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Fig. 1. We allow users to perform robust Boolean operations in real time on non trivial meshes containing thousands of triangles. In this example, the user first
selects an arbitrary number of deformation handles (left). During the interactive session the handles can be freely moved in space, and the system applies both
As-Rigid-As-Possible deformation [Sorkine and Alexa 2007] and our robust Booleans in real time. The two meshes of the armadillo contain 50K triangles each.

Boolean operations are among the most used paradigms to create and edit
digital shapes. Despite being conceptually simple, the computation of mesh
Booleans is notoriously challenging. Main issues come from numerical ap-
proximations that make the detection and processing of intersection points
inconsistent and unreliable, exposing implementations based on floating
point arithmetic to many kinds of degeneracy and failure. Numerical meth-
ods based on rational numbers or exact geometric predicates have the needed
robustness guarantees, that are achieved at the cost of increased computation
times that, as of today, has always restricted the use of robust mesh Booleans
to offline applications. We introduce an algorithm for Boolean operations
with robustness guarantees that is capable of operating at interactive frame
rates on meshes with up to 200K triangles. We evaluate our tool thoroughly,
considering not only interactive applications but also batch processing of
large collections of meshes, processing of huge meshes containing millions
of elements and variadic Booleans of hundreds of shapes altogether. In all
these experiments, we consistently outperform prior robust floating point
methods by at least one order of magnitude.
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1 INTRODUCTION
Combining 3Dmeshes through Boolean operations is a fundamental
functionality to define complex shapes via Constructive Solid Geom-
etry (CSG). Despite being intuitive to the user, mesh Booleans are
complex to implement correctly since small numerical errors may
lead to unpredictable topological errors. Interactive modeling soft-
ware is mostly based on non-robust methods to achieve interactivity
during modeling, but this leads to significant workflow problems
for users, as anecdotally shown by the galleries of failure cases that
populate user forums. Professional software such as Autodesk Maya
and Blender openly report instability issues in presence of challeng-
ing configurations such as coplanarity [Blender Doc 2022; Maya
Doc 2022].

Academic research has been studying the problem for a long
period, developing robust algorithms and sometimes providing free-
to-use implementations, such as [Jacobson et al. 2018]. To this day
though, robust methods either demand the use of integer coor-
dinates everywhere [Trettner et al. 2022], making Booleans not
natively compatible with alternative floating point geometry pro-
cessing tasks, or are still too slow to secure interactive frame rates,
relegating their use to offline modeling applications, e.g. for engi-
neering and fabrication [Alderighi et al. 2019, 2018; Attene 2018;
Dai et al. 2018; Fanni et al. 2018; Garg et al. 2016; Jacobson 2017;
Muntoni et al. 2018; Nuvoli et al. 2019; Ureta et al. 2016; Yao et al.
2017].

In many existing methods, the calculation of a mesh Boolean is
framed as a two step process. In the first step, conflicts betweenmesh
elements are resolved, splitting triangles in order to incorporate
intersection lines in the connectivity. In the second step, each mesh
element is deemed as being inside or outside each input object. The
result of a Boolean is eventually computed as a subset of the mesh
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Fig. 2. Computing a Boolean between two shapes amounts to: (i) resolve mesh intersections, creating a set of conforming surface patches; (ii) merge the
patches to form the output depending on the Boolean operator of choice.

Fig. 3. Two failure examples of Cork [Bernstein 2013].The Euler character-
istic of the 2D version (middle) of 𝐴 \ 𝐵 is -50. The one of the 3D version
(right) is 16. The Boolean with thickened disks was also tested on the the
experimental tool available in Geogram/Graphite [Levy 2022] – which is
restricted to solid objects – leading the program to a crash.

elements generated in the first step, filtered according to the in-
side/outside labeling computed in the second step. For example, the
union𝐴∪𝐵 of two triangle meshes𝐴 and 𝐵 is the set of triangles in𝐴
that are outside 𝐵 plus the triangles in 𝐵 that are outside𝐴 (Figure 2).

The major difficulty in implementing a Boolean pipeline comes
from the use of finite precision arithmetic, which does not allow
to exactly represent and test intersection points. In practice, this
translates into a variety of artifacts that span from the definition
of incomplete intersection lines to topologically inconsistent par-
titions that make the inside/outside relations ill-defined. A typical
failure is shown in Figure 3, where the subtraction between two
largely overlapping discs has significant issues. Robust methods for
inside/outside partitioning exist, but they are either computationally
inefficient [Jacobson et al. 2013] or are efficient at query time but
are approximate and require initialization [Barill et al. 2018]. The
alternative is to eschew the use of floating point arithmetic and rep-
resent point coordinates with rational numbers [Zhou et al. 2016]
or implicitly [Diazzi and Attene 2021]. These techniques ensure a
topologically correct result at the cost of 1 to 2 orders of magnitude
slow down w.r.t. floating point arithmetic, and are therefore not
suitable for interactive use either.

In this paper we bring the robustness of exact floating point meth-
ods into the world of interactive applications for general meshes, by
improving the efficiency of exact algorithms by at least one order
of magnitude compared to the state of the art, and without any
pre-processing. As demonstrated in Section 6, this makes robust
mesh Booleans available when interactively editing meshes with up
to 200K triangles on commodity laptops. Besides interactive appli-
cations, our algorithm performs significantly better than the state
of the art in many practically relevant offline applications, span-
ning from batch processing of large collections of data, Booleans

between production-level high resolution meshes with millions of
triangles, and variadic Booleans involving hundreds of input shapes.

Our improvements are made possible by significant contribu-
tions to both steps of the Boolean pipeline. For the first part, our
method is based on a derivation of the mesh arrangements described
in [Cherchi et al. 2020], which we improved as detailed in Section 4,
obtaining an average speedup of more than 5×. For the second part,
we exploit the guaranteed topological correctness of the arrange-
ment, coupling it with a robust ray casting approach that allows to
reliably compute the inside/outside labels by throwing a single ray
per patch. Taking inspiration from robust predicates [Attene 2020;
Lévy 2016; Shewchuk 1997], we formulate the inside/outside tests
as a cascaded sequence of ray casting methods, sorted from faster
but non-robust to slower but robust. We eventually resort to fully
exact, thus fully robust, ray casting only when strictly necessary. As
detailed in Section 5 this solution is up to 100× faster than existing
approaches based on topological flooding [Attene 2014] or patch
graph processing [Zhou et al. 2016] used by previous exact meth-
ods, and also scales optimally to big meshes composed of millions
of triangles and variadic Booleans involving hundreds of meshes
(Section 6).

All in all, we believe this work considerably improves upon the
state of the art in terms of numerical speedup and, perhaps more
importantly, it brings robustness to interactive applications. Our
experiments begin to explore ideas on how robust Booleans can
be used in real-time in combination with other geometry process-
ing tasks, though this is just scratching the surface of what future
interactive applications may be able to do. To support these ex-
periments together with future research, we make our prototype
implementation available as open source at the following link.

2 STATE OF THE ART
Boolean compositions can be displayed without computing an ex-
plicit 3D model of the result. This is sufficient for visualizing the
result, and for a few other specific applications [Baxter and Wrigh
2019; Chen et al. 2022; Zanni et al. 2018]. In general though, modeling
systems require an explicit representation of the Boolean composi-
tion and, depending on the target application, its calculation may
need to be robust and exact. Existing algorithms can be classified
based on the numerical model employed, e.g. floating point vs exact
arithmetic, the geometric approach, e.g. surface vs volume-based,
or the type of result they produce, e.g. exact vs approximated.
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2.1 Numerical models
The easiest approach to implement Boolean operations is to rely
on floating point arithmetic. Due to the hardware support, float-
ing point numbers are by far the fastest approach and are indeed
used widely in both academic [Levy 2022] and professional imple-
mentations, such as AutoDesk Maya and Blender. As mentioned in
the introduction, round-off errors make this approach quite fragile,
which in turn may lead to significant topological errors, shown for
example in Figure 3. On the other extreme, unconditional robustness
may be obtained by replacing floating point numbers with exact
number types, for example with rational numbers [Schifko et al.
2010]. The use of exact arithmetic leads to unacceptable slowdown,
by one or more orders of magnitude compared to floating point.

For some geometry processing tasks, robustness can be obtained
by just guaranteeing that the program flow is exact independently of
round-off errors. This is done by evaluating geometric predicates ex-
actly and quickly through arithmetic filtering [Lévy 2016; Shewchuk
1997]. A typical predicate calculates the sign of a polynomial and,
as long as the sign is correct, the program flow is guaranteed to
be consistent. Arithmetic filtering [Devillers and Preparata 1998]
makes it possible to evaluate a polynomial using floating point arith-
metic but, along with it, an upper bound for the rounding error is
computed. If the magnitude of the evaluated expression is larger
than the error bound, its sign is guaranteed correct. If not, the filter
fails, and the predicate is re-evaluated using arbitrary precision. If
the failure rate is low enough, absolute precision rarely comes into
play and the slowdown is acceptable [Magalhães et al. 2017], in
particular when parallel architectures are employed [de Magalhães
et al. 2020].
Arithmetic filtering can only be employed if the predicate input

is guaranteed to be globally consistent. It is therefore used only for
tasks where the input comes from the ground truth, such as in mesh
generation, where the predicate works directly on the coordinates of
the input points [Hang 2015; Shewchuk 1996]. For geometric tasks
that rely on intermediate constructions, the state of the art solution
is lazy exact evaluation [Pion and Fabri 2011], which is still too
slow for interactive applications. As observed multiple times, for
the case of mesh Booleans the only intermediate constructions are
the intersection points [Bernstein and Fussell 2009; Campen and
Kobbelt 2010a,b; Sugihara et al. 1989]. Such points can be implicitly
represented as the intersection of input primitives and the point’s
expression can be composed with the predicate’s expression, en-
abling the use of arithmetic filtering [Attene 2020]. Our method
exploits this latter technique to perform fast and exact geometric
queries involving any combination of input and intersection points.

2.2 Surface and volume-based methods
Methods that implement one or both of the steps of the Boolean
pipeline may work either with an explicit volumetric mesh or with
a surface mesh enclosing the volumes of interest. In the general
case, explicit volumetric representations make the algorithm easier
(e.g. for in/out labeling) but are less efficient due to the increased
dimensionality. Surface based methods are a bit more convoluted
but in general more parformant. Our method belongs to this latter
category.

Volume-based. Pioneering works supporting Boolean operations
were mainly based on simple volumetric primitives (e.g., spheres,
cylinders, half-spaces) or on implicit representations formore generic
inputs [Pasko et al. 1999; Wyvill et al. 1999]. Besides some notable
exception [Sellán et al. 2021], the growing shape complexity in mod-
ern geometric modeling has gradually pushed the use of explicit
mesh-based representations. Based on CGAL’s exact kernel, in [Hu
et al. 2018] input meshes are used to partition the space into con-
forming volumetric cells, obtaining a mesh arrangement. Its faster
version [Hu et al. 2020] uses floating point calculations to create a
conforming tetrahedral mesh, though with no formal guarantees.
The creation of a volumetric mesh which conforms to the input was
also used in [Diazzi and Attene 2021], where exact arithmetic was
replaced by indirect predicates and Boolean operations could be
extracted at a much higher speed while maintaining the correct-
ness guarantees. The problem of partitioning the space based on
input facets was also tackled in [Paoluzzi et al. 2020, 2019] based on
floating point computation, using the language of geometric and
algebraic topology. In [Tao et al. 2019], the fragility of floating point
computation was reduced by using axis-aligned planes to cut the in-
put triangles and define the volumetric cells, but being purely based
on floats this method does not provide guarantees of correctness.

Surface-based. Among surface-based methods, exact construc-
tions are used in [Schifko et al. 2010] while walking on the input
surfaces and splitting triangles when intersections are encountered.
Since using exact constructions is expensive, [Attene 2014] proposes
a hybrid approach that is still based on walking on the outer sur-
face, but uses floating point constructions whenever the rounding
is harmless, while still switching to exact arithmetic when neces-
sary. In [Xu and Keyser 2013], the topology of the resulting surface
is guaranteed correct thanks to a clever use of orientation predi-
cates with no need of exact constructions. Instead of walking on the
surface, [Mei and Tipper 2013] uses a temporary octree to quickly
find the candidate pairs of intersecting triangles. [Zhou et al. 2016]
exploit CGAL’s exact kernel to partition the space into cells, each
labeled with winding numbers w.r.t. the input. Boolean operations
are performed by simply selecting a subset of the cells according to
their labels. The algebraic composition of intersection points and
predicates introduced in [Attene 2020] was exploited in [Cherchi
et al. 2020] to quickly transform an arbitrarily self-intersecting soup
of triangles into a well-formed simplicial complex. Despite being the
fastest arrangement algorithm available, the original implementa-
tion of [Cherchi et al. 2020] is still not sufficiently fast for interactive
applications. The first step of our Boolean pipeline is heavily based
on [Cherchi et al. 2020], but we substituted some of its modules and
redesigned the data structures and algorithm flow paths to make
it more amenable to parallel execution (Section 4), obtaining an
average speedup of 5× (Section 6).

2.3 Exact and approximated methods
When applications tolerate an approximation, input vertex coor-
dinates can be converted to triangle plane coefficients that can be
easily combined to implement Boolean operations [Bernstein and
Fussell 2009]. Since the conversion is not exact, the result typically

3
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needs to be repaired. Other noticeable options to produce approxi-
mated Booleans are [Barill et al. 2018] and [Hu et al. 2020] where
robustness and speed are combined. In [Pavić et al. 2010], regions
close to the intersection lines are finely remeshed instead of being
exactly cut.

In some cases, however, approximations cannot be tolerated. As
an example, consider an interactive modeling system where a de-
signer can perform numerous, subsequent and unpredictable opera-
tions: approximation would quickly accumulate and lead to poor
results. In these cases, exact results can be obtained based on slow ar-
bitrary precision [Schifko et al. 2010; Zhou et al. 2016], or by cleverly
considering the floating point rounding. In [Campen and Kobbelt
2010a] input edges are split so that they become short enough to
guarantee that the coordinate-plane conversion in [Bernstein and
Fussell 2009] is lossless and can then be used to produce Boolean
composition and other interesting modeling operations [Campen
and Kobbelt 2010b] with no repairing. The problem with these meth-
ods is that the plane-based result becomes exceptionally complex
when operations are cascaded. In an attempt to reduce this effect,
in [Sheng et al. 2018] both the coordinates and the planes are used to
reduce the need for conversions. Alternatively, an effective approach
to simplify intermediate plane-based representations has been re-
cently reported in [Nehring-Wirxel et al. 2021]. In a recent trend of
works, indirect predicates are used as a replacement for intermediate
constructions when calculating mesh arrangements [Cherchi et al.
2020] or polyhedral space subdivisions [Diazzi and Attene 2021].
When used to calculate mesh Booleans, this approach guarantees
robustness without sacrificing speed. Nonetheless, if the explicit
volume is not necessary for the final application, its calculation
represents a useless overhead.

Snap rounding. Though exact methods are clearly useful, they
have a common problem when the result needs to be saved to a
file or passed to other, non exact, algorithms. In these cases exact
or implicit coordinates must be converted to inexact floating point
values and the necessary approximation may invalidate the model
by introducing degenerate or intersecting elements. A provably
correct and efficient solution to this problem is still elusive and
existing algorithms are either impractical [Devillers et al. 2018; For-
tune 1999] or do not guarantee to produce a correct result in all
the cases [Milenkovic and Sacks 2019]. However, existing heuristics
proved to fail only in an extremely small percentage of practical
cases [Zhou et al. 2016]. It is worth noticing that meshes created
with exact methods endow topological properties that cannot be
obtained by approximate methods. For example, the result of a
Boolean operation between two watertight manifold meshes that
do not touch tangentially is guaranteed to be manifold watertight.
Properties of this kind may be relevant also for downstream applica-
tions, regardless of the geometric degeneracies that snap rounding
may introduce in the output.

2.4 In/out classification
A common problem inmost mesh Boolean algorithms is determining
whether elements are part of the result or not. In surface-basedmeth-
ods, these elements are triangles and one needs to know whether
they bound the result or not. In volume-based methods, elements

are cells that might or might not be part of the (volumetric) result. A
widely used approach for surface-based methods is to walk on the
surface and track the portions that belong to the result based on geo-
metric reasoning [Attene 2014; Schifko et al. 2010]. Exact methods
guarantee that the input arrangement is well-formed, hence cells
in a volumetric decomposition can be easily classified by starting
from the infinite external cell and possibly switching from exte-
rior to interior (and vice versa) when portions of the input surface
are crossed. These approaches are clearly incompatible with naive
floating point implementations, because of the lack of topological
guarantees. When the input has surface holes or self-intersects in
an ambiguous way, the concept of generalized winding number
proved to be effective [Jacobson et al. 2013], though in some cases
algorithms based on graph cuts provide better solutions [Diazzi
and Attene 2021]. Since a naive computation of winding numbers
is too slow in practice, a faster though approximate algorithm was
proposed in [Barill et al. 2018]. These methods are in general slower
than topological walking, but constitute an unavoidable cost to
pay for inexact methods based on naive floating points. The in-
side/outside classification system we use in this paper is based on
exact ray casting (Section 5) and proved to be much faster than
both types of approaches (Section 6), also exhibiting a much better
scalability on complex variadic Booleans containing hundreds of
input shapes (Section 6.4).

Very recently, a robust and interactive Boolean method called
EMBER was presented [Trettner et al. 2022]. This algorithm is based
on the use of homogeneous integer numbers to represent point
coordinates exactly. Thanks to aggressive parallelization, EMBER
is the fastest existing method for mesh Booleans and is capable of
operating interactively on meshes containing millions of elements.
On the negative sides, the choice of integer coordinates makes
EMBER not natively compatible with existing geometry processing
tasks, demanding a (lossy) conversion of input point coordinates
that must occur at any frame for interactive applications (in case
Booleans are chained with some float-based task). Furthermore,
their parallelization model requires splitting the input meshes into
smaller chunks, introducing unnecessary seams in addition to the
intersection lines, possibly spoiling the output of algorithms that
exploit mesh conformity, such as [Nuvoli et al. 2019]. All in all, we
believe that EMBER and our system are orthogonal takes on fast
and robust Booleans. EMBER favors speed at the price of requiring
changes to the input meshes. We favor compatibility with existing
geometry processing algorithms by keeping mesh inputs intact, at
the price of possibly slower execution speeds.

3 OVERVIEW
Ourmethod takes as input a set of input meshes𝑀1, 𝑀2, . . . , 𝑀𝑛 , and
a Boolean operator, namely union, intersection, subtraction. Input
meshes are always assumed to unambiguously enclose a volume,
that is, they are manifold, watertight and with no self-intersections.
The output is a mesh 𝐵 that contains the result of applying the
Boolean operator to the input meshes. By definition of Boolean, 𝐵 is
a sub-volume of the input, hence it is bounded by portions of input
triangles. Mapping the result of a Boolean to the input shapes is

4
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Fig. 4. First step of the Boolean pipeline. We start from an generic triangle soup (left) and detect intersection points and lines (1). We then split triangles to
incorporate new points first (2), and then segments (3). The output is a well formed simplicial complex (right).

useful in many applications, therefore for each output triangle we
propagate information on its origin. Note that an output triangle
can belong tomany input meshes, for example in the case of meshes
that overlap at a coplanar region.
As anticipated in Section 1, the Boolean algorithm may be regarded
as a two-steps pipeline. In the first step, intersecting mesh elements
are split and intersection lines are incorporated in the elements
connectivity. When exact methods are used, splitting intersecting
elements is guaranteed to yield a well formed simplicial complex,
where surface patches are bounded by closed loops of non-manifold
edges, namely the intersection lines. We take advantage of this prop-
erty in the second phase of our algorithm, that takes the surface
patches as input and processes each of them to determine whether
it is positioned inside or outside with respect to each of the input
meshes𝑀1, 𝑀2, . . . , 𝑀𝑛 . The output of the algorithm is eventually
obtained by filtering the patches according to this information. For
example, the union of two triangle meshes 𝑀1 and 𝑀2 (𝑀1 ∪𝑀2)
is the set of patches of 𝑀1 that are outside 𝑀2 plus the patches of
𝑀2 that are outside𝑀1. In the following two sections, we detail our
technical contributions to each step of the pipeline. Visual examples
for all Boolean operators we support are shown in Figure 2.

4 INTERSECTION RESOLUTION
From the perspective of thismodule, the inputmeshes𝑀1, 𝑀2, . . . , 𝑀𝑛

can be seen as a soup of possibly intersecting triangles. We there-
fore flatten all input triangles into a single array, associating to each
triangle a tag that maps it to the input mesh it belongs to.

At the highest level, all existing algorithms for intersection reso-
lution operate in a similar fashion, detecting intersections between
triangles first, and eventually proceeding with mesh refinement,
inserting intersection points first, and then segments [Attene 2014;
Cherchi et al. 2020; Zhou et al. 2016] (Figure 4). Differences between
the various methods are in the fine technical details, such as how
intersection points are represented and processed, or how segment
insertion is performed. These choices are fundamental to ensure that
the algorithm is fast, memory efficient, amenable to parallelization
and able to scale well on large datasets. We based our implementa-
tion of the splitting step on the method described in [Cherchi et al.
2020]. Even though this is the fastest existing method in its class, it
is not fast enough for interactive use on our target mesh size. We
therefore introduced a few important improvements to the original
pipeline, enhancing the detection of intersections and the insertion
of intersection lines (steps 1 and 3 in Figure 4). Overall, we obtained

a speed up factor of 3 − 8× w.r.t. the original algorithm of [Cherchi
et al. 2020]. In the remainder of this section we detail all the major
improvements that we introduced. For a broader discussion of the
whole algorithm we refer the reader to the original article.

Cached Predicates. To obtain unconditional numerical robustness
all operations involving the detection of intersections, point in tri-
angle location for vertex insertion and re-triangulation for segment
insertion (steps 1,2,3 in Figure 4) must be based on exact orientation
predicates [Shewchuk 1997], which therefore constitute a compu-
tational bottleneck for the splitting algorithm. The most frequent
operation is the so called orient3D, which locates a point in space
with respect to a given plane. Given a point 𝑝 and a plane passing
through points 𝑎, 𝑏, 𝑐 , the orientation amounts to computing the
sign of the determinant

𝑜𝑟𝑖𝑒𝑛𝑡3𝐷 (𝑎, 𝑏, 𝑐, 𝑝) =

��������
𝑎𝑥 𝑎𝑦 𝑎𝑧 1
𝑏𝑥 𝑏𝑦 𝑏𝑧 1
𝑐𝑥 𝑐𝑦 𝑐𝑧 1
𝑝𝑥 𝑝𝑦 𝑝𝑧 1

��������
In its classical form, this determinant is evaluated from scratch at
each predicate call. We observe that in our algorithm planes are
known a priori (they are the supporting planes of the input triangles)
and are tested multiple times against several different points. It is
therefore convenient to compute the plane based portion of the
determinant once and to use it each time the same plane is tested
against a new point. Starting from this intuition, we rewrite the
4 × 4 determinant above as

𝑜𝑟𝑖𝑒𝑛𝑡3𝐷 (𝑎, 𝑏, 𝑐, 𝑝) = − 𝑝𝑥

������ 𝑎𝑦 𝑎𝑧 1
𝑏𝑦 𝑏𝑧 1
𝑐𝑦 𝑐𝑧 1

������ + 𝑝𝑦

������ 𝑎𝑥 𝑎𝑧 1
𝑏𝑥 𝑏𝑧 1
𝑐𝑥 𝑐𝑧 1

������
− 𝑝𝑧

������ 𝑎𝑥 𝑎𝑦 1
𝑏𝑥 𝑏𝑦 1
𝑐𝑥 𝑐𝑦 1

������ +
������ 𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧
𝑐𝑥 𝑐𝑦 𝑐𝑧

������
thus obtaining a perfect separation between plane coefficients and
point coordinates. We exploit this latter equation to cache, for each
input triangle, the four 3 × 3 determinants, thus reducing each
call to orient3D to a simple scalar product in 4D. Similar caching
techniques were recently exploited for the tetrahedralizations of
huge point clouds composed of billions of points [Marot et al. 2019]
and are also used in Boolean pipelines based on plane representa-
tions [Nehring-Wirxel et al. 2021].
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Segment Insertion. To make sure that intersection lines are cor-
rectly incorporated in the outputmesh, not only intersection vertices
but also intersection segments must be inserted (step 3 in Figure 4).
Inserting a segment amounts to eliminating, from the current tes-
sellation, all triangles that conflict with it, and then re-triangulate
the so-generated polygonal pocket, while making sure that the
wanted segment is part of the new tessellation. This is a classical
yet widely studied problem in computational geometry [Shewchuk
and Brown 2015]. In [Cherchi et al. 2020] segment insertion was
performed using the earcut algorithm, which in its best implemen-
tation achieves 𝑂 (𝑛2) worst case complexity [Eberly 2008], with 𝑛
being the number of polygon segments. We substituted earcut with
a method recently introduced in [Livesu et al. 2021], which ensures
optimal deterministic𝑂 (𝑛) complexity in all cases and is two orders
of magnitude faster than the previously best performing existing
method [Shewchuk and Brown 2015].

Low-level Implementation. To further improve execution speed,
we redesigned the underlying data structure to increase the possibil-
ities for parallel execution. Overall, we observe that the most costly
operations of the splitting algorithm are the removal of duplicate
and degenerate elements, the construction of adjacencies, the inter-
section computations and the final triangulation. The main costs of
these operations can be reduced by executing their core components
in a data-parallel manner, giving us high speed up while maintaining
the same algorithm pipeline. We also optimize octree construction
by using nested parallel constructs. Parallel constructs are executed
by a work-stealing scheduler that ensures good balanced work-
loads. Note that we perform degeneracy removal and rebuilding
of adjacencies each frame to ensure robustness while allowing any
modeling operation to be performed by users. We considered addi-
tional parallelization opportunities in patch construction and final
mesh extraction. In these case though, parallelism is harder to ex-
tract since it requires fine-grained locking. In fact, we tested these
approaches but without gaining speed up, suggesting that a meshlet-
based approach is likely needed to extract further parallelism from
the pipeline [Mahmoud et al. 2021].
The final improvement we implemented was the use of special-

ized data structures to improve cache coherency, reduce memory
fragmentation due to deletions, and reduce the overall pressure on
the system memory allocator. Regardless of the data structure used
to store the mesh, and the size of the mesh, many small memory
operations, including deletions, are required to update the data struc-
ture, and these updates have significant performance implications.
In the splitting step, the most expensive low-level data structures
are sets, dictionaries and sparse graphs stored as adjacency lists. We
optimize these data structures with three techniques. First, we use
hash tables based on the swiss table design for sets and dictionaries,
to both save memory and improve cache coherency. Second, we use
arena allocators to reduce the pressure on the memory allocator
and reduce overall fragmentation. Third, we use dynamic arrays
with small-array optimization for adjacency lists. Overall these tech-
niques provide a relevant speedup throughout the pipeline.

ALGORITHM 1: Inside/outside classification
Input: input meshes𝑀1, . . . , 𝑀𝑛 and their split patches 𝑃1, . . . , 𝑃𝑚
Output: relative position of patches 𝑃1, . . . , 𝑃𝑚 w.r.t. the input meshes𝑀1, . . . , 𝑀𝑛

for each patch 𝑃 do
Initialize 𝑃 as being outside of𝑀1, . . . , 𝑀𝑛 ;
Define a ray 𝑟 starting at point 𝑝 ∈ 𝑃 towards point at infinite 𝑝∞ ; (Sec. 5.1)
for each input mesh𝑀 do

compute and sort intersections between 𝑟 and𝑀 ; (Sec. 5.2)
if 𝑟 and𝑀 intersect then

find intersecting triangle 𝑡 ∈ 𝑀 ; (Sec. 5.3)
compute volume of tetrahedron (𝑡, 𝑝∞) ; (Fig. 5)
if volume is negative then

set 𝑃 as being inside𝑀 ;
end

end
end

end

Fig. 5. For each manifold patch in the simplicial complex we robustly devise
inside/outside relationships with input shapes with exact ray casting. We
shoot a ray towards infinite and analyze its first intersection with all the
input meshes. Given an intersection point 𝑖 and the triangle 𝑡𝑖 containing
it, the ray traverses the mesh from inside to outside if the volume of the
tetrahedron (𝑡𝑖 , 𝑝∞) is negative, from outside to inside otherwise. This check
can be performed exactly with arithmetic orientation predicates.

5 INSIDE/OUTSIDE CLASSIFICATION
In this second phase, we consider the simplicial complex computed
at the previous step and determine, for each of its manifold sur-
face patches, the relative position with respect to the input meshes
𝑀1, . . . , 𝑀𝑛 . Differently from the previous step, which is an ameliora-
tion of an existing technique, the computation of the inside/outside
classification is entirely different from the topological approaches
used in prior art [Attene 2014; Zhou et al. 2016]. Our key insight is
that the inside/outside relationship between a patch and an input
mesh𝑀 can be determined by casting a ray from any patch point
along an arbitrary direction and then analyzing its intersection with
𝑀 (Figure 5, right). An important aspect of such an approach is
that the algorithm scales with the number of manifold patches and
not with the number of triangles in the mesh. Since the former is
typically orders of magnitude lower than the latter and the cost
of casting a single ray is almost negligible, the algorithm becomes
remarkably fast. In our tests, we achieved up to 100× speedup com-
pared to prior art, while also showing better scalability on variadic
Booleans involving numerous input shapes (Section 6).

Algorithm 1 summarizes the main steps of our ray casting ap-
proach. For each input patch 𝑃 , we construct a ray 𝑟 that emanates
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from it and points towards a point at infinity 𝑝∞ that is guaranteed
to stay outside of all input meshes. We then test intersections be-
tween 𝑟 and each input mesh𝑀 . If at least an intersection occurs,
we select the first of them, that is, the one that is closest to the point
of 𝑃 from where 𝑟 emanates. To decide whether 𝑟 traverses𝑀 from
the inside to the outside or vice-versa, we compare the ray direction
with the outfacing local surface normal. As shown in Figure 5 (left),
such a check translates into the evaluation of the signed volume
of a tetrahedron, which can be computed exactly using orientation
predicates.
This ray casting approach poses several technical challenges.

First, it can only be applied to exact arrangements computed with
robust predicates or rational numbers, because alternative non-
robust techniques cannot guarantee the absence of gaps or tiny
topological channels connecting different patches. Second, intersec-
tion detection must be exact as well, because approximations in the
computation may introduce artificial intersections or miss existing
ones. Third, ambiguities that arise when the ray and the surface are
tangent must be properly handled to ensure the correctness of the
result. To make things even worse, we recall that intersection points
inserted during the construction of the simplicial complex do not
have known explicit coordinates, therefore computations must be
fully compatible with implicit point representations. Note that this
process is intrinsically unstable and demands absolute precision.
A ray that misses an intersection because of a tiny geometric or
topological imperfection may produce a wrong classification for an
arbitrarily big patch. In the remainder of the section, we detail the
main algorithmic steps, addressing all these aspects.

5.1 Ray definition
Given a patch 𝑃 , we need to define a ray that starts at a point
𝑝 ∈ 𝑃 and passes through an infinite point 𝑝∞. If 𝑝 is known,
the infinite point 𝑝∞ can be easily defined by translating 𝑝 along
one of the major axes by a quantity that is bigger than the extent
of the bounding box of the input scene along the same axis (this
guarantees that 𝑝∞ is outside all input meshes). Moreover, having
an axis-aligned ray considerably simplifies the next ray-triangle
intersection analysis as it always allows to drop one coordinate and
operate on a 2D plane instead of the 3D space.
The main difficulty in this phase is the definition of the emanat-

ing point 𝑝 . In the simplest case, the patch 𝑃 contains at least one
input vertex with known ground-truth floating point coordinates
in its interior, which can be used as a starting point for 𝑟 . How-
ever, the simplicial complex may also contain patches that do not
include input vertices or do not contain interior vertices at all. In all
these cases, defining explicit floating point coordinates for 𝑝 may
be intrinsically impossible as any rounding risks to detach the ray
𝑟 from the patch 𝑃 and possibly trigger errors in the classification.
As mentioned in previous sections, numerical issues may be fully
avoided by switching to costly rational numbers to represent point
coordinates, at the cost of a major slowdown. Instead, inspired by
the cascaded approaches used by filtered predicates [Attene 2020;
Lévy 2016; Shewchuk 1997], we define the ray 𝑟 by first attempting
to find a satisfactory approximate floating point solution, while we
resort to guaranteed exact rational numbers only as backup strategy.

Our main idea is that if we can define a ray that starts from beneath
𝑃 and is guaranteed to traverse the patch at some internal point
𝑝 ∈ 𝑃 , we can simply sort all the intersections we find, skip all
intersections that occur up to 𝑝 , and perform the inside/outside
classification by considering the first intersection that occurs after
𝑝 .

Our strategy is as follows: we pick a random triangle 𝑡 ∈ 𝑃 and
convert the coordinates of its implicit vertices into explicit floats,
computing the approximate triangle barycenter 𝑏𝑡 . To make sure
that 𝑏𝑡 stays beneath triangle 𝑡 we push the point backwards along
the same axis used to define 𝑝∞. If the snap rounding of the triangle
vertices succeeds, the ray starting from 𝑏𝑡 and passing through
𝑝∞ intersects triangle 𝑡 , hence 𝑃 , giving us a ray with which to
perform the in/out classification. Unfortunately, this intersection
is not guaranteed to exist because the conversion to floating point
coordinates may move the ray away. Thanks to the axis alignment
we can efficiently and reliably test that thewanted intersection exists
with a simple 2D point in triangle test, performed considering the
orthogonal projection of both 𝑡 and 𝑏𝑡 along the ray direction. If the
test fails we attempt to produce the same construction with another
triangle of 𝑃 , until we find a valid one. If no valid triangle can be
found, we compute the exact barycenter with rational numbers and
perform an exact ray casting. In practice, patches that do not contain
input vertices are rare, and failures of our approximate strategy are
even more so. In our large scale benchmark (Section 6.2) we tested
3.8K Booleans, shooting more than 80K rays overall. Only the 2%
of these rays necessitated to perform snap rounding. In the 97% of
these cases we successfully defined a valid ray at the first triangle
we tried. In 2% of the cases we tested two triangles, and in 0.56% of
the cases we tested three triangles. In the worst case, we tested five
triangles per patch, and we never hit the last step of our cascaded
approach based on rational numbers.

5.2 Intersection detection
In a typical ray casting implementation, ray-triangle intersections
are computed using the efficient Möller–Trumbore algorithm [1997].
Unfortunately, our exactness requirements make it impossible to
rely on such an algorithm, which involves floating point operations
that accumulate error and it is also non stable in case of coplanarity.
For the same reason, acceleration data structures that rely on non
axis aligned planes or spatial hashing cannot be used, because ray
intersection queries would require arithmetic operations that in-
troduce unwanted approximation errors. In our implementation,
we use a plain octree as acceleration structure and perform ray
casting by testing intersections between the ray bounding box and
each octant. Note that, for efficiency, this is the same acceleration
structure used in the splitting part to detect triangle intersections.
Since both the octree and the ray are axis aligned we have two
nice properties: the bounding box of the ray is tight (it’s the ray
itself), and the intersection with the octant reduces to a 2D check
which involves only four comparisons between floats. For each leaf
octant intersected by the ray we test all the triangles it contains.
Once again, we exploit the axis aligned nature of our problem to
recast the ray-triangle intersection as a point in triangle query in
2D, as previously described in Section 5.1. Thanks to this simplified
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Fig. 6. Five alternative cases of intersection between a ray and a triangle mesh. When the ray crosses the surface at a point that is inside a triangle (left) the
test depicted in Figure 5 can reliably determine the inside/outside relation between the patch being tested and the surface crossed. When the ray hits a
vertex or an edge the check becomes ambiguous. Our method always reconducts to the leftmost case via numerical perturbation of the ray. Note that the
pathological cases depicted in the figure are not exhaustive. In fact, rays may also be tangent at a (coplanar) triangle.

formulation, our exact ray-triangle intersection routine becomes
extremely fast.

Since our classification is entirely based on the analysis of the first
intersection between the ray and each input mesh, it is necessary to
sort intersection points. Firstly, we represent intersections implicitly,
using the LPI (Line-Plane Intersection) points described in [Attene
2020]. Then, we use the exact comparator introduced in [Cherchi
et al. 2020] to sort them from the closest to the ray emanating point
to the furthest.

5.3 Classification
The first intersection between a ray 𝑟 and a mesh𝑀 may take place
in different ways. The simplest configuration is when 𝑟 crosses𝑀
at a point that is interior to a triangle (Figure 6, left). In this case
determining if the ray is passing from inside to outside or vice-
versa consists in simply analyzing the triangle orientation, which
is encoded in the local winding (triangle vertex order) and can be
tested exactly as shown in Figure 5 (left). The cases when the ray
intersects a mesh edge or a vertex are more difficult, because the
ray may traverse them tangentially without crossing the surface,
and because even if the surface is crossed, the choice of the triangle
to test is ambiguous. Four of these cases are depicted in Figure 6,
but there are also others (e.g. when a tangent ray is also coplanar
to a triangle). While exact geometric tests could be performed to
distinguish between all these cases, the computational overhead for
detection and handling of pathological cases can be substituted with
a simpler yet effective strategy. Each time a ray does not intersect a
patch triangle at an inner point, we perturb the coordinates of 𝑝∞
by 𝜖 (without moving its starting point) until the crossing happens
at a point that is interior to a mesh triangle. Perturbation of point
coordinates is performed using the next floating-point number rep-
resentable starting from a given number (using std::nextafter).
The perturbed ray is then tested again for intersection, and the
operation is repeated until a valid intersection point is found. Note
that perturbed rays are no longer axis aligned, therefore we cannot
reduce the ray-triangle intersection to a 2D problem, and we need
to perform this test in 3D. The full test consists in checking the sign
of three tetrahedra, formed considering the two ray endpoints and
the endpoints of each triangle edge. If all signs are strictly positive,
or negative, there is an intersection inside the triangle. The compu-
tational overhead of this check is minimal (three orient2D for the
2D case and three orient3D for the 3D case).

Intersections at mesh vertices and edges are extremely unlikely
to happen in real shapes. In our large scale benchmark (Section 6.2),
we tested 3.8K Booleans, shooting more than 80K rays overall. In no
case we performed numerical perturbation because all intersections
occurred inside mesh triangles. We were only able to validate this
code on an artificial example, obtained by performing a Boolean
operation between a mesh and a copy of it translated along the 𝑋
axis. In this case all rays emanating from the patches of a mesh
traverse the vertices of the other mesh. Indeed, a single perturbation
was always sufficient to break ties and move the intersection point
inside a triangle.

6 DISCUSSION
We implemented our Boolean pipeline in C++, using CinoLib [Livesu
2019] data structures for exact ray casting and detection of inter-
sections and Indirect Predicates [Attene 2020] to robustly query
intersection points. For maximum efficiency and parallel perfor-
mance our code also relies on Google’s Abseil fast containers and
Intel’s TBB.
We tested our algorithm thoroughly, considering interactive ap-

plications, batch processing of large collections of data, Booleans
between huge meshes composed of millions of triangles, and vari-
adic Booleans of hundreds of input meshes altogether.
Our baseline for comparative analysis is the method of [Zhou

et al. 2016], which is the latest released fully fledged exact Boolean
pipeline. Since the original authors’ implementation was released,
the codebase underwent various improvements, also very recently.
Unless specified differently, all numbers we report refer to the most
recent implementation available in libigl [Jacobson et al. 2018]. We
also compare to [Cherchi et al. 2020], but since this method em-
ployed a costly intermediate tetrahedralization step to perform the
in/out filtering, we restricted the comparison to the first step of
the Boolean pipeline. Non-robust alternatives such as [Bernstein
2013; Levy 2022] are not considered because they do not guarantee
the topological correctness of the result and are prone to failures
(Figure 3).

As detailed in the remainder of this section, our Boolean algo-
rithm proved to be superior than the state of the art by at least one
order of magnitude in all experiments and is the only existing exact
method capable of sustaining interactive frame rates for real-time
applications.
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Fig. 7. Two examples of our interactive rotation demo: one mesh rotates on top of the other while the system executes a Boolean operator in real time.

6.1 Interactive Applications
We considered both simple tasks where a scripted animation plays
over time and fully dynamic tasks where all objects in the scene
evolve over time in response of a user action. All interactive ex-
periments were executed on a commodity laptop, a MacBook with
M1 Pro with 8 performance cores and 32GB of RAM. Screen cap-
tures have been attached to the submission and are available to the
reader to better judge the smoothness of the animation. Booleans
are applied naively, meaning that each frame is computed separately,
without propagating cached data from one frame to the subsequent.
We leave this improvement for future work to obtain additional
speedups.

Rotation demo. In this first test, two objects are rotated with re-
spect to one another, while our algorithm computes the Boolean
between the two, as shown in Figure 7. The user can interact with
the system using the keyboard, selecting the type of Boolean opera-
tor between union, intersection and difference. This is the easiest
interactive scenario: both objects are static up to a rigid movement
of one of them. For maximum efficiency rendering and Booleans
run in separate threads and are synchronized with double buffering.
We considered scenes of growing sizes, in the range from 25K to
200K triangles. Based on our experience the way shapes intersect to
each other has a non negligible impact on running times. For exam-
ple, Booleans become increasingly complex when the two shapes
are almost perfectly aligned, and progressively simpler otherwise.
To reduce any possible bias we always used the same two models,
remeshed at various resolutions using Graphite [2022]. Timings
for each scene are reported in Table 1. As can be noticed, existing
exact pipelines such as [Zhou et al. 2016] have computation times
that are incompatible with interactive use already at the coarsest
resolutions, running at roughly 1–2 fps for just 50K triangles. To
give a comparative reference, we run at similar fps for 1M triangles.
Using [Cherchi et al. 2020] for the first part of the pipeline yields
running times that are compatible with interactive use for the coars-
est resolutions, but the software is still not fast enough to scale on
meshes containing more than 25-30K triangles. Our software runs

Size libigl (𝑡 ) FA(𝑡 ) Ours (𝑡 )

25K 0.22/0.78/0.39 0.03/0.12/0.07 0.01/0.04/0.02
50K 0.36/1.58/0.50 0.12/0.20/0.13 0.02/0.06/0.04
100K 0.69/3.21/0.77 0.23/0.33/0.25 0.03/0.11/0.07
150K 1.03/4.86/1.13 0.34/0.45/0.36 0.05/0.14/0.10
200K 1.37/6.48/1.50 0.46/0.62/0.50 0.06/0.19/0.14

Table 1. Performances of the interactive rotation demo. For each scene we
measure its size as the cumulative number of triangles and report minimum,
maximum and average time per frame over a continuous run of 3 minutes.
With libigl we denote the most recent implementation of [Zhou et al. 2016].
FA is a hybrid pipeline that uses the original implementation of the arrange-
ment in [Cherchi et al. 2020] with our in/out classification based on ray
casting. All timings are in seconds.

Size min max avg

25K 0.028 0.055 0.032
50K 0.043 0.079 0.054
100K 0.085 0.119 0.095
150K 0.133 0.164 0.140
200K 0.188 0.215 0.195

Table 2. Performances of the interactive deformation demo. Timings (in
seconds) report on the cumulative time to perform four ARAP iterations
and our Boolean algorithm.
interactively for scenes containing up to roughly 100-120K triangles,
and starts to lag a bit for larger scene sizes. We point the reader to
the attached screen captures to get a better sense of the smoothness
of the animation.

ARAP deformation. In this demo, two triangle meshes are inter-
actively deformed using ARAP [Sorkine and Alexa 2007]. At first,
the user prescribes an arbitrary number of handles on both shapes
with mouse clicks. Then, matrices are factorized and the interactive
session starts. During interaction the user can select any handle
from both shapes and freely move it in space. The program updates
the input meshes with ARAP and immediately performs a Boolean
between them (Figure 1). Users can also interactively change the
Boolean operator in real time. This demo is more challenging than
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Fig. 8. Dataset of big meshes we considered for the experiments in Table 3.

Input libigl (𝑡 ) FA (𝑡 ) Ours (𝑡 ) libigl (×) FA (×)
obj 1 obj 2 size inters bool tot inters inters bool tot inters bool tot inters

dragon3 lucy 21.6M 142.81 46.86 189.67 97.49 12.90 6.61 19.50 11.07× 7.09× 9.73× 7.56×
lucy neptune 18.4M 131.33 42.19 173.52 79.87 12.00 6.13 18.13 10.95× 6.88× 9.57× 6.66×
ganesha lucy 18.7M 118.19 427.02 545.21 84.02 11.30 6.04 17.34 10.46× 70.76× 31.45× 7.43×
lucy dragon2 16.6M 117.48 412.19 529.68 80.10 10.63 5.38 16.01 11.05× 76.67× 33.08× 7.53×
horse lucy 16.6M 116.03 35.83 151.87 74.20 10.41 5.27 15.68 11.14× 6.80× 9.68× 7.12×
lucy raptor 16.4M 110.12 384.48 494.60 68.10 10.01 5.27 15.28 11.00× 72.94× 32.37× 6.80×
dragon1 lucy 15.7M 110.27 30.12 140.40 69.26 9.60 4.90 14.49 11.49× 6.15× 9.69× 7.22×
dragon3 ganesha 11.5M 65.28 242.44 307.72 31.69 6.25 3.09 9.34 10.44× 78.38× 32.93× 5.07×
dragon3 neptune 11.2M 66.66 20.78 87.44 38.56 6.15 2.98 9.12 10.84× 6.98× 9.58× 6.27×
dragon3 horse 9.4M 56.25 15.03 71.28 26.62 5.19 2.31 7.49 10.85× 6.51× 9.51× 5.13×
dragon3 dragon2 9.4M 54.84 196.39 251.23 30.46 5.00 2.38 7.38 10.98× 82.38× 34.04× 6.10×
dragon3 raptor 9.2M 50.31 193.76 244.07 21.82 4.70 2.27 6.97 10.71× 85.28× 35.02× 4.65×
ganesha neptune 8.3M 47.39 174.23 221.62 25.14 4.49 2.27 6.75 10.57× 76.82× 32.82× 5.61×
dragon1 dragon3 8.5M 51.05 12.95 64.00 27.82 4.67 2.06 6.72 10.94× 6.29× 9.52× 5.96×
neptune dragon2 6.2M 44.53 139.26 183.78 32.65 4.02 2.04 6.06 11.08× 68.26× 30.33× 8.12×
ganesha dragon2 6.5M 35.44 134.41 169.85 14.90 3.62 1.72 5.34 9.80× 78.15× 31.83× 4.12×
ganesha horse 6.5M 35.22 130.04 165.26 13.46 3.48 1.67 5.15 10.12× 77.82× 32.08× 3.87×
neptune raptor 6.0M 37.20 138.95 176.15 20.62 3.37 1.70 5.08 11.03× 81.64× 34.71× 6.11×
horse neptune 6.2M 38.65 11.38 50.03 22.07 3.43 1.63 5.06 11.28× 6.99× 9.90× 6.44×
dragon1 ganesha 5.6M 32.93 119.43 152.35 11.59 3.47 1.39 4.86 9.50× 85.79× 31.37× 3.35×
ganesha raptor 6.3M 29.68 125.36 155.04 11.87 3.18 1.61 4.79 9.35× 77.82× 32.39× 3.74×
dragon1 neptune 5.3M 32.91 8.99 41.90 18.55 2.76 1.40 4.15 11.93× 6.44× 10.09× 6.72×
horse dragon2 9.4M 27.28 88.21 115.49 10.44 2.36 1.11 3.47 11.56× 79.40× 33.26× 4.42×
raptor dragon2 4.2M 25.96 87.85 113.80 10.54 2.24 1.05 3.29 11.57× 84.06× 34.60× 4.70×
horse raptor 4.2M 24.25 80.78 105.03 8.34 2.08 0.98 3.07 11.63× 82.18× 34.24× 4.00×
dragon1 dragon2 3.5M 22.22 69.96 92.17 8.33 2.01 0.86 2.88 11.04× 80.97× 32.04× 4.14×
dragon1 horse 3.5M 22.06 5.27 27.33 7.75 1.90 0.83 2.73 11.61× 6.35× 10.01× 4.08×
dragon1 raptor 3.3M 16.92 63.55 80.47 6.37 1.54 0.75 2.29 10.97× 84.96× 35.13× 4.13×

Table 3. Comparative analysis of our Boolean algorithm w.r.t. any combination of the huge models in Figure 8. For each test we report the name of the two
objects and their cumulative size, in millions of triangles. With libigl we denote the best performing implementation of [Zhou et al. 2016], which endows
a well crafted parallelization that fully exploits the recently improved thread safety of the lazy rational kernel in CGAL 5.4. FA is the author’s reference
implementation of the Fast Arrangement algorithm [Cherchi et al. 2020]. Running times are in seconds. All tested methods perform equally well on any
Boolean operator, we therefore restricted experiments to Boolean unions only. The rightmost sections of the table, denoted with ×, report our speedups. On
average, we are almost 25× faster than libigl and our intersection resolution step is more than 5× faster than [Cherchi et al. 2020]. Best and worst speedups
for each algorithmic step are highlighted in bold blue and red, respectively. All tests were performed on a Mac Book M1 Pro with 8 performance cores and
32GB of RAM.

the previous one, since all inputs to the Boolean algorithm undergo
non trivial dynamic changes at interaction time, and since the cost
of ARAP is roughly equivalent to the cost of Booleans. To obtain
maximum efficiency we execute the ARAP and Boolean steps in
parallel on the same work stealing scheduler, using double buffer-
ing to batch operations within the stages. This allows us to hide
latency as much as possible. In all our tests we always performed
four iterations of ARAP, which are typically sufficient to obtain
visually pleasant deformations. As can be noticed from the attached

video, deformations appear quite smooth up to scenes containing
100K triangles, and progressively lag for bigger scenes containing
150K and 200K triangles. Detailed numbers on our running times
are reported in Table 2.
It should be noted that ARAP deformation offers no guarantees,

and under extreme handle displacements may occasionally intro-
duce self intersections that violate the input requirements of our
method and may possibly spoil the in/out classification system. In
our experiments we observed that artifacts of this kind occasionally
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Fig. 9. Our method scales optimally to variadic Booleans involving hundreds of shapes. We executed the operations in the figure in two different ways: passing
in input each decorative element separately, and merging all decorative elements into a single input mesh. In both cases the running time was the same, thus
no computational overhead was introduced for the increased number of input shapes.

arose when rotation matrices where computed with [Zhang et al.
2021]. Using Eigen SVD [2010] for the computation of rotation ma-
trices solved all our issues, although the algorithm becomes a bit
slower (the local step was 1.5× faster using [Zhang et al. 2021]).

6.2 Large Scale Benchmark
We considered the popular Thingi10K [Zhou and Jacobson 2016]
dataset to perform a large scale benchmark, comparing our per-
formances with [Zhou et al. 2016]. We compared to the recently
released implementation by the authors that includes significant
parallelization efforts. Both methods require the input meshes to
be manifold watertight, therefore we extracted 7628 clean meshes
from the version of the database released by the authors of [Hu et al.
2018]. We halved these meshes in two groups of 3814 elements each
and randomly combined them together to perform a Boolean opera-
tion. To make sure that the shapes actually intersect with each other
we normalized their bounding box and centered them in the origin.
Since all methods are exact, they are also guaranteed to produce
exactly the same output topology. We exploited this property to val-
idate our algorithm, verifying that indeed the number of connected
components and Euler characteristic was the same for each output
mesh. We used a machine equipped with an Intel i9 processor at
1.2 GHz with 12 cores and 128 GB of RAM as testing hardware. On
this machine, [Zhou et al. 2016] can process all 3814 Booleans in
28.3 minutes, whereas our software terminated the same task in
4.5 minutes, also being faster in the 100% of the cases. Note that
the recent update of libigl’s implementation is a considerable speed
up compared to the one used in the original paper, bringing the
times from 80 minutes of the original publication to 28.3 minutes
for their current version. Overall, both methods spent most of the
computation in the splitting part: 22.5 minutes [Zhou et al. 2016]
and 4 minutes ours (5.5×). For the Boolean part, [Zhou et al. 2016]
spent 5.8 minutes while our tool completed in 0.47 minutes (12.2×).
Remarkably, for the inside/outside classification our method based
on ray casting was up to 101× faster than the one of [Zhou et al.
2016] in the best case (2.38× in the worst case, 11.34× on average).

6.3 Processing of Huge Meshes
Thingi10K is mostly populated by medium, small and very small
meshes. We complement the large scale benchmark with a smaller
test that focuses on high resolution meshes containing millions
of triangles. While such big meshes are far from being suitable
for interactive usage, this is the common size that can be found

in production in many industries and is therefore practically rel-
evant. We considered the eight high resolution meshes shown in
Figure 8, whose polygon count is in between 1.3 and 14.4 millions of
triangles. We performed a Boolean operation for any possible pair
of meshes, measuring running times of our tool, with [Zhou et al.
2016] and with [Cherchi et al. 2020], the latter only for the splitting
part. As shown in Table 3, all methods scale well on very large
datasets, mostly maintaining a stable ratio between their running
times. Our method consistently operates one order of magnitude
faster than [Zhou et al. 2016] for the intersection resolution part,
where it is also 5× faster than [Cherchi et al. 2020] on average. The
highest variability occurs in the Boolean part, where the speedup
compared to [Zhou et al. 2016] oscillates around 80× (in 70% of the
cases) and around 6× (in the remaining cases). All in all, our average
speedup w.r.t. to the whole Boolean pipeline of [Zhou et al. 2016] is
approximately 25×. It is interesting to notice that for most of these
tests the bottleneck for [Zhou et al. 2016] was the second step of the
Boolean pipeline, which took most of the running time. This never
happened for the small models in Thingi10K, where the Boolean
part was almost negligible compared to the intersection resolution
one. We conjecture that the topological propagation used in [Zhou
et al. 2016] does not scale well on very big meshes, while our novel
approach based on ray casting remains efficient at all resolutions
(53× faster on average) and its computation time never exceeded
the cost of the intersection resolution in any of our experiments.

6.4 Variadic Booleans
Not only the mesh size but also the number of input objects affects
the performances of a Boolean algorithm, especially for the second
part of the pipeline, where the inside/outside relationships must be
devised for each input shape. We evaluated the scalability of our
method with respect to the number of input meshes involved in
a Boolean operation, considering the subtraction between a base
mesh 𝐴 and a large number of non intersecting small decorative
elements 𝐵1 ∪ 𝐵2 ∪ · · · ∪ 𝐵𝑛 , positioned on its surface with Poisson
sampling [Corsini et al. 2012]. To isolate the impact of the number
of inputs, we performed this experiment twice. The first time we
consider the case of 𝐴 \ {𝐵1 ∪ 𝐵2 ∪ · · · ∪ 𝐵𝑛} as a variadic Boolean,
that is, providing in input 𝑛 + 1 separate meshes. The second time,
we merge 𝐵1 ∪ 𝐵2 ∪ · · · ∪ 𝐵𝑛 in a single mesh ¤𝐵 and then perform
a classical pairwise operation 𝐴 \ ¤𝐵. Since decorations do not in-
terfere with each other, the arrangement and the output result of
these operations is identical. Figure 9 shows two results obtained
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with our tool. In the first one, we carved the Fertility statue (60K
triangles) with 700 little spheres (each one counting 320 triangles,
for 224K triangles overall). Our algorithm was able to correctly
compute the same result with both approaches in 1.1 seconds each
time, thus introducing no measurable overhead for the increased
number of input meshes. In the second experiment we subtracted
from a vase (700K triangles) an assembly of 500 little stones of 10
different types (from 5 to 16K triangles each, 4.7M triangles overall)
randomly oriented and positioned on the surface of the vase. Once
again, our algorithm computed both the variadic and the pairwise
Boolean in almost the same time (7.49 and 7.59 seconds, respec-
tively). This is possible thanks to our inside/outside labeling based
on ray casting, which shoots a ray for each surface patch regardless
of the number of input shapes. Prior methods based on topological
flooding do not exhibit the same desirable property and tend to
introduce unnecessary overhead when the number of inputs grows.
For example, on the first experiment the method of [Zhou et al.
2016] had a slowdown factor of more than 5× between the two runs,
completing the Booleans in 6.8 and 38 seconds, respectively. On
the second experiment their running times were 61.01 and 170.93
seconds (2.8×).

7 CONCLUSION
We have presented a novel pipeline for the computation of topo-
logically exact mesh Booleans. Our main technical contributions
amount to an amelioration of the arrangement algorithm in [Cher-
chi et al. 2020], and to a novel inside/outside classification system
based on exact ray casting. As shown in our experiments both con-
tributions are significantly faster than prior art, by at least one order
of magnitude overall. Thanks to this speedup we could implement
interactive applications that couple basic geometry processing tasks
with real-time Booleans. This is the first time robust Booleans and
interactive tools are coupled together for real sized meshes. To this
end, we expected the community of digital artists and context cre-
ators to readily adopt our tools, and we are curious to see what they
will be able to create with it.

7.1 Limitations and Future Works
Our system is currently limited in two aspects: inability to achieve
interactive frame rates on very high resolution meshes (e.g. more
than 200K triangles) and inability to robustly perform cascaded
Boolean operations.

Scalability. The lowest hanging fruit to improve on the scalability
of our method in interactive mode is to cache partially evaluated
computations between frames. As discussed in Section 6.1, the algo-
rithm is at the moment not designed to exploit temporal coherency
and naively computes each Boolean from scratch, which is of course
not optimal. Things like acceleration data structures used to detect
intersection and perform the ray casting could be created once and
minimally updated at each frame, greatly reducing the computa-
tional cost. Also adjacency data is now recomputed from scratch
each frame, while they can be cache in most cases.

Cascaded Booleans. Our interactive tools are currently limited
to CSG-like applications and other applications where each frame

can be generated independently from the previous ones. We cur-
rently do not support cascaded Booleans, where the inputs are the
result of a previous Boolean operation. While in our tool it is tech-
nically possible to cascade Booleans, no guarantees on the result
can be given because after each frame we snap exact coordinates to
floating points, possibly introducing small mesh defects that may
spoil subsequent operations. As mentioned at the end of Section 6.1
similar problems may also occur when Booleans are coupled with
geometry processing tasks that do not guarantee the absence of self-
compenetration, like ARAP. This issue was solved in [Diazzi and
Attene 2021] by implicitly repairing the input during the process,
though the need to construct an intermediate volume necessarily
introduces a slowdown. Solving the snap rounding problem is the
ultimate solution for all these issues, but this is a remarkably difficult
problem as previously discussed. Avoiding the snap rounding step
and propagating the implicit points naively is not possible either, be-
cause the repeated composition of implicit points would soon lead to
complex polynomial expressions for which the arithmetic filtering
fails in virtually all cases, introducing major slowdowns, and eventu-
ally running out of memory. On the one hand, we argue that such a
repeated composition is not strictly necessary for cascading, because
the output of a Boolean operation is always a subset of the input
(ground truth) primitives, but we lack a proper mechanism to update
the definition of implicit intersection points so as to avoid second
level constructions. In the context of plane-based representations a
similar idea was recently explored in [Nehring-Wirxel et al. 2021].
Attempting to realize cascading for the Indirect Predicates [Attene
2020] is an interesting direction for future research.
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