−3 + 12
k−4∑
j=0

Cj + Ck−4

− 4
k−5∑
j=0

Cj − Ck−5 + 8.

To maintain readability, we note that the parenthesized portion of the expression
above is equal to Ck − 2Ck−1 and proceed to evaluate the non-parenthesized portion
to arrive at 2Ck−1. Let the non-parenthesized portion be called NP:

NP = 8
k−3∑
j=0

Cj + Ck−2 + 9Ck−3 + 12
k−4∑
j=0

Cj + Ck−4 − 4
k−5∑
j=0

Cj − Ck−5 + 8

=

(
4
k−4∑
j=0

Cj + Ck−3 + Ck−4 + 2

)
+ 8

k−3∑
j=0

Cj + Ck−2 + 7Ck−3

+ 8
k−4∑
j=0

Cj − 4
k−5∑
j=0

Cj − Ck−5 + 6.
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The parenthesized expression above is Ck−2, therefore,

NP =Ck−2 + 8
k−3∑
j=0

Cj + Ck−2 + 7Ck−3 + 8
k−4∑
j=0

Cj − 4
k−5∑
j=0

Cj − Ck−5 + 6

=

(
4
k−3∑
j=0

Cj + 2Ck−2 + Ck−3 + 2

)
+ 6Ck−3 + 8

k−4∑
j=0

Cj + 4
k−3∑
j=0

Cj

− 4
k−5∑
j=0

Cj − Ck−5 + 4.

The parenthesized expression above is Ck−1, so

NP =Ck−1 + 6Ck−3 + 8
k−4∑
j=0

Cj + 4
k−3∑
j=0

Cj − 4
k−5∑
j=0

Cj − Ck−5 + 4

=Ck−1 +

(
4
k−3∑
j=0

Cj

)
+

(
8
k−4∑
j=0

Cj + 4Ck−3 + 4

)
+ 2Ck−3 − 4

k−5∑
j=0

Cj − Ck−5.

Expanding 2Ck−3,

=Ck−1 +

(
4
k−3∑
j=0

Cj

)
+

(
8
k−4∑
j=0

Cj + 4Ck−3 + 4

)
+ 2

(
4
k−5∑
j=0

Cj + 2Ck−4 + Ck−5 + 2

)

− 4
k−5∑
j=0

Cj − Ck−5

=Ck−1 +

(
4
k−3∑
j=0

Cj

)
+

(
8
k−4∑
j=0

Cj + 4Ck−3 + 4

)
+ 4

k−5∑
j=0

Cj + 4Ck−4 + Ck−5 + 4

=Ck−1 +

(
4
k−3∑
j=0

Cj

)
+

(
8
k−4∑
j=0

Cj + 4Ck−3 + 2Ck−4 + 4

)
+ Ck−3 + 2

=Ck−1 +

(
4
k−3∑
j=0

Cj + 2Ck−2 + Ck−3 + 2

)
= 2Ck−1.

Since NP is equal to 2Ck−1, K is equal to Ck, and so Ck satisfies (1.7).

Going back to (1.1), keep in mind that the equation applies to a 2 × n projective
grid for even n:

Tn = 3Cn−2 + 2Dn−2 + 2Fn−3 + Cn−4

= 3Cn−2 + 4Dn−2 + Cn−4 − 2,
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by (1.3). With the elimination of F , we reindex for a 2× 2k grid:

Tk = 3Ck−1 + 4Dk−1 + Ck−2 − 2

= 3Ck−1 + 4

(
k−2∑
j=0

Cj + 1

)
+ Ck−2 − 2

= 3Ck−1 + 4
k−2∑
j=0

Cj + Ck−2 + 2. (1.8)

This leaves us with an expression for the number of tilings of the projective plane
grid in terms of only Ck.

Recall that by (1.6),

Ck = 4
k−2∑
j=0

Cj + 2Ck−1 + Ck−2 + 2,

which is similar to (1.8). Combining the two yields a cleaner recurrence:

Tk = Ck + Ck−1. (1.9)

Proof of Theorem 1.2. We have already proven that Ck satisfies (1.7), and a simple
argument will show that given (1.9), Tk must also follow (1.7). Rather than deriving
a generating function directly, however, we do some intermediate simplification.

Using (1.5) for computation of Ck, the first 10 terms of Tk are computed by (1.8)
to be

1, 6, 22, 82, 306, 1142, 4262, 15906, 59362, 221542

A linear recurrence finder suggests that in addition to satisfying the original recurrence
for C, these satisfy the simpler recurrence

an = 4 an−1 − an−2.

To prove that this is so, we define a sequence

tn = 3 tn−1 + 3 tn−2 − tn−3

with t0 = 6, t1 = 22 and check to see if tn = 4 tn−1 − tn−2. As a base case, note
that 4 · 22− 8 = 82, as required by the sequence above. Applying induction, suppose
tk = 4 tk−1 − tk−2 for all k up to some n. Then

tn = 3 tn−1 + 3 tn−2 − tn−3

= 3 tn−1 + (tn−1 − tn−2)

= 4 tn−1 − tn−2,
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and so the sequences are equal. Thus, Tk is described by the simpler recurrence.

We next solve the two-term recurrence

tn = 4 tn−1 − tn−2,

with t0 = 6, t1 = 22.

Let T (x) be an ordinary generating function with form

T (x) =
∞∑
n=0

tnx
n.

From the conditions, we have tnx
n = 4 tn−1x

n − tn−2x
n, so naturally,

∞∑
n=2

tnx
n = 4

∞∑
n=2

tn−1x
n −

∞∑
n=2

tn−2x
n.

Working with these sums individually to get them in terms of T (x), we find that

∞∑
n=2

tnx
n = T (x)− t1x− t0

= T (x)− 22x− 6,

4
∞∑
n=2

tn−1x
n = 4x

∞∑
n=2

tn−1x
n−1

= 4x(T (x)− t0)

= 4xT (x)− 24x,
∞∑
n=2

tn−2x
n = x2

∞∑
n=2

tn−2x
n−2

= x2T (x).

Recombining as indicated by the conditions,

T (x)− 22x− 6 = 4xT (x)− 24x− x2T (x).

Thus,

T (x) =
−2x+ 6

x2 − 4x+ 1
.

The number of tilings of the 2 × 2k projective plane is the kth coefficient of this
generating function. To find it, we find the roots of the denominator:

r =
4±
√

12

2
= 2±

√
3.
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So,
x2 − 4x+ 1 = (1− (2 +

√
3)x)(1− (2−

√
3)x),

and by partial fraction decomposition, we find A and B such that

−2x+ 6

x2 − 4x+ 1
=

A

1− (2 +
√

3)x
+

B

1− (2−
√

3)x
.

By straightforward calculation, these are

A = 3 +
5
√

3

3

B = 3− 5
√

3

3
,

and by geometric series, the number of tilings of the 2× 2k projective plane is

Tk =

(
3 +

5
√

3

3

)(
2 +
√

3
)k

+

(
3− 5

√
3

3

)(
2−
√

3
)k
. (1.10)

Proof of Theorem 1.3. A Chebyshev recurrence finder developed in Sage [7] suggests
the values of Tk may also be generated by the relation

Tk = 2Uk(2)− 2Uk−1(2)

where Un(x) is the nth Chebyshev polynomial of the second kind, evaluated at x.

It follows from the base cases in Definition 1 that

2U1(2)− 2U0(2) = 6 = T1.

By induction, assume Tk = 2Uk(2)− 2Uk−1(2) for all k ≤ n. Then

Tn = 4Tn−1 − Tn−2

= 8Un−1(2)− 8Un−2(2)− 2Un−2(2) + 2Un−3(2)

= 2(2 · 2Un−1(2)− 2Un−2(2))− 2(2 · 2Un−2(2)− 2Un−3(2))

= 2Un(2)− 2Un−1(2),

and so another expression for the number of domino tilings of the 2 × 2n projective
plane is

Tn = 2Un(2)− 2Un−1(2).

This concludes the proof of Theorem 1. We move to the 2× (2k + 1) case.
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Theorem 2. The number of domino tilings of the 2× (2k+1) projective plane equals

1.
(

2 + 4
√

3
3

)
(2 +

√
3)k +

(
2− 4

√
3

3

)
(2−

√
3)k.

2. 4Uk(2).

Proof of Theorem 2.1. For the odd case, let Tn be the number of tilings of the 2 ×
(n− 1) projective grid, and start similarly by examining placements of tiles over the
middle two squares:

Figure 1.7: Initial configurations of the 2× (n− 1) projective grid

This indicates that
Tn = 2Cn−1 + 2Dn−1 + 2Fn−2,

and since Dn−1 = Fn−2 + 1, we have

Tn = 2Cn−1 + 4Dn−1 − 2

for odd n, and so

Tn−1 = 2Cn−2 + 4Dn−2 − 2

for even n.

Recall that by (1.1),
Tn = 3Cn−2 + 4Dn−2 + Cn−4 − 2

for even n. Combining this with the relation for Tn−1, we find that

Tn−1 = Tn − Cn−2 − Cn−4 (1.11)

= (Cn + Cn−2)− (Cn−2 + Cn−4)

= Cn − Cn−4.
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Switching indices as before,
Tk−1 = Ck − Ck−2

for a 2 × (2k − 1) projective plane. From the previous section, we know that for a
2× 2k plane,

Tk = Ck + Ck−1,

which tells us that

Tk − Tk−1 = (Ck + Ck−1)− (Ck − Ck−2)

= Ck−1 + Ck−2,

and so,

Tn = Tn−1 + Tn−2

for even n.

Using (1.11), and reindexing the right side for consistency with the previous sec-
tion, we can also write that

Tn−1 = Tn − Cn−2 − Cn−4

= (3Cn−2 + 4Dn−2 + Cn−4 − 2)− Cn−2 − Cn−4

= 2Cn−2 + 4Dn−2 − 2

Tk = 2Ck−1 + 4
k−2∑
j=0

Cj + 2

for a 2× (2k − 1) projective grid.
The first ten elements of this sequences are

4, 16, 60, 224, 836, 3120, 11644, 43456, 162180, 605264

with 4 corresponding to the 2 × 1 plane, 16 to the 2 × 3 plane, and so on. A linear
recurrence finder suggests that this sequence obeys the same recurrences as the even
case:

an = 4 an−1 − an−2

with a0 = 4, a1 = 16, a2 = 60. As before, assume T (x) =
∞∑
n=0

anx
n is a generating

function for the sequence. Then an = 4 an−1 − an−2, and so

∞∑
n=2

anx
n = 4

∞∑
n=2

an−1 −
∞∑
n=2

an−2,

from which we find

T (x)− a1x− a0 = 4x (T (x)− a0)− x2T (x)
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and

T (x) =
4

1− 4x+ x2
.

The roots of the denominator are 2±
√

3, so applying partial fractions,

4

1− 4x+ x2
=

A

1− (2 +
√

3)x
+

B

1− (2−
√

3)x

and thus,

4 = A(1− (2−
√

3)x) +B(1− (2 +
√

3)x),

leads to the conclusion that

A = 2 +
4
√

3

3

B = 2− 4
√

3

3
.

By geometric series, the number of tilings of the 2× (2k − 1) projective plane is

Tk =

(
2 +

4
√

3

3

)
(2 +

√
3)k +

(
2− 4

√
3

3

)
(2−

√
3)k.

Proof of Theorem 2.2. The Chebyshev recurrence finder suggests that the sequence
Tk is generated by

Tk = 4Uk(2).

We will prove by induction that this is so. Since U1(2) = 1 is a base case for the
Chebyshev polynomials, this relationship holds for k = 1. Supposing it holds for all
k < n, i.e

4Uk(2) = 2Ck−1 + 4
k−2∑
j=0

Cj + 2

for all k < n, and keeping in mind that

Ck = 4
k−2∑
j=0

Cj + 2Ck−1 + Ck−2 + 2

and

Un(x) = 2xUn−1(2)− Un−1
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we evaluate

4Un(2) = 4 (4Un−1(2)− Un−2(2)

= 16Un−1(2)− 4Un−2(2)

= 4 (2Cn−2 + 4
n−3∑
j=0

Cj + 2)− 2Cn−3 − 4
n−4∑
j=0

Cj − 2

= 8Cn−2 + 16
n−3∑
j=0

Cj − 2Cn−3 − 4
n−4∑
j=0

Cj + 6

= 8Cn−2 + 12
n−3∑
j=0

Cj + 2Cn−3 + 6

= 2Cn−1 + 4Cn−2 + 4
n−3∑
j=0

Cj + 2

= 2Cn−1 + 4
n−2∑
j=0

Cj + 2,

as desired. Thus the number of domino tilings of a 2× (2k − 1) projective plane is

Tk = 4Uk(2).

Since both the even and odd cases follow the recurrence

tn = 4tn−1 − tn−2,

it is a corollary that the interlaced sequences follow the recurrence

tn = 4tn−2 − tn−4.

The initial conditions are t0 = 4, t1 = 6, t2 = 16. The generating function for this
sequence is

T (x) =
−2x3 + 6x+ 4

1− 4x2 + x4
.





Chapter 2

Classical Approach

The classical approach to enumerating domino tilings on grids, conceived by Kastelyn
[3], hinges on some observations about the Pfaffian of a graph’s adjacency matrix.

Definition 2. Let A be a 2N×2N skew-symmetric matrix, let the set of transposition
products

Π = {(u1, v1) · · · (uN , vN)}

range over the partitions of {1, . . . , 2N} into N pairs (uk, vk) without regard to order,
and define the signed weight of a permutation σ ∈ Π with respect to A as

wσ = sgn

[
1 2 3 4 . . . 2N
u1 v1 u2 v2 . . . vN

]
· Au1,v1 · Au2,v2 · · ·AuN ,vN . (2.1)

Then,

Pf (A) =
∑
σ∈Π

wσ. (2.2)

Additionally, (Pf A)2 = detA and if A is not 2N × 2N skew-symmetric, Pf A is not
defined.

Definition (2) makes the connection to perfect matchings fairly explicit. Let an
orientation of a graph be an assignment of direction to every edge. Let wuv be the
weight of an edge between u and v. Define the signed adjacency matrix by

Au,v =


wuv if an edge is directed from u to v;

−wuv if an edge is directed from v to u;

0 if u and v are not connected.

The signed adjacency matrix of an oriented graph is skew-symmetric, since an edge
connecting vertex a to b must connect b to a in the opposite direction. Accordingly,
suppose A is the signed adjacency matrix of an oriented graph G with numbered
vertices, and let σ ∈ Π. Then if for some vertex v, v and σ(v) are not adjacent,
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Av,σv = 0 and thus wσ = 0. This means the only permutations in Π with nonzero
weight are products of transpositions of adjacent vertices. In other words,

wσ 6= 0 ⇐⇒ σ is a perfect matching.

As Kastelyn first noticed, if the edges of G can be oriented so that all nonzero
summands of the Pfaffian have the same sign, then Pf A will directly enumerate per-
fect matchings of G. Let the edges of a graph covered by a particular tiling be referred
to as matched edges. Since each matching is counted with weight equal to the product
of the weights of the matched edges, enumeration of matchings on weighted graphs
requires no adjustment to the method.

Kastelyn discovered a way to orient planar graphs in such a way, and derived

Z2M,2N
Rect =

M∏
m=1

N∏
n=1

[
4 cos2

(
mπ

2M + 1

)
+ 4 cos2

(
nπ

2N + 1

)]
for the number of tilings of the 2M×2N rectangular grid. He conjectured, and Tesler
later confirmed [8], that surfaces of higher genus could be approached with a linear
combination of Pfaffians.

Tesler extended Kastelyn’s regular orientation to a more general crossing orien-
tation, which serves a similar purpose for non-planar graphs [8, 3]. While a regular
orientation is characterized by a Pfaffian with the same sign for each summand, thus
allowing the Pfaffian to count perfect matchings of a graph directly, in a crossing ori-
entation, the sign of each perfect matching depends on the number of crossing edges
the matching contains. Ultimately, this allows the number of perfect matchings to be
expressed as a linear combination of Pfaffians of modified adjacency matrices, as we
will describe in Chapter 3.

The influence of Kastelyn’s method is evident in the resulting expressions for
the number of domino tilings for the 2M × 2N Möbius strip and Klein bottle, and
cylindical grid graphs:

Z2M,2N
Mob =

M∏
m=1

N∏
n=1

[
4 sin2

(
(4n− 1)π

4N

)
+ 4 cos2

(
mπ

2M + 1

)]

Z2M,2N
Klein =

M∏
m=1

N∏
n=1

[
4 sin2

(
(4n− 1)π

4N

)
+ 4 sin2

(
(2m− 1)π

2M

)]
.

Z2M,2N
Cyl =

M∏
m=1

N∏
n=1

[
4 sin2

(
(2n− 1)π

2N

)
+ 4 cos2

(
mπ

2M + 1

)]
These formulas work only for even-by-even grids. The even-by-odd Möbius and

Klein grids require the addition of imaginary edge weights, but the results for all
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three are similar:

ZM,N
Mob = Re

[
(1− i)

M/2∏
m=1

N∏
n=1

(
2i (−1)

M
2

+m+1 sin

(
(4n− 1)π

2N

)
+ 2 cos

(
mπ

M + 1

)]

ZM,N
Klein = Re

[
(1− i)

M/2∏
m=1

N∏
n=1

(
2i (−1)

M
2

+m+1 sin

(
(4n− 1)π

2N

)
+ 2 sin

(
(2m− 1)π

M

)]

ZM,N
Cyl =

1

2

M/2∏
m=1

(N+1)/2∏
n=1

[
4 sin2

(
(2m− 1)π

M

)
+ 4 cos2

(
nπ

N + 1

)]
where M and N are assumed to be even and odd, respectively [10, 9].

The double product structure results from a similar step in the derivations. Since
familiarity with the general method is useful to understanding the projective plane
case, we now demonstrate with a presentation of Lu and Wu’s proof for the Möbius
strip [10].

2.1 Classical Approach Applied to the Möbius Grid

Theorem 3. [10]The number of domino tilings of a 2M × 2N Möbius strip is equal
to

M∏
m=1

N∏
n=1

[
4 cos2

(
mπ

2M + 1

)
+ 4 sin2

(
(4n− 1)π

4N

)]
. (2.3)

Proof. Let G be a 2M × 2N Möbius grid graph, drawn in the plane. The first step
in the enumeration of domino tilings is to find an orientation of the edges of G that
causes all summands of Pf (G) have the same sign.

There is a more detailed discussion of the identification of crossing orientations in
Chapter 3. For now, we simply note that Möbius strips oriented in the following way
have consistent signs across all summands of the Pfaffian:

This orientation corresponds to signed adjacency matrices taking the form of that in
Figure 2.1:



22 Chapter 2. Classical Approach



0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
−1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0
0 −1 0 0 0 0 −1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 −1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 1 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 −1 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 −1 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0



Figure 2.1: The 4× 6 Möbius adjacency matrix

For general M and N , define the 2× 2 matrices

a(0, 0) =

(
0 1
−1 0

)
a(0, 1) =

(
−1 0
0 1

)
a(1, 0) =

(
0 0
1 0

)
a(−1, 0) =

(
0 −1
0 0

)
,

the N ×N analogs of the following matrices,

FN =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 KN =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ,

and the 2M × 2M analog of the matrix

J2M =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

Let A be the signed adjacency matrix of G. Then we can write

A = I2M ⊗ A2N +
[
F2M − F t

2M

]
⊗ IN ⊗ a(0, 1) + J2M ⊗B2N

where

A2N = IN ⊗ a(0, 0) + FN ⊗ a(1, 0) + F t
N ⊗ a(−1, 0),

B2N = −KN ⊗ a(1, 0) +Kt
N ⊗ a(−1, 0),
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and to be explicit,

(
0 1
1 0

)
⊗
(

1 0
0 1

)
..=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

We are interested in Pf A, but since (Pf A)2 = detA, the Pfaffian can easily be found
from the determinant. The matrices J2M , F2M − F t

2M , and I2M commute and are
simultaneously diagonalized by the 2M × 2M matrix U:

Um,m′ = im
√

2

2M + 1
sin

(
mm′π

2M + 1

)
U−1
m,m′ = (−i)m′

√
2

2M + 1
sin

(
mm′π

2M + 1

)
for m,m′ = 1, 2, . . . , 2M [10].

Conjugation by U yields diagonalizations

(U−1I2MU)m,m′ = δm,m′

(U−1J2MU)m,m′ = i (−1)M+mδm,m′

(U(F2M − F t
2M)U−1)m,m′ = (2i cosφm)δm,m′

for m,m′ = 1, 2, . . . 2M , where

φm =
mπ

2M + 1
.

Conjugating A by U2M ⊗ I2N , we find

detA =

∣∣∣∣I2M ⊗ A2N +

[
F2M − F t

2M

]
⊗ IN ⊗ a(0, 1) + J2M ⊗B2N

∣∣∣∣
=

2M∏
m=1

∣∣∣∣A2N + 2i cosφmIN ⊗ a(0, 1) + i (−1)M+mB2N

∣∣∣∣. (2.4)

Let TN be the N ×N matrix defined

TN = FN + i (−1)M+m+1KN =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
i(−1)M+m+1 0 0 . . . 0

 .
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Starting with the expression,

RN
..= A2N + 2i cosφmIN ⊗ a(0, 1) + i (−1)M+mB2N ,

we substitute the definition of AN to find

RN =

[
IN ⊗ a(0, 0) + FN ⊗ a(1, 0) + F t

N ⊗ a(−1, 0)

]
+ 2i cosφmIN ⊗ a(0, 1)

+ i (−1)M+mB2N

= IN ⊗
[
a(0, 0) + 2i cosφma(0, 1)

]
+ FN ⊗ a(1, 0) + F t

N ⊗ a(−1, 0)

+ i (−1)M+mB2N .

Expanding B2N , and continuing,

RN = IN ⊗
[
a(0, 0) + 2i cosφma(0, 1)

]
+ FN ⊗ a(1, 0) + F t

N ⊗ a(−1, 0)⊗ F t
N

+ i (−1)M+m

[
−KN ⊗ a(1, 0) +Kt

N ⊗ a(−1, 0)

]
= IN ⊗

[
a(0, 0) + 2i cosφma(0, 1)

]
+

[
FN + (−1)M+m+1iKN

]
⊗ a(1, 0)

+

[
F t
N − (−1)M+m+1iKt

n

]
⊗ a(−1, 0)

= IN ⊗
[
a(0, 0) + 2i cosφma(0, 1)

]
+ TN ⊗ a(1, 0) + T †N ⊗ a(−1, 0)

where T †N denotes the conjugate transpose of TN .

Therefore, we rewrite (2.4) as

detA =
2M∏
m=1

∣∣∣∣IN ⊗[a(0, 0)+(2i cosφm)a(0, 1)

]
+TN ⊗a(1, 0)+T †N ⊗a(−1, 0)

∣∣∣∣. (2.5)

The matrices TN and T †N commute and can be simultaneously diagonalized with
eigenvalues eiθn and e−iθn , where

θn = (−1)M+m+1

[
(4n− 1)π

2N

]
for n = 1, 2 . . . , N .

Lu and Wu do not provide the matrices that diagonalize T and T †, but we will
require them later so we derive them now. To find the eigenvectors of T , we identify
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the kernel of TN − tIN :
−t 1 0 . . . 0
0 −t 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
i(−1)M+m+1 0 0 . . . −t




x1

x2

...

...
xn

 =


0
0
...
...
0


from which it easily follows that xi = ti−1x1 for i = 2, 3 . . . N . A general eigenvector
is therefore (

1 t t2 . . . . . . tn−1
)

and furthermore, any eigenvalue t will satisfy the equation

i(−1)M+m+1 − tn = 0.

Let XN be the N × N matrix that simultaneously diagonalizes T and T †. From
the general eigenvector and the eigenvalues provided in [10],

Xn,n′ =

[
e−i(n−1)θn′

]
for n, n′ = 1 . . . N . Since θn depends on m, we refer to θn,m when specificity is re-
quired. Similarly, we may refer to Xm, which will mean XN evaluated at m, and will
be understood to be N ×N in dimension.

We can get X−1 from the left-eigenvectors of T . These are the vectors v that satisfy

v(T − tI) = 0.

Proceeding in the same manner, we find that a general left-eigenvector takes form(
1
N

t−1

N
. . . . . . t−(n−1)

N

)
.

The left-eigenvectors of T are the rows of X−1, so using the same eigenvalues, we
write

X−1
n,n′ =

[
1

N
ei(n

′−1)θn

]
for n, n′ = 1 . . . N . Conjugating A by

2M⊕
m=1

Xm ⊗ I2,

we find

Z2M,2N
Mob =

√
detA

=
2M∏
m=1

N∏
n=1

(∣∣∣∣a(0, 0) + 2i cosφm a(0, 1) + a(1, 0) eiθn + a(−1, 0) e−iθn
∣∣∣∣)1/2

=
2M∏
m=1

N∏
n=1

(∣∣∣∣ (−2i cosφm 1− e−iθn
eiθn − 1 2i cosφm

) ∣∣∣∣)1/2

. (2.6)
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Evaluating the determinant,∣∣∣∣(−2i cosφm 1− e−iθn
eiθn − 1 2i cosφm

)∣∣∣∣ = 4 cos2 φm − (1− e−iθn)(eiθn − 1)

= 4 cos2 φm − eiθn + 2− eiθn

= 4 cos2 φm − 2 cos θn + 2

= 4 cos2 φm + 2 (1− cos θn)

= 4 cos2 φm + 4 sin2 θn
2
.

Accordingly, we rewrite (2.6):

Z2M,2N
Mob =

2M∏
m=1

N∏
n=1

(
4 cos2 φm + 4 sin2 θn

2

)1/2

. (2.7)

To eliminate the square root, observe that

cos2 φm = cos2

(
mπ

2M + 1

)
= cos2

(
π − mπ

2M + 1

)
= cos2

(
(2M −m+ 1)π

2M + 1

)
= cos2 φ2M−m+1.

Since cos2 φm = cos2 φ2M−m+1,

Z2M,2N
Mob =

2M∏
m=1

N∏
n=1

(
4 cos2 φm + 4 sin2 θn

2

)1/2

=
M∏
m=1

N∏
n=1

(
4 cos2 φm + 4 sin2 θn

2

)

=
M∏
m=1

N∏
n=1

[
4 cos2

(
mπ

2M + 1

)
+ 4 sin2

(
(4n− 1)π

4N

)]
. (2.8)



Chapter 3

General Method for
Non-Orientable Surfaces

The method used in the previous section requires adjustment for an even-by-odd
Möbius strip, involving the introduction of imaginary weights on the horizontal edges
of the base grid. Lu and Wu detail these steps in [9], but here we will describe a
more general method for the enumeration of tilings on graphs embedded in compact
boundaryless 2-manifolds, produced by Tesler [8].

Suppose we wish to enumerate perfect matchings on the graph G, which embeds
in the compact 2-dimensional surface S. On a sheet of paper, draw the pasting map
of S with the following modifications: label each arrowed side of the central polygon
with the letter a, and affix matching subscripts to pasted sides. For each pair of
pasted sides, if one arrow points clockwise and the other counterclockwise, give the
counterclockwise-pointing side an exponent of −1. Figure 3.1 contains an illustration
of these modifications on the Klein bottle.

Figure 3.1: Pasting map for the Klein bottle with subscripts attached.

The surface S can now be expressed by a pasting word. If S is the Klein bottle,
the word is a1a2a1a

−1
2 .

Let the sides of the pasting map associated with subscript j be called j-sides. Let
S be j-nonoriented if the arrows on the j-sides point in the same direction (clockwise
or counterclockwise) and j-oriented otherwise. Let S be j, k-alternating if the occur-
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rences of aj and ak in the pasting word are interleaved, at any separation and without
regard to superscript, and j, k-nonalternating otherwise. The Klein bottle above is
1, 2-alternating, 1-nonoriented, and 2-oriented, as indicated by its pasting word.

Draw a representation of G on the pasting map for S, with all vertices lying in the
polygon, and any crossings between edges at nonvertex points occurring outside the
polygon. In this drawing, we refer to the edges protruding from a j-side as j-edges,
and to the edges inside the rectangle as 0-edges. If S is j-oriented, j-edges of G are
drawn without crossing each other. If S is j-nonoriented, the j-edges are drawn so
that each pair of j-edges intersects once. Henceforth, “G” refers specifically to G
drawn this way. For an example, see Figure 3.2. With respect Figure 3.1, the 1-edges
are in black and the 2-edges in blue.

Figure 3.2: A graph on the Klein bottle.

Let a superposition cycle be a loop of alternating dominoes formed by the super-
position of two domino tilings of G. For example, the superposition of the tilings in
Figure 3.3 creates two superposition cycles.
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Figure 3.3: Two cycles resulting from superposed tilings of the 4× 4 grid.

By Tesler’s definition,

Definition 3. A crossing orientation of a graph is an orientation in which for every
superposition cycle C, r(C) + κe(C) + ι(C) is odd, where r, κe and ι respectively
stand for the routing number, number of monochromatic crossings, and the number
of vertices enclosed by C, to be defined below.

The routing number is the number of edges directed in opposition to a clockwise
traversal of C. The only requirement for a crossing orientation of a nonplanar graph
is that the routing number be odd for every superposition cycle.

If the dominoes in C are colored in alternation, the number of monochromatic
crossings is the number of intersections between dominoes of the same color. The
graph above is planar; it has no crossing edges or monochromatic crossings. For an
example of a superposition cycle with a monochromatic crossing, see Figure 3.4.

Figure 3.4: Left, a superposition of tilings on the 2× 3 Möbius strip. Right, the two
(separated) resulting superposition cycles. The cycle on the right has a monochro-
matic crossing.
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Finally, let a vertex v be inside a cycle C if the winding number of C about v is
odd, and outside C otherwise. In Figure 3.3, ι(C) = 0 for both cycles.

Tesler carries out a proof of the following theorem in his work [8]:

Theorem 4. (a) A graph can be oriented so that every perfect matching has sign

εm = ε0 · (−1)κ(m)Wm (3.1)

where ε0 = ±1 is constant, κ(m) is the number of intersections between matched
crossing edges in m, and Wm is the product of the weights of the matched edges.

(b) An orientation of a graph satisfies (a) if and only if it is a crossing orienta-
tion.

Given the existence of crossing orientations, Tesler presents the following:

Theorem 5. The number of perfect matchings of a crossing-oriented graph can be
computed as a linear combination of Pfaffians of modified signed adjacency matrices.

Proof. Let A be the signed adjacency matrix of the crossing-oriented graph G. Con-
sider a perfect matching m of G, and let Nm(j) be the number of j-edges in m. Let
Cm(j, k) be the number of crossings formed by a j-edge with a k-edge. Then,

Cm(j, j) =

{(
Nm(j)

2

)
if S is j-nonoriented

0 otherwise.
(3.2)

Cm(j, k) =

{
Nm(j) ·Nm(k) if S is j, k-alternating

0 otherwise.
(3.3)

Let n be the number of pairs of pasted sides in the pasting map of S. The total
number of intersections between crossing edges of such a graph is

Cm =
∑

1≤j≤k≤n

Cm(j, k) (3.4)

As a consequence of Theorem 4, every perfect matching has weight

wm = ε0 · (−1)CmWm (3.5)

in Pf A, where Wm is the unsigned product of the weights of all edges in m. The ap-
proach will be to find a linear combination of Pfaffians of re-weightings of A, yielding
collective weight

ε0Wm

for each perfect matching.
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Form the x-adjacency matrix B(x1 . . . xn) by multiplying the weight of each j-
edge in G by the indeterminate xj and forming the signed adjacency matrix of the
resulting re-weighted graph using the same orientation as for A. Let f(ω1, . . . , ωn) ∈
C[ω1, . . . , ωn]/(1− ω4

1, . . . 1− ω4
n) be defined

f(ω1, . . . , ωn) =
∑

1≤s1...sn≤4

αsω
s1
1 · · ·ωsnn .

In other words, f is a multivariate polynomial in ω1, . . . , ωn in which all exponents
have been reduced modulo 4.

Define the f -weight of m to be

wm(f) = f(iNm(1), . . . , iNm(n)) · wm (3.6)

and the f -weight of G to be

WG(f) =
∑
s∈K

αsPf B(is1 , . . . , isn)

=
∑
s∈K

αs
∑
m

wm · is1Nm(1) · · · isnNm(n)

=
∑
m

wm(f).

Lemma 1. For 0 < j < k ≤ n, let

Ljj =

{
1−i

2
(ωj + iω−1

j ) if S is j-nonoriented

1 otherwise
(3.7)

Ljk =

{
1
2
(1 + ω2

j + ω2
k − ω2

jω
2
k) if S is j, k-alternating

1 otherwise.
(3.8)

Then

(a) wm(Ljj · f) = (−1)Cm(j,j)wm(f).

(b) wm(Ljk · f) = (−1)Cm(j,k)wm(f).

Proof. [8]
(a) If S is j-oriented, then Cm(j, j) = 0, and Ljj = 1, so (a) reduces to wm(f) =
wm(f). Suppose then that S is j-nonoriented. Since the unsigned weight of a perfect
matching is the product of the weights of its edges, multiplying the weights of the
j-edges by a number α multiplies wm by αNm(j). As can be seen from (3.6),

wm(ωsjf) = iNm(j)swm(f)
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and likewise,

wm

((
1− i

2
ωj +

1 + i

2
ω−1
j

)
f

)
=

(
1− i

2
iNm(j) +

1 + i

2
i−Nm(j)

)
wm(f).

It can be checked by cases that

1− i
2

(iN) +
1 + i

2
(i−N) = (−1)(

N
2 ) =

{
1 if N ∼= 0 or 1 mod 4

−1 if N ∼= 2 or 3 mod 4.
(3.9)

Therefore, (a) holds by (3.2).

(b) If S is not j, k-alternating, then Cm(j, k) = 0 and Ljk = 1, so (b) holds. If
S is j, k-alternating, then

wm(Ljkf) =
1

2

(
1 + (−1)Nm(j) + (−1)Nm(k) − (−1)Nm(j)+Nm(k)

)
wm(f). (3.10)

It can be checked by cases that

W ..=
1

2

(
1 + (−1)Nm(j) + (−1)Nm(k) − (−1)Nm(j)+Nm(k)

)
= (−1)Nm(j)·Nm(k)

=

{
−1 if Nm(j) and Nm(k) are both odd

1 if Nm(j) or Nm(k) is even,

and so (b) holds by (3.3) and Lemma 1 holds in all cases.

By Lemma 1,

wm

( ∏
1≤j≤k≤n

Ljk

)
=

( ∏
1≤j≤k≤n

(−1)Cm(j,k)

)
wm(1) = (−1)Cmwm(1).

By (3.6), wm(1) = wm. By (3.5), wm = ε0 · (−1)CmWm. Therefore,

wm

( ∏
1≤j≤k≤n

Ljk

)
= (−1)Cmε0 · (−1)CmWm

= ε0Wm.

Since
WG(f) =

∑
m

wm(f),

we conclude that

WG

( ∏
1≤j≤k≤n

Ljk

)
is a linear combination of Pfaffians that counts each perfect matching with weight
ε0Wm, as desired.
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We have just described Tesler’s rocedure for identifying a linear combination
of Pfaffians to enumerate perfect matchings on a crossing-oriented graph. To fol-
low through on the Klein bottle, recall that the surface is 1, 2-alternating and 1-
nonoriented. Accordingly, we evaluate

f(ω1, ω2) =
1− i

2
(ω1 + iω−1

1 ) · 1

2
(1 + ω2

1 + ω2
2 − ω2

1ω
2
2)

=
1− i

4

(
ω1 + ω3

1 + ω1ω
2
2 − ω3

1ω
2
2 + iω−1

1 + iω1 + iω−1
1 ω2

2 − iω1ω
2
2

)
.

Reducing exponents modulo 4,

f(ω1, ω2) =
1− i

4

(
ω1 + ω3

1 + ω1ω
2
2 − ω3

1ω
2
2 + iω3

1 + iω1 + iω3
1ω

2
2 − iω1ω

2
2

)
=

1− i
4

(
ω1 + ω3

1 + ω1ω
2
2 − ω3

1ω
2
2 + iω3

1 + iω1 + iω3
1ω

2
2 − iω1ω

2
2

)
=

1− i
4

(
(1 + i)(ω1 + ω3

1) + (1− i)(ω1ω
2
2 − ω3

1ω
2
2)
)

=
1

2
(ω1 + ω3

1 − iω1ω
2
2 + iω3

1ω
2
2).

Computing the f -weight of G,

WG(f(ω1, ω2)) =
1

2
(Pf B(i1, i0) + Pf B(i3, i0)− iPf B(i1, i2) + iPf B(i3, i2))

=
1

2
(Pf B(i, 1) + Pf B(−i, 1)− iPf B(i,−1) + iPf B(−i,−1)).

The last expression will compute the number of perfect matchings of a graph embed-
ded in the Klein bottle.

With the derivation of these linear combinations established, let G be a projec-
tive plane graph of dimension M × N , with M even. Since the projective plane is
symmetric, and an odd-by-odd projective plane, having an odd number of vertices,
cannot be tiled, we adopt the practice of always taking M to be even. We will use the
terms even or odd projective plane in reference to the parity of N . The graph G will
be 4 × 3 in the illustrations that follow, but as with the Möbius strips, the crossing
orientations follow a regular pattern in higher dimensional graphs. Figure 3.5 shows
the graph G with a superimposed crossing orientation.
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Figure 3.5: Crossing orientation for the 4 × 3 projective grid. The general crossing
orientation extends this pattern.

Let B(x1, x2) be the corresponding signed x-adjacency matrix:

B(x1, x2) =



0 1 0 1 0 0 0 0 0 0 0 2x1

−1 0 1 0 1 0 0 0 0 0 x1 0
0 −1 0 0 0 1 0 0 0 2x1 0 0
−1 0 0 0 −1 0 1 0 −x2 0 0 0

0 −1 0 1 0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 −x2 0 1 0 0 0
0 0 0 −1 0 x2 0 1 0 1 0 0
0 0 0 0 −1 0 −1 0 1 0 1 0
0 0 0 x2 0 −1 0 −1 0 0 0 1
0 0 −2x1 0 0 0 −1 0 0 0 −1 0
0 −x1 0 0 0 0 0 −1 0 1 0 −1

−2x1 0 0 0 0 0 0 0 −1 0 1 0



We associate the projective plane with the pasting word a1a2a1a2, and observe that
it is 1-nonoriented, 2-nonoriented, and 1, 2-alternating. Accordingly, we compute the
product

f(ω,ω2) =
1− i

2
(ω1 + iω−1

1 ) · 1− i
2

(ω2 + iω−1
2 ) · 1

2
(1 + ω2

1 + ω2
2 − ω2

1ω
2
2)

=
−i
4

(2ω1ω2 + 2iω1ω2 + 2iω3
1ω

3
2 − 2ω3

1ω
3
2)
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substituting computing the f -weight,

WG(f(ω1, ω2)) =
−i
4

(2 Pf B(i, i) + 2iPf B(i, i) + 2iPf B(−i,−i)− 2 Pf B(−i,−i))

=
−i
2

(i+ 1)Pf B(i, i)− i

2
(i− 1)Pf B(−i,−i)

=
1− i

2
Pf B(i, i) +

1 + i

2
Pf B(−i,−i),

and since these matrices are complex conjugates,

WG(f(ω1, ω2)) = Re(1− i)Pf B(i, i). (3.11)

In the case of the projective plane, x1 = x2 when B(x1, x2) is evaluated, so here-
after we will simply write B(x).

B(i) =



0 1 0 1 0 0 0 0 0 0 0 2i
−1 0 1 0 1 0 0 0 0 0 i 0

0 −1 0 0 0 1 0 0 0 2i 0 0
−1 0 0 0 −1 0 1 0 −i 0 0 0

0 −1 0 1 0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 −i 0 1 0 0 0
0 0 0 −1 0 i 0 1 0 1 0 0
0 0 0 0 −1 0 −1 0 1 0 1 0
0 0 0 i 0 −1 0 −1 0 0 0 1
0 0 −2i 0 0 0 −1 0 0 0 −1 0
0 −i 0 0 0 0 0 −1 0 1 0 −1

−2i 0 0 0 0 0 0 0 −1 0 1 0


Up to sign, the number of tilings of the M ×N projective plane for even M is equal
to Re (1− i)Pf B(i).





Chapter 4

Application of Classical Methods
to the Projective Plane

We now attempt to apply the methods from the previous two chapters to the pro-
jective grid graph. Using Tesler’s methods, we found in the last chapter that the
expression

Re (1− i)Pf B(i)

would produce the number of perfect matchings of an even or odd projective plane. In
the even case, this is equal to Pf B(1), which is more similar to Lu and Wu’s Möbius
adjacency matrix. We begin with this matrix so as to borrow their techniques to the
greatest possible extent.

Let G be a 2M × 2N projective plane grid graph, drawn in the plane. By exhaustive
search by a computer, I identified the crossing orientation of the projective plane
shown in Figure 4.1.

A general M × N projective grid, when drawn as in Figure 4.1, can be crossing-
oriented as follows:

1. Direct the top row of horizontal edges in the underlying grid to the right, then
direct subsequent rows left and right in alternation until the bottom is reached.

2. Direct all vertical edges of the underlying grid downward.

3. Direct crossing edges on the top side of the graph outward. Direct crossing
edges on the left side of the graph inward and outward in alternation, begin-
ning with an edge directed into the (N + 1)st vertex.

4. Direct the bottom and right crossing edges to be consistent with the left and
top.

The 4× 5 projective plane adjacency matrix is shown in Figure 4.1:
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Figure 4.1: Crossing orientation of the 4× 3 projective grid.



0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2
−1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0

0 −1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 −1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0
−1 0 0 0 0 0 −1 0 0 0 1 0 0 0 −1 0 0 0 0 0

0 −1 0 0 0 1 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 1 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 1 0 −1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 −1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 −1 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 −1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 0 0 1
0 0 0 0 −2 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 1 0 −1 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 −1 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 −1
−2 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 0



Figure 4.2: The 4× 5 projective grid adjacency matrix.

As in the previous section, define the 2× 2 matrices

a(0, 0) =

(
0 1
−1 0

)
a(0, 1) =

(
−1 0

0 1

)
a(1, 0) =

(
0 0
1 0

)
a(−1, 0) =

(
0 −1
0 0

)
a(1, 1) =

(
0 1
1 0

)
,
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the N ×N analogs of the following matrices,

FN =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 KN =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 LN =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 ,

and the 2M × 2M analog of this matrix:

J2M =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 .

Then,

A = I2M⊗A2N +

[
F2M−F t

2M

]
⊗IN⊗a(0, 1)+J2M⊗B2N +(K2M−Kt

2M)⊗LN⊗a(1, 1)

where

A2N = IN ⊗ a(0, 0) + FN ⊗ a(1, 0) + F t
N ⊗ a(−1, 0),

B2N = −KN ⊗ a(1, 0) +Kt
N ⊗ a(−1, 0).

The decomposition of A given above is the same as that given for the Möbius grid
in Chapter (2), with the addition of a single term representing the additional set of
crossing edges.

As before, we simultaneously conjugate J2M , F2M = F t
2M , and I2M by U2M :

Um,m′ = im
√

2

2M + 1
sin

(
mm′π

2M + 1

)
U−1
m,m′ = (−i)m′

√
2

2M + 1
sin

(
mm′π

2M + 1

)
to obtain diagonalizations

(U−1I2MU)m,m′ = δm,m′

(U−1J2MU)m,m′ = i (−1)M+mδm,m′

(U(F2M − F t
2M)U−1)m,m′ = (2i cosφm)δm,m′

for m,m′ = 1, 2, . . . 2M , where

φm =
mπ

2M + 1
.
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We now examine the effect of conjugation on K2M −Kt
2M . To start,

U−1K2M = U−1


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 =



−
√

2

2M + 1
sin
(

π
2M+1

)
0 . . . 0 0√

2

2M + 1
sin
(

2π
2M+1

)
0 . . . 0 0

−
√

2

2M + 1
sin
(

3π
2M+1

)
0 . . . 0 0

...
...

...
...

...
...

...
...

...
...√

2

2M + 1
sin
(

2Mπ
2M+1

)
0 . . . 0 0



and



−

√
2

2M + 1
sin
(

π
2M+1

)
0 . . . 0 0√

2

2M + 1
sin
(

2π
2M+1

)
0 . . . 0 0

−

√
2

2M + 1
sin
(

3π
2M+1

)
0 . . . 0 0

...
...

...
...

...
...

...
...

...
...√

2

2M + 1
sin
(

2Mπ
2M+1

)
0 . . . 0 0


U2M =

[
(−1)m

2i

2M + 1
sin

(
mπ

2M + 1

)
sin

(
m′π

2M + 1

)]

for m,m′ = 1 . . . 2M .

So,

(U−1
2MK2MU2M)m,m′ =

[
(−1)m

2i

2M + 1
sinφm sinφm′

]

and as it turns out,

(U−1
2MK

t
2MU2M)m,m′ =

[
(−1)m

′+1 2i

2M + 1
sinφm sinφm′

]
.
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This leads to

Z2M
..= (U−1

2M(K2M −Kt
2M)U2M)m,m′

=

[
2i

2M + 1
sinφm sinφm′ − (−1)m

′+1 2i

2M + 1
sinφm sinφm′

]
=

[
(−1)m

2i

2M + 1
sinφm sinφm′ + (−1)m

′ 2i

2M + 1
sinφm sinφm′

]
=

[
(−1)m

2i

2M + 1
sinφm sinφm′ + (−1)m

′ 2i

2M + 1
sinφm sinφm′

]
=

[
(−1)m

2i

2M + 1
sinφm sinφm′ + (−1)m

′ 2i

2M + 1
sinφm sinφm′

]
=

[
2i sinφm sinφm′

2M + 1

(
(−1)m + (−1)m

′
)]

.

The term
(
(−1)m + (−1)m

′)
makes Z2M a checkerboard matrix. We refer to its entries

by

zm,m′ =

[
2i sinφm sinφm′

2M + 1

(
(−1)m + (−1)m

′
)]

. (4.1)

Having traced the effect of conjugation by U on K2M −Kt
2M , we now conjugate all

2M -dimensional matrices in the decomposition of A by U and write

detA =

∣∣∣∣[δm,m′]⊗ A2N +

[
2i cosφmδm,m′

]
⊗ IN ⊗ a(0, 1) +

[
i (−1)M+mδm,m′

]
⊗B2N

+ Z2M ⊗ LN ⊗ a(1, 1)

∣∣∣∣
=

∣∣∣∣∣
2M⊕
m=1

[
A2N + 2i cosφmIN ⊗ a(0, 1) + i (−1)M+mB2N

]
+ Z2M ⊗ LN ⊗ a(1, 1)

∣∣∣∣∣ .
(4.2)

Let the N ×N matrix TN be defined

TN = FN + i (−1)M+m+1KN =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
i(−1)M+m+1 0 0 . . . 0

 .
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Substituting the definition of A2N into (4.2),

detA =

∣∣∣∣ 2M⊕
m=1

[[
IN ⊗ a(0, 0) + FN ⊗ a(1, 0) + F t

N ⊗ a(−1, 0)

]
+ 2i cosφmIN ⊗ a(0, 1)

+ i (−1)M+mB2N

]
+ Z2M ⊗ L2N

∣∣∣∣
=

∣∣∣∣ 2M⊕
m=1

[
IN ⊗

[
a(0, 0) + 2i cosφma(0, 1)

]
+ FN ⊗ a(1, 0) + F t

N ⊗ a(−1, 0)

+ i (−1)M+mB2N

]
+ Z2M ⊗ LN ⊗ a(1, 1)

∣∣∣∣,
expanding B2N ,

=

∣∣∣∣ 2M⊕
m=1

[
IN ⊗

[
a(0, 0) + 2i cosφma(0, 1)

]
+ FN ⊗ a(1, 0) + F t

N ⊗ a(−1, 0)⊗ F t
N

+ i (−1)M+m

[
−KN ⊗ a(1, 0) +Kt

N ⊗ a(−1, 0)

]]
+ Z2M ⊗ LN ⊗ a(1, 1)

∣∣∣∣
=

∣∣∣∣ 2M⊕
m=1

(
IN ⊗

[
a(0, 0) + 2i cosφma(0, 1)

]
+

[
FN + (−1)M+m+1iKN

]
⊗ a(1, 0)

+

[
F t
N − (−1)M+m+1iKt

n

]
⊗ a(−1, 0)

)
+ Z2M ⊗ L2N

∣∣∣∣
=

∣∣∣∣ 2M⊕
m=1

[
IN ⊗

[
a(0, 0) + 2i cosφma(0, 1)

]
+ TN ⊗ a(1, 0) + T †N ⊗ a(−1, 0)

]
+ Z2M ⊗ LN ⊗ a(1, 1)

∣∣∣∣.
We found in Chapter (2) that TN and T †N are simultaneously diagonalized by the
matrix XN , with eigenvalues eiθn and e−iθn , where

Xn,n′ =

[
e−i(n−1)θn′

]
,

X−1
n,n′ =

[
1

N
ei(n

′−1)θn

]
,

and

θn = (−1)M+m+1

[
(4n− 1)π

2N

]
for n = 1, 2 . . . , N . As before, note that θn depends implicitly on m. When m is
unclear from context, we will refer to θn,m. The matrix XN inherits this dependence



43

on m, so we use Xm to indicate the matrix above evaluated at θn,m, which will be
understood to be N ×N in dimension.

We must now examine the effect of conjugation by XN on LN . To do so, we adopt
the notation

λn = e−iθn

and

c =
1

N
.

Again, we will sometimes need to specify

λn,m = e−iθn,m .

Then,

X−1
N LN =



c cλ−1
1 cλ−2

1 . . . . . . cλ1−N
1

c cλ−1
2 cλ−2

2 . . . . . . cλ1−N
2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

c cλ−1
N cλ−2

N . . . . . . cλ1−N
N




0 0 0 0 1
0 0 0 1 0

0 0 . .
.

0 0
0 1 0 0 0
1 0 0 0 0



=


cλ1−N

1 cλ2−N
1 . . . . . . cλ−1

1 c
cλ1−N

2 cλ2−N
2 . . . . . . cλ−1

2 c
cλ1−N

3 cλ2−N
3 . . . . . . cλ−1

3 c
...

...
...

...
...

...
cλ1−N

N cλ2−N
N . . . . . . cλ−1

N c


and so,

X−1
N LNXN =


cλ1−N

1 cλ2−N
1 . . . . . . cλ−1

1 c
cλ1−N

2 cλ2−N
2 . . . . . . cλ−1

2 c
cλ1−N

3 cλ2−N
3 . . . . . . cλ−1

3 c
...

...
...

...
...

...
cλ1−N

N cλ2−N
N . . . . . . cλ−1

N c




1 1 . . . . . . 1
λ1 λ2 . . . . . . λn
...

...
...

...
...

...
...

...
...

...
λn−1

1 λn−1
2 . . . . . . λn−1

n


= ΩN
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where ΩN is an N ×N matrix with

Ωn,n′ = c
(
λ1−N
n , λ2−N

n , . . . , 1
)
·
(
1, λn′ , λ

2
n′ , . . . λ

N−1
n′

)
=

N∑
k=1

λ−(N−k)
n λk−1

n′

=
N∑
k=1

ei(N−k)θne−i(k−1)θn′

=
N∑
k=1

(
eiθn
)N−k (

eiθn′
)−(k−1)

.

When necessary, we will refer to Ωm, with entries defined

Ωm
n,n′ =

N∑
k=1

(eiθn,m)N−k(eiθn′,m)−(k−1).

The next objective is to conjugate the matrix by

2M⊕
m=1

[Xm ⊗ I2],

but things will be easier to consider if we leave out the 2 × 2 component and focus
on the conjugation of Z2MLN by

2M⊕
m=1

Xm.

The matrix Z2M is a checkerboard matrix that is symmetric about the main diagonal
and conjugate-symmetric about the main anti-diagonal:

z1,1 0 z1,3 0 . . . . . . z1,2M−3 0 z1,2M−1 0
0 z2,2 0 z2,4 . . . . . . 0 z2,2M−2 0 z∗1,2M−1

z1,3 0 z3,3 0 . . . . . . z3,2M−3 0 z∗2,2M−2 0

0 z2,4 0 z4,4 . . . . . . 0 z∗3,2M−3 0 z∗1,2M−3
...

...
...

...
. . . . .

. ...
...

...
...

...
...

...
... . .

. . . .
...

...
...

...
z1,2M−3 0 z3,2M−3 0 . . . . . . z∗4,4 0 z∗2,4 0

0 z2,2M−2 0 z∗3,2M−3 . . . . . . 0 z∗3,3 0 z∗1,3
z1,2M−1 0 z∗2,2M−2 0 . . . . . . z∗2,4 0 z∗2,2 0

0 z∗1,2M−1 0 z∗1,2M−3 . . . . . . 0 z∗1,3 0 z∗1,1


.

To avoid problems with notation, we proceed with the case when M = 4:

z1,1 0 z1,3 0 z1,5 0 z1,7 0
0 z2,2 0 z2,4 0 z2,6 0 z∗1,7
z1,3 0 z3,3 0 z3,5 0 z∗2,6 0
0 z2,4 0 z4,4 0 z∗3,5 0 z∗1,5
z1,5 0 z3,5 0 z∗4,4 0 z∗2,4 0
0 z2,6 0 z∗3,5 0 z∗3,3 0 z∗1,3
z1,7 0 z∗2,6 0 z∗2,4 0 z∗2,2 0
0 z∗1,7 0 z∗1,5 0 z∗1,3 0 z∗1,1


.
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The block matrix Z2M ⊗ LN takes form

z1,1L 0 z1,3L 0 z1,5L 0 z1,7L 0
0 z2,2L 0 z2,4L 0 z2,6L 0 z∗1,7L

z1,3L 0 z3,3L 0 z3,5L 0 z∗2,6L 0
0 z2,4L 0 z4,4L 0 z∗3,5L 0 z∗1,5L

z1,5L 0 z3,5L 0 z∗4,4L 0 z∗2,4L 0
0 z2,6L 0 z∗3,5L 0 z∗3,3L 0 z∗1,3L

z1,7L 0 z∗2,6L 0 z∗2,4L 0 z∗2,2L 0
0 z∗1,7L 0 z∗1,5L 0 z∗1,3L 0 z∗1,1L


,

and
2M⊕
m=1

X−1
m (Z2M ⊗ LN)

2M⊕
m=1

Xm

takes form

z1,1Ω1 0 z1,3Ω1 0 z1,5Ω1 0 z1,7Ω1 0
0 z2,2Ω2 0 z2,4Ω2 0 z2,6Ω2 0 z∗1,7Ω2

z1,3Ω3 0 z3,3Ω3 0 z3,5Ω3 0 z∗2,6Ω3 0
0 z2,4Ω4 0 z4,4Ω4 0 z∗3,5Ω4 0 z∗1,5Ω4

z1,5Ω5 0 z3,5Ω5 0 z∗4,4Ω5 0 z∗2,4Ω5 0
0 z2,6Ω6 0 z∗3,5Ω6 0 z∗3,3Ω6 0 z∗1,3Ω6

z1,7Ω7 0 z∗2,6Ω7 0 z∗2,4Ω7 0 z∗2,2Ω7 0
0 z∗1,7Ω8 0 z∗1,5Ω8 0 z∗1,3Ω8 0 z∗1,1Ω8


.

Let

Σ2MN =
2M⊕
m=1

X−1
m (Z2M ⊗ LN)

2M⊕
m=1

Xm,

as above. Then Σ2MN is a 2M -block by 2M -block block-checkerboard matrix with
block dimensions N × N that retains the symmetries of Z2M at the block level.
Revisiting the determinant equation,

detA =

∣∣∣∣ 2M⊕
m=1

[
IN ⊗

[
a(0, 0) + 2i cosφma(0, 1)

]
+ TN ⊗ a(1, 0) + T †N ⊗ a(−1, 0)

]
+ Z2M ⊗ LN ⊗ a(1, 1)

∣∣∣∣
=

∣∣∣∣ 2M⊕
m=1

N⊕
n=1

(
−2i cosφm 1− e−iθn
eiθn − 1 2i cosφm

)
+ Σ2MN ⊗ a(1, 1)

∣∣∣∣.
We now have the determinant of A as the determinant of the sum of a block 2 × 2
diagonal matrix and a block 2N × 2N checkerboard matrix.
Let

ωki,j = zi,jΩ
k.



46 Chapter 4. Application of Classical Methods to the Projective Plane

Conjugation by the permutation matrix P ⊗ IN , where P is the 2M -dimensional
permutation matrix generated by

[(1, 2M)(3, 2(M − 1)), . . . (M,M + 1)] ,

transforms the matrix Σ as follows:

Σ =


ω1
1,1 0 ω1

1,3 0 ω1
1,5 0 ω1

1,7 0

0 ω2
2,2 0 ω2

2,4 0 ω2
2,6 0 ω2∗

1,7

ω3
1,3 0 ω3

3,3 0 ω3
3,5 0 ω3∗

2,6 0

0 ω4
2,4 0 ω4

4,4 0 ω4∗
3,5 0 ω4∗

1,5

ω5
1,5 0 ω5

3,5 0 ω5∗
4,4 0 ω5∗

2,4 0

0 ω6
2,6 0 ω6∗

3,5 0 ω6∗
3,3 0 ω6∗

1,3

ω7
1,7 0 ω7∗

2,6 0 ω7∗
2,4 0 ω7∗

2,2 0

0 ω8∗
1,7 0 ω8∗

1,5 0 ω8∗
1,3 0 ω8∗

1,1



(P ⊗ IN)Σ2MN(P ⊗ IN) =


ω8∗
1,1 ω8∗

1,7 ω8∗
1,3 ω8∗

1,5 0 0 0 0

ω2∗
1,7 ω2

2,2 ω2
2,6 ω2

2,4 0 0 0 0

ω6∗
1,3 ω6

2,6 ω6∗
3,3 ω6∗

3,5 0 0 0 0

ω4∗
1,5 ω4

2,4 ω4∗
3,5 ω4

4,4 0 0 0 0

0 0 0 0 ω5∗
4,4 ω5

3,5 ω5∗
2,4 ω5

1,5

0 0 0 0 ω3
3,5 ω3

3,3 ω3∗
2,6 ω3

1,3

0 0 0 0 ω7∗
2,4 ω7∗

2,6 ω7∗
2,2 ω7

1,7

0 0 0 0 ω1
1,5 ω1

1,3 ω1
1,7 ω1

1,1

.

The matrix Σ2MN ⊗ a(1, 1) has 2N × 2N blocks running down the diagonal. The
Möbius component of A at this stage is block 2 × 2 diagonal, and so may as well
be considered block 2N × 2N diagonal, and so the entire matrix may be considered
block-checkerboard. Letting S equal the Möbius component and following through
with the transformation above on the whole matrix, we find that

detA =
∣∣S + Σ2MN ⊗ a(1, 1)

∣∣
= det


ω1
11 + S1 0 ω1

13 0 ω1
15 0 ω1

17 0
0 ω2

22 + S2 0 ω2
24 0 ω2

26 0 ω2∗
17

ω3
13 0 ω3

33 + S3 0 ω3
35 0 ω3∗

26 0
0 ω4

24 0 ω4
44 + S4 0 ω4∗

35 0 ω4∗
15

ω5
15 0 ω5

35 0 ω5∗
44 + S5 0 ω5∗

24 0
0 ω6

26 0 ω6∗
35 0 ω6∗

33 + S6 0 ω6∗
13

ω7
17 0 ω7∗

26 0 ω7∗
24 0 ω7∗

22 + S7 0
0 ω8∗

17 0 ω8
15 0 ω8∗

13 0 ω8∗
11 + S8



= det


ω8∗
11 + S8 ω8∗

17 ω8∗
13 ω8∗

15 0 0 0 0
ω2∗
17 ω2

22 + S2 ω2
26 ω2

24 0 0 0 0
ω6∗
13 ω6

26 ω6∗
33 + S6 ω6∗

35 0 0 0 0
ω4∗
15 ω4

24 ω4∗
35 ω4

44 + S4 0 0 0 0
0 0 0 0 ω5∗

44 + S5 ω5
35 ω5∗

24 ω5
15

0 0 0 0 ω3
35 ω3

33 + S3 ω3∗
26 ω3

13
0 0 0 0 ω7∗

24 ω7∗
26 ω7∗

22 + S7 ω7
17

0 0 0 0 ω1
15 ω1

13 ω1
17 ω1

11 + S1

,
where each entry represents a 2N×2N block, and the entries from Σ⊗a(1, 1) areN×N
matrices tensored with a(1, 1). The larger 2MN×2MN blocks each have determinant
equal to the Pfaffian of the original matrix, so we narrow our consideration to the
upper block: 

ω8∗
11 + S8 ω8∗

17 ω8∗
13 ω8∗

15

ω2∗
17 ω2

22 + S2 ω2
26 ω2

24

ω6∗
13 ω6

26 ω6
33 + S6 ω6∗

35

ω4∗
15 ω4

24 ω4∗
35 ω4

44 + S4

 .
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After swapping rows and columns to get the elements of S in the original order,
this becomes 

ω2
22 + S2 ω2

24 ω2
26 ω2∗

17

ω4
24 ω4

44 + S4 ω4∗
35 ω4∗

15

ω6
26 ω6∗

35 ω6∗
33 + S6 ω6∗

13

ω8∗
17 ω8∗

15 ω8∗
13 ω8∗

11 + S8

 .

Recall that

S =
2M⊕
m=1

N⊕
n=1

(
−2i cosφm 1− e−iθn
eiθn − 1 2i cosφm

)
.

Considering the entries from Σ2MN ⊗ a(1, 1) as tensor products of N ×N blocks, and
S as an N ×N block-diagonal matrix, we expand this to

det


s21 ω2

22 + s22 0 ω2
24 0 ω2

26 0 ω2∗
17

ω2
22 + s23 s24 ω2

24 0 ω2
26 0 ω2∗

17 0
0 ω4

24 s41 ω4
44 + s42 0 ω4∗

35 0 ω4∗
15

ω4
24 0 ω4

44 + s43 s44 ω4∗
35 0 ω4∗

15 0
0 ω6

26 0 ω6∗
35 s61 ω6∗

33 + s62 0 ω6∗
13

ω6
26 0 ω6∗

35 0 ω6∗
33 + s63 s64 ω6∗

13 0
0 ω8∗

17 0 ω8∗
15 0 ω8∗

13 s81 ω8∗
11 + s82

ω8∗
17 0 ω8∗

15 0 ω8∗
13 0 ω8∗

11 + s83 s84

.
Conjugating again by the appropriate-dimensional version of P , this matrix trans-

forms to
s84 0 0 0 ω8∗

13 ω8∗
15 ω8∗

11 + s83 ω8∗
17

0 s24 0 0 ω2
26 ω2

24 ω2∗
17 ω2

22 + s23
0 0 s64 0 ω6∗

33 + s63 ω6∗
35 ω6∗

13 ω6
26

0 0 0 s44 ω4∗
35 ω4

44 + s43 ω4∗
15 ω4

24
ω6∗
13 ω6

26 ω6∗
33 + s62 ω6∗

35 s61 0 0 0
ω4∗
15 ω4

24 ω4∗
35 ω4

44 + s42 0 s41 0 0
ω8∗
11 + s82 ω8∗

17 ω8∗
13 ω8∗

15 0 0 s81 0
ω2∗
17 ω2

22 + s22 ω2
26 ω2

24 0 0 0 s21

.
With another series of row and column operations to get the elements of S on the

diagonals of the dense blocks, this becomes



s84 0 0 0 ω8∗
11 + s83 ω8∗

17 ω8∗
13 ω8∗

15
0 s24 0 0 ω2∗

17 ω2
22 + s23 ω2

26 ω2
24

0 0 s64 0 ω6∗
13 ω6

26 ω6∗
33 + s63 ω6∗

35
0 0 0 s44 ω4∗

15 ω4
24 ω4∗

35 ω4
44 + s43

ω8∗
11 + s82 ω8∗

17 ω8∗
13 ω8∗

15 s81 0 0 0
ω2∗
17 ω2

22 + s22 ω2
26 ω2

24 0 s21 0 0
ω6∗
13 ω6

26 ω6∗
33 + s62 ω6∗

35 0 0 s61 0
ω4∗
15 ω4

24 ω4∗
35 ω4

44 + s42 0 0 0 s41


. (4.3)

This is equal to

a(0, 1)⊗
[ M⊕
m=1

N⊕
n=1

(2i cosφm)
]

+ a(1, 1)⊗


ω6∗

13 ω6
26 ω6∗

33 ω6∗
35

ω4∗
15 ω4

24 ω4∗
35 ω4

44

ω8∗
11 ω8∗

17 ω8∗
13 ω8∗

15

ω2∗
17 ω2

22 ω2
26 ω2

24


+ a(1, 1)⊗

[ M⊕
m=1

N⊕
n=1

(eiθn − 1)
]
− a(−1, 0)⊗

[ M⊕
m=1

N⊕
n=1

(eiθn − 1)
]
.
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For a 2× 2 block matrix of form

M =

(
A B
C D

)
,

it is true in general [6] that if D is invertible,

detM = det(A−BD−1C) detD.

Applying this to our present situation, we find the determinant of the block in the
lower right of the matrix above is 1, so the problem can be reduced to finding the
determinant of the difference between the upper left block of our matrix and the
conjugation of the lower right block’s inverse by the off-diagonal blocks. We observe
that this matrix is skew-Hermitian, and so the original problem can be reduced to the
computation of the determinant of a skew-Hermitian matrix of dimension MN×MN ,
but we have not made further progress with this approach.



Chapter 5

Experimental Approach

We further explore the structure of the signed adjacency matrices.

5.0.1 Summary of Results

Conjecture 1. For even M and N , every M×N projective plane grid graph, M×N
Möbius grid graph, and M ×N rectangular grid graph can be associated with a finite
sequence (“Aitken list”) of rational numbers of form

1, a2,
a3

a2

, . . .
an+1

an
,
an+2

an+1

,
an+3

an+2

, . . . ,
aMN

aMN−1

in which aMN is the number of perfect matchings. The product of the list is also the
number of perfect matchings. Alternatively, such a graph can be associated with the
corresponding integer sequence (“Aitken sequence”)

1, aN
2
−1 . . . an, an+1, an+2, an+3 . . . , aMN

which terminates in the number of perfect matchings.

Conjecture 2. The following statements are believed to hold for every M ×N rect-
angle, Möbius strip, and projective plane grid graph for even M and N :

1. The first N
2

elements of the Aitken sequence are equal, and equal either ±1,
depending on the crossing orientation used for the adjacency matrix.

2. The Aitken sequence is strictly increasing in absolute value.

3. The elements of the Aitken lists cluster into M distinct “chunks” (see Figures
5.3-5.8)

4. The final element of the Aitken list is the largest in absolute value.

5. The M ×N rectangle, Möbius strip, and projective plane agree on the first MN
2

elements of their respective Aitken lists.
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6. The Möbius strip and projective plane differ only in the final N elements of
their Aitken lists.

Conjecture 3. In the case of the 2×N projective plane, with N even,

1. If the Aitken sequence is taken to start at the final element of the first chunk,
the N th element of the sequence is Un−1(2).

2. With the exception of the final element, the second chunk of the Aitken list con-
verges to 2 +

√
3.

3. As N increases, the final element of the 2×2N Aitken list converges to 2+2
√

3.

4. As N increases, the final element of the 2n×N Aitken list converges to 2+2
√

3.

5. The kth element of the 2n× 2 Aitken sequence is the kth Fibonacci number.

6. The final element of the Aitken sequence is equal to 2Un−1(2)− 2Un−2(2).

Conjecture 4. In the case of the 4×N projective plane, when N is even,

1. The N
2

through N th elements of the Aitken sequence are given by

Uk

(
3

2

)
− Uk−1

(
3

2

)
for k ≥ 1.

2. The ith element of the first chunk of a 4×N Aitken sequence is the number of
domino tilings of the 2× 2i rectangular grid.

Conjecture 5. In the M × (2N − 1) projective plane,

1. The elements of the Aitken list are typically complex.

2. The real parts of the elements of the Aitken list are very close to the elements
of the corresponding M × 2N Aitken list.

3. The complex parts of the Aitken list are typically very small, with all the varia-
tion happening at a small number of localized points.
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5.0.2 Method

Recall from previous sections that the signed adjacency matrix of any directed graph
is skew symmetric. If A is a skew-symmetric matrix, then by the LDLt decompo-
sition, there exists a lower triangular matrix L and block-diagonal matrix D such that

A = LDLt. (5.1)

In particular, the matrix D has form



0 λ0
−λ0 0

0 λ1
−λ1 0

0 λ2
−λ2 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 λk−2

−λk−3 0
0 λk−1

−λk−1 0
0 λk

−λk 0



where zeros have been omitted. The λs will be real if A is real, and complex if
A is complex. Since column and row operations are determinant-preserving, and
(Pf A)2 = detA, D and A have the same Pfaffian up to sign. The determinant of a
block diagonal matrix is the product of the determinants of the diagonal blocks, and
each diagonal block of D clearly has determinant λ2

i . Therefore,

detA =
k∏
i=1

λ2
i

and

Pf A =
k∏
i=1

λi.

When the LDLt decomposition is applied to the signed adjacency matrix of a projec-
tive plane, the off-diagonal elements take interesting values. The 4× 4 case is shown
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below:

M =



0 1
−1 0

0 1
−1 0

0 −2
2 0

0 −5
2

5
2

0
0 7

5

−7
5

0
0 13

7

−13
7

0
0 −46

13
46
13

0
0 −228

46
228
46

0



.

In general, the off-diagonals are rational for even-by-even matrices (the even case)
and complex for even-by-odd (the odd case). The patterns are easier to recognize in
the even case, so we turn our attention there, for now.

In reference to the 4× 4 matrix above, notice that the nonzero entries of the 2× 2
blocks are inverses, and so are described by the list

1, 1,−2,−5

2
,
7

5
,
13

7
,−46

13
,−228

46

and the negatives thereof. We refer to this list as the Aitken list, and make some
observations:

1. The denominator of each element of an even Aitken list is the numerator of the
previous element. We refer to this as the numerator-denominator pattern.

2. The numerator of the final element is the Pfaffian of the associated matrix.

3. Aitken lists can be associated with Aitken sequences, which are integer sequences
describing the list, given knowledge of (1). In the 4×4 case, the Aitken sequence
is

1, 2, 5, 7, 13, 46, 228

4. As a consequence of (2), an Aitken sequence terminates in the number of perfect
matchings of the associated surface.
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The Aitken block decomposition algorithm, after which these lists are named, is
in the appendix.

Continuing the investigation, we examine the Aitken list for the 2 × 20 projective
plane:

−1, . . . ,−1, 4,
15

4
,
56

15
,
209

56
,
780

209
,
2911

780
,
10864

2911
,
40545

10864
,
151316

40545
,
826806

151316

where I have replaced eight copies of −1 with dots.

Here is a plot of the Aitken values:
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For comparison, here is the Aitken plot of the 2× 200 projective plane:

The final Aitken values of these two lists are, respectively,

826806

151316
and

1234960030599837928682339736709998512373739432964939784153

226013371928974192395830842015030781678432595000982162108

with numerical approximations 5.46410161516297 and 5.46410161513775. The nu-
merators of these fractions are the numbers of perfect matchings of the corresponding
projective grids. A WolframAlpha search for the second value indicates that it is
approximately equal to 2 + 2

√
3. The second to last Aitken value has numerical ap-

proximation 3.73205080756888 ≈ 2+
√

3. This leads us to believe that as N increases,
the final element of a 2 × 2N Aitken list converges to 2 + 2

√
3 and the sequence up

to that element converges to 2 +
√

3.

Turning back to the 2× 20 example, observe that the list is divided into two sign-
separated chunks of length 10. In general, the list for an M ×N projective plane will
contain M chunks of length N

2
, but the potential difference in signs depends on the

crossing orientation used. For example, Tesler and Lu and Wu use different crossing
orientations of the Möbius strip. Here are the Aitken plots corresponding to their
respective orientations of the 4× 10 Möbius grids:
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Figure 5.1: Aitken plot resulting from Tesler’s crossing orientation of the Möbius strip

Figure 5.2: Aitken plot resulting from Lu and Wu’s crossing orientation of the Möbius
strip

The corresponding Aitken lists are

−1, . . . ,−1, 2,
5

2
,
13

5
,
34

13
,
89

34
,−123

89
,− 175

123
,−10

7
,−181

125
,−324

181
,
127

72
,
2288

1143
,

4839

2288
,
10514

4839
,
17138

5257
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and

1, . . . , 1, 2,
5

2
,
13

5
,
34

13
,
89

34
,
123

89
,
175

123
,
10

7
,
181

125
,
324

181
,
127

72
,
2288

1143
,
4839

2288
,
10514

4839
,
17138

5257
.

where the ellipses represent three of the appropriate number. The Aitken lists differ
in sign, but the corresponding integer sequences are identical.

The Aitken sequence for the 2× 20 plane is

1, 4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 826806.

All but the final value match to the sequence A001353 in OEIS. The sequence is
defined by the recurrence

an = 4 an−1 − an−2,

with a0 = 0 and a1 = 1. Incidentally, the same recurrence was found in the combina-
torial approach to describe the number of tilings of the 2× 2N projective plane, only
with a0 = 4, a1 = 6. One formula listed on OEIS is

a(n) = Un−1(2).

The final element an in an Aitken sequence seems to equal an = 6 an−1 − 2 an−2. In
the context of the formula above, this would give us

Tn = 6Un−2(2)− 2Un−3(2)

for the number of tilings of the 2×2N projective plane. By some Chebyshev identities,
this formula can be shown to equal

2Un−1(2)− 2Un−2(2)

which was the formula derived in the conditioning argument.
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The 2× (2n+ 1) case is also interesting:

In the plot above, the real parts of the 2×201 Aitken values are plotted in blue and
the imaginary parts are plotted in red. The real parts of the 2×201 Aitken values are
close to the 2×200 Aitken values, but they do not follow the numerator-denominator
pattern. In the plot above, the only completely real-valued Aitken values are the
−1s, but the imaginary parts are almost always very close to zero, with deviations
occurring in two distinct “swerves” at indices 100 and 150.



58 Chapter 5. Experimental Approach

The even and odd Aitken plots in higher dimensions bear a familial resemblance
to the 2× n case:

Figure 5.3: The 4× 100 Aitken plot.

Figure 5.4: 4× 101; imaginary parts in red
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Figure 5.5: 6× 90

Figure 5.6: 6× 91
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Figure 5.7: 10× 50

Figure 5.8: 10× 51
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Turning to the 4× 2N case, the Aitken list for the 4× 12 projective plane is

. . . ,−1, 2, 5
2
, 13

5
, 34

13
, 89

34
, 233

89
,−322

233
,−229

161
,−653

458
,−933

653
,−1351

933
,−2417

1351
, 8318

2417
, 12480

4159
, 18539

6240
,

221933
74156

, 685678
221933

, 1678802
342839

where I have omitted all but the final −1, with the corresponding Aitken sequence

1, 2, 5, 13, 34, 89, 233, 322, 458, 653,933, 1351, 2417, 8318, 24960, 74156,

221933,685678, 3357604.

Note from the sign changes in the Aitken list that the first “chunk” in the Aitken
plot corresponds to the subsequence

2, 5, 13, 34, 89, 233.

This sequence matches A001519 on OEIS, satisfies the recurrence

an = 3 an−1 − an−2

and is generated by

an = Un(
3

2
)− Un−1(

3

2
).

The same sequence seems to define the first chunk of every 2M × 2N projective grid
Aitken list for M > 1. I have also observed that the first element of the second chunk
is the sum of the two elements preceding it. Finally, an overlay of the 4×50 Aitken val-
ues for the rectangular grid, Möbius strip, and projective plane is shown in Figure 5.9.
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Figure 5.9: Aitken values for 4× 50 rectangle, Möbius strip, projective plane in gold,
red, and blue, respectively.

The Aitken values of the three surfaces agree up to the final Aitken value of the
third chunk, at which only the rectangle differs, and the projective plane and Möbius
strip differ only in the final chunk. This seems to be the case for general M × 2N
Aitken lists.



Conclusion

Although we failed to find a general formula to enumerate perfect matchings on the
M × N projective grid, we have uncovered a few possible approaches. A general
formula will quickly follow from

1. A general formula for the lower triangular matrix that induces the LDLt de-
composition, as described in 5.0.2.

2. A solution, in the context of the projective grid, to the recursion relation that
defines the Aitken block decomposition described in 5.0.2 and in the Appendix.

3. A simultaneous diagonalization of the upper and lower blocks in the matrix in
(4.3), from which would follow a tridiagonalization of the entire matrix.

4. Diagonalization, or tridiagonalization, of the skew-Hermitian matrix described
at the end of Chapter 4.





Appendix A

Aitken block diagonalization

Let A be a skew-symmetric matrix. Then,

A =

(
R Q
−Qt S

)
where R and S are square, skew-symmetric and Q is a rectangular matrix filling the
space left by R and S. In practice, we will always take S to be 2 × 2. Aitken’s
algorithm harnesses the identity

Pf (A) = Pf (R +QS−1Qt) Pf (S).

For a skew-symmetric matrix A,

Aitken list (A, Slist = []):
if A is 2× 2:

Slist += Pf (A)
return Slist

else:
R = A[: −2, : −2]
S = A[−2 :,−2 :]
Q = A[: −2,−2 :]
Slist += Pf (S)
return Aitken list(R +QS−1Qt, Slist)

For example, we’ll look at the 4 × 2 case. We begin by setting A1 to the signed
adjacency matrix:

A1 =


0 1 1 0 0 0 0 2i
−1 0 0 1 0 0 2i 0
−1 0 0 −1 1 −i 0 0

0 −1 1 0 −i 1 0 0
0 0 −1 i 0 1 1 0
0 0 i −1 −1 0 0 1
0 −2i 0 0 −1 0 0 −1

−2i 0 0 0 0 −1 1 0

 R1 =


0 1 1 0 0 0
−1 0 0 1 0 0
−1 0 0 −1 1 −i

0 −1 1 0 −i 1
0 0 −1 i 0 1
0 0 i −1 −1 0


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Q1 =


0 2i

2i 0
0 0
0 0
1 0
0 1

 S1 =
(

0 −1
1 0

)
.

Then

A2 = R1 +Q1S
−1
1 Qt

1 =


0 5 1 0 −2i 0
−5 0 0 1 0 2i
−1 0 0 −1 1 −i
0 −1 1 0 −i 1
2i 0 −1 i 0 2
0 −2i i −1 −2 0

 .

Moving forward,

R2 =

(
0 5 1 0
−5 0 0 1
−1 0 0 −1
0 −1 1 0

)
Q2 =

(−2i 0
0 2i
1 −i
−i 1

)
S2 =

(
0 2
−2 0

)
.

Accordingly,

A3 = R2 +Q2S
−1
2 Qt

2 =

(
0 3 2 i
−3 0 i 2
−2 −i 0 −2
−i −2 2 0

)

Q2 =
(

2 i
i 2

)
R2 =

(
0 3
−3 0

)
S2 =

(
0 −2
2 0

)
.

Finally,

A4 = R3 +Q3S
−1
3 Qt

3 =
(

0 11
2

− 11
2

0

)
= S4.

The tridiagonalized form of the original matrix is thus

2MN⊕
k=1

Sk =


0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 − 11

2
0 0 0 0 0 0 11

2
0

.
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