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Figure 1: A gallery of hexahedral meshes generated with our method without resolution scaling; the tubular structures used to derive the
hexahedral meshes are shown in white. From top left to bottom right: BIGBUDDY, OCTOPUS, SANTA, BLOODVESSEL, ARMADILLO and
FERTILITY.

Abstract
We propose a novel method for the automatic generation of structured hexahedral meshes of articulated 3D shapes. We recast the
complex problem of generating the connectivity of a hexahedral mesh of a general shape into the simpler problem of generating
the connectivity of a tubular structure derived from its curve-skeleton. We also provide volumetric subdivision schemes to nicely
adapt the topology of the mesh to the local thickness of tubes, while regularizing per-element size. Our method is fast, one-click,
easy to reproduce, and it generates structured meshes that better align to the branching structure of the input shape if compared
to previous methods for hexa mesh generation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically based modeling

1. Introduction

The quest for volumetric meshes for physically based simulations
has dramatically increased in recent years. While classical appli-
cations deal with mechanical objects (e.g., in the aeronautical, me-
chanical and medical industries) new applications have emerged

(e.g., in the movie and gaming industry, as well as in the biomedical
field) which deal with natural shapes, often coming in the form of
articulated objects. Special effects involving fluids and deformable
objects are ubiquitous in many of the most recent movie productions
and videogames. Likewise, the accurate simulation of human tissues
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and organs widely extends the diagnostic power of CT data as well
as of virtual surgery. No matter whether models are taken from real-
ity or imagination, they are requested to behave and interact with
the virtual world as if they were real.

Physically-plausible simulations [NMK∗06] require a volumetric
discretization of all elements of a scene interacting with each other.
This need raises the bar for meshing algorithms, often shaped around
precise target shapes [Bla01] and now required to provide new tools
to automatically generate industry-ready meshes from shapes that
are definitely different: no more mechanical parts exposing sharp
edges and regular patterns, but shapes mimicking living beings.

To this aim, although high quality tetrahedral meshes can be re-
liably generated with existing methods [ACSYD05], hexahedral
meshes are usually preferred due to their superior numerical prop-
erties and ability to keep the resolution lower [KBLK14, Bla01].
Structured hexahedral meshes are often preferred to semi-structured
or unstructured ones because they can be more efficiently stored
using specialized data structures, yet because they are the models of
choice for many simulations where a strict alignment of elements is
required [GDC15, RG11]. A hexahedral mesh is structured when
it is composed of a single regular volume, or it can be decomposed
into a few sub-volumes, each one with the connectivity of a regular
grid [Tau04].

On the one hand, manually creating high-quality structured hexa-
hedral meshes is a laborious task that can take days of work. On the
other hand, automatic meshing is a challenging open problem, with
much work happening in recent years (see Section 2).

In this work we restrict our attention to articulated shapes whose
general structure is well captured by a curve-skeleton [TDS∗16,
CSM07]. Shapes in this category include, but are not limited to:
humans and animals; articulated (possibly imaginary) creatures;
tree-like structures like vessels; and plants. This restrictive choice
to shapes for which a curve-skeleton can be extracted is based
on the fact that physically-based simulations on such shapes are
common not only in medicine and biology but also in the animation
industry, where most characters created by digital artists belong to
this category.

We propose an automatic algorithm that, taking in input a surface
mesh and its curve-skeleton, produces a structured hexahedral mesh
covering the volume bounded by the input surface. Our method
is fast, one-click, easy to reproduce and it does not require any
parameter tuning by the user. The hexahedral meshes we produce
have high quality and nicely align with the main features of the
target surface, a key component for accurate simulations [Bla01].

The main contribution of our paper is twofold:

• We extend the work of [ULP∗15] from surfaces to volumes, au-
tomatically generating hexahedral meshes that directly encode
the structure of the input shape, given by its curve-skeleton (Sec-
tion 3);
• We propose a sampling technique for the curve-skeleton to control

density along the skeleton arcs, and a set of volumetric subdi-
vision schemes to control density across the skeleton arcs. Our
density control system nicely adapts to the local thickness of the
shape, minimizing the resolution of the model and reducing the
variance of the element sizes (Section 5).

2. Related work

The generation of high quality hex meshes filling a target surface
has been object of research since decades. An exhaustive survey of
the literature in the field is beyond the scope of this paper. Here, we
just recap only the most relevant approaches, grouped by meshing
technique. We refer the reader to [Bla01, Tau01] for further details
on classical approaches.

Skeleton-based approaches are the most related to our work. When
the meshing process is driven by curve-skeleton, the critical part is
the discretization of junctions, where incoming arcs from different
directions meet. In [LLD12] a split-and-merge meshing method is
presented. Each part of the skeleton is meshed separately, then all
the components are grafted together. The method is validated on a
set of simple models, where the most complex junction has valence
four. For complex shapes like the octopus in Figure 1, where eight
limbs meet the core of the shape at the same point, it is not clear
whether this method would produce a valid result. In the best case
it would fail to produce the right topological structure, converting
the corresponding valence nine junction into a set bifurcations. Our
method produces a hex mesh that encodes the correct structure of the
octopus without introducing high valence vertices, thus providing
the right balance between structure and mesh complexity. Overall,
we generate hexahedral meshes with higher quality (see Section 7).

In [ZBG∗07] a sweeping method to mesh tubular shapes is pro-
posed. Their method focuses on blood vessels and uses a set of
templated solutions to mesh junctions, with the curve-skeleton used
as a proxy to fit the best template according to the morphology of
the vessel. Hexahedra are radially arranged around the skeleton,
thus generating badly shaped elements near the spine. Moreover,
this method works best for bifurcations (which are typical on blood
vessels), while it tends to generate high valence vertices and badly
shaped hexahedra when junctions with higher valence are present.
Our method avoids high valence irregular vertices thus favoring
better per-element quality [LSVT15].

In [LZLW15] a skeleton-based method for T-spline fitting is
proposed, which can also be used for hexahedral meshing. Half-
planes are employed to mesh bi-furcations and tri-furcations. This
method suffers the same drawbacks as [ZBG∗07]: it tends to produce
overly complex meshes with high valence vertices if the skeleton
contains high-valence junctions, setting a tight upper bound to the
quality of the elements directly incident at them.

In [YCJL09] Yao and colleagues propose to drive the meshing
process with a manually sketched curve-skeleton. Junctions are
handled with a neat subdivision process. Similarly to [ULP∗15], this
work focuses on the generation of base domains for quadrilateral
meshing and, therefore, it can be considered an alternative starting
point for our method.

Grid-based methods subdivide the volume using either a regular
grid or an octree and, subsequently, they move the vertices of the
hexahedra intersecting the surface onto the surface itself so as to bet-
ter approximate the original shape [LJLJ15, Mar09, Sch96]. Due to
their simplicity and ability to mesh any object, grid-based methods
are still dominant in industry. However, these methods suffer from
several drawbacks: they tend to produce unnecessarily high resolu-
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Figure 2: Polycube mappings may force the introduction of unnec-
essary singularities, penalizing the alignment with the boundary of
the shape (top closeup); our meshing better aligns to the limbs of
the CACTUS (bottom closeup).

tion meshes, they are not invariant to rotation (i.e., the same volume
can be meshed differently, when rotated) and they tend to push the
elements of worst quality near the boundary. Our method is rota-
tionally invariant and generates boundary conforming hexmeshes
(Figure 2) with much less elements, also promoting high quality
hexahedra near the boundary, an important requirement to ensure
accurate simulations [RGRS∗15].

Advancing front techniques start the mesh generation process on
the surface and then move inwards [TBM96]. This approach tends
to place singularities and lower quality hexahedra inside the volume.
A recent example of expanding front method and a review of similar
methods is provided in [KBLK14]. These methods generate high
quality meshes near the boundary regions, which is a desired prop-
erty for many applications. Unfortunately, they are prone to generate
low quality meshes in the interior (where the fronts merge) and
cannot be applied to all classes of shapes (only genus zero shapes
are supported). Our method can handle complex topologies, like
FERTILITY in Figure 1 and the BLOCK model in Figure 13.

Parameterization based methods map the input volume to some
parametric space, where the connectivity of the mesh is generated.
The inverse mapping is then used to place the corresponding ver-
tices in the original domain. PolyCubes [THCM04] (i.e., orthogonal
polyhedra) have been widely used as parametric domains because
they can be trivially hex-meshed with a regular grid, generating
a structured mesh [FXBH16, CLS16, HJS∗14, LVS∗13, GSZ11].
However, the structure of the mapping domain often causes the
introduction of unnecessary singularities that penalize the align-
ment with the boundary (Figure 2). Other popular parameterization-
based techniques associate to each point in the interior of the shape
a 3D frame such that the resulting frame field is aligned to the
surface of the shape. The mesh connectivity is then generated by
sampling the field, with singularities occurring at its vanishing
points [SRUL16, KLF14, HTWB11, NRP11]. These algorithms gen-
erate meshes that nicely adapt to the input surface, however, they
do not provide any control on the structure of the mesh and tend
to introduce misaligned singular vertices, resulting in a complex

Figure 3: We derive from the curve-skeleton of a triangle mesh (left)
a volumetric decomposition in tubes (white), branching cubes (red)
and terminal cubes (green). Each element in the tubular structure is
a hexahedron.

singular structure [LLX∗12]. Our method avoids the singularity
misalignment problem, resulting in coarse singularity layouts that
embed the high level structure of the input shapes, a key factor
to ensure high quality hexahedral meshes [GDC15]. Furthermore,
there are no theoretical guarantees that a volume parameterization
from a frame field admits an all-hex structure. Current methods may
fail to produce a mesh depending on the type of singularities in the
input field [LLX∗12].

3. Pipeline overview

We propose a method to generate a full hexahedral mesh out of a
tubular shape. We input a triangle meshM and its curve-skeleton
S, that we use as a proxy to infer the structural properties ofM
and drive the meshing process. The result is a full hexahedral mesh
H that embeds in its connectivity the structure of S and hasM as
outer boundary. We optionally apply templated schemes to control
the meshing density and adapt it to the morphology of the shape,
thus keeping element size variance as low as possible.

Our work builds upon the coarse quad layout generation algo-
rithm described in [ULP∗15], which we extend adding a volumetric
interpretation of the tubular structure described in their paper. The
method presented in [ULP∗15] generates a quadrilateral mesh of
tubular shapes. This mesh is obtained from a decomposition into
tubes - cylinders with quadrilateral section that surround the skele-
ton curves - and cubes centered at both the branching and terminal
nodes of the curve-skeleton (Figure 3). The quads composing each
tube and each cube are derived and assembled so that the resulting
mesh is conforming (i.e., free from T-junctions); models with loops
and complex topologies are supported.

This structure lends itself to straightforward hexahedral meshing,
by gridding each cube and each tube with a number of subdivisions
that keep the conformity in the hex-mesh as well. Note that the
resulting hexahedral mesh is structured by construction, because its
connectivity embeds the decomposition in tubes and cubes encoded
in the tubular structure, yet because each tube and each cube is
meshed as a regular grid [Tau04].
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Figure 4: We start with a dense sampling of the curve-skeleton
(left) and we re-sample it by iteratively splitting half-way each of
its portions. The splitting process ends when the maximal sphere
centered at the new sample intersects both the spheres centered at
the two end-points of the current segment (middle). The resulting
coarse sampling of the skeleton (right) determines the connectivity
of the final hexahedral mesh.

We extend the pipeline presented in [ULP∗15] and adapt it to the
volumetric case. Our hex-meshing strategy consists of the following
steps:

1. Skeleton resampling: we propose a fully automatic strategy
to sample the skeleton S, in order to avoid excessively dense
meshes and badly shaped elements (Section 4);

2. Tubular structure: we initialize meshH as the tubular structure
enclosing S, placing a hexahedron at each skeleton branching
node, extruding its facets along the skeleton curves and subdi-
viding each element in order to avoid T-junctions (see [ULP∗15]
for details);

3. Resolution control: we identify changes in the local thickness
of the skeleton and use a set of templates to locally adapt the
meshing density to the morphology of the shape (Section 5.1);

4. Projection: we project the boundary ofH onto the input shape
M, using ray casting to generate an initial poor quality map, and
then we refine such map using the abstract domains approach
described in [ULP∗15, TPP∗11];

5. Finalization: we optimize the interior ofH, carefully position-
ing its vertices so as to maximize per-element quality (Section 6).

In the remainder of the paper we discuss technical details regard-
ing the sampling of S (1), the resolution control (3) and the hexmesh
finalization (5). The initialization of the tubular structure (2) and
the projection of its boundary over M (4) are equivalent to the
ones presented in [ULP∗15] and, as such, they will not be discussed
here. We point the reader to the original paper for technical details
regarding their implementation.

4. Skeleton resampling

Although simply gridding the tubular structure would produce a
hexahedral mesh (Figure 3 right), a naive use of this technique may
lead to excessively dense meshes with poorly shaped elements (see
the left side of Figure 5). Indeed, the density of the mesh in the longi-
tudinal direction is directly related with the sampling density of the
underlying curve-skeleton. Expanding and subdividing the tubular
structure to flood the interior of the input shape would easily result

Figure 5: The sampling of the curve-skeleton determines the density
of the hexahedral meshing. Arbitrarily sampling the curve-skeleton
may lead to poor meshes with badly shaped elements (left). Our
sampling strategy generates good meshes and promotes isotropy
(right).

in a hex-mesh containing many inverted elements and no practical
usefulness. In order to improve the mesh quality and produce well
shaped elements we re-sample the curve-skeleton. For each skeleton
point we assume to have the radius of its maximal sphere available.
Some skeletonization algorithms already provide this information
(e.g. [LS13, LGS12]); otherwise, the radius at a skeleton point can
be easily estimated by measuring its distance to the input surface.

We start from a dense sampling of the curve-skeleton and, then,
we sub-sample it applying arc-length parameterization to each curve
of the skeleton, mapping its length in the interval [0,1]. We then split
the curve in the parametric space, adding a new sample point half-
way, and iteratively repeat the process for the resulting sub-intervals.
The stop criterion is as follows: we do not split an interval when the
maximal sphere centered at a candidate sample would intersect both
spheres centered at the endpoints of the current segment (Figure 4).
The resulting sampling adapts to the local thickness of the shape and
induces a meshing with a good isotropy (Figures 5 and 1). After re-
sampling the skeleton we generate a tubular structure fully enclosing
the skeleton with the method described in [ULP∗15]. The result is a
coarse structured hexahedral meshH, ready to be further subdivided
and inflated to adhere to the surface of the target shape (Figure 3).

5. Resolution control

The approach described so far is capable of producing hex-
meshes for any shape in our class of interest (i.e. tubular shapes);

a b

very accurate and high quality models can be
obtained via the projection and finalization
step described later (see Figure 1). However,
depending on the morphology of the model,
the elements sizes may be uneven, with the
presence of high density areas that unneces-
sarily increase the resolution of the model. To
give an example let us consider the cone-like
shapes aside: the area covered by the base of
the cone is much larger than the area covered
by its tip, hence, if the cone is meshed with
a regular grid the density of the elements on the tip will be much
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higher than the elements at the base (a). In order to avoid this behav-
ior we introduce a mechanism to adjust the resolution of the model
and better adapt to the morphology of the shape, so as to keep the
element size even and the resolution lower (b).

We detect the elements of the mesh where a change of resolution
is needed (we call them cones) directly from the tubular structure
derived from the curve-skeleton. As explained in Section 4, the size
of each hexahedron in such structure is proportional to the local
thickness of the shape, therefore the morphology of the input shape
is correctly encoded in this coarse, yet easy to process, hex-mesh.
We split each cone with a tem-
plate subdivision that puts more
sub-elements at the base and less
at the tip and we propagate the
resulting subdivisions throughout
the whole model so as to gener-
ate a conforming hex-mesh. The
effect of this approach can be seen in the inset above, where the
foot of the WARRIOR is shown before (left) and after (right) the
application of our cone-based resolution scaling technique. In the
following subsections we illustrate how to detect cones (Section 5.1)
and how to propagate the subdivision they introduce (Section 5.2).

5.1. Cone detection

Let us consider the hexahedron h depicted in Figure 6a. In order
to decide whether h is a cone or not we consider the ratio between
the size of facets belonging to h prev and h next that are opposite
to the facets of h; if this ratio is > 4 we mark h as a cone and we
apply the volumetric subdivision schemes depicted in the right part
of Figure 7, each of which is capable of scaling the resolution of
the mesh by a factor of 4. Note that these subdivision patterns are
just a tiny subset of all the possible ways to scale the resolution; as
pointed out in [TPSH14] the problem of enumerating an exhaustive
list of subdivision schemes is wide open.

In our experiments we observed that using too many cones may
result in a very high resolution mesh; we therefore restrict our
cone detection strategy only to the terminal branches of the curve-
skeleton and we limit the presence of cones at up to two for each
skeleton branch. If more than two candidate cones are found along
a skeleton branch we rank them according to the ratio described
above and we select the two top ranked elements. Specifically, we
enable the presence of one 1×1 to 2×2 and one 2×2 to 4×4 cones,
thus achieving a maximum scaling factor of 42 (see Figure 9). Our
choice to restrict to at most two cones for each terminal branch is

a)

> 4

b)

Figure 6: A hexahedron h (a) is a "cone" if the ratio between the
areas of the opposite facets of its two adjacent hexahedra (here in
red and green) is larger than 4 (b).

Regular split Cone Cone
top bot top bot

Figure 7: The volumetric splitting schemes we use in our meshing
algorithm. From left to right: a single hexahedron; a regularly split
hexahedron; a cone that scales from 1×1 to 2×2; a cone that scales
from 2×2 to 4×4.

justified from the fact that the class of objects we are interested in
(i.e., biological structures like humanoids, plants and animals) tend
to have a thicker core and thinner terminal limbs, thus requiring a
resolution scale only at the peripheries of the shape.

5.2. Subdivisions propagation

We propagate the subdivisions induced by the cones throughout the
mesh by solving an Integer Linear Programming (ILP) problem.
We associate to each regular element of the hex-mesh (i.e., not a
cone) a variable x that represents the number of splits necessary to
achieve mesh conformity. Regular elements are always split with
the 2×2×2 pattern depicted in Figure 7, iteratively applied as many
times as indicated by the associated integer variable.

Specifically, for each pair of adjacent elements we require the
number of splits to be equal (inset aside,
top), whereas for each pair of hexahedra ad-
jacent to the same cone C we require the
element at the base to be split once more
than the element at the tip (inset aside, bot-
tom). Furthermore, since we are solving for
the number of splits of each element, we ask
each variable x to be positive. This results
in the following integer linear programming
problem

min AX = b
X ≥ 0
X ∈ In

with n being the number of regular elements in the mesh (here the
cones do not count), A being a sparse n×n coefficient matrix and
b being a sparse vector. We solve such problem with Gurobi [Gur].
Note that since we admit cones only in the terminal limbs of a shape
no cone will appear in a loop; consequently such system will always
admit a solution regardless the topology of the shape, as discussed
in [ULP∗15]. In Figure 8 we show a 2D example of our propagation
system; real examples can be seen in Figure 9, where both DINO

and DINOPET are depicted.
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Figure 9: Left: a hexahedral mesh of the DINO model obtained using our resolution scaling scheme; the volumetric tubular structure used to
derive the meshing process. If a limb contains only one cone (legs, neck) we apply a 2×2 to 4×4 subdivision scheme; if there are two cones
along the same limb (tail) we place one 1×1 to 2×2 and one 2×2 to 4×4 subdivision schemes, thus achieving a maximum scaling factor of
42. Right: another example of our resolution scaling technique applied to the DINOPET.

x4x0 x3x1

x2

x0=1

x2=2

x1=2

x3=1 x4=0

C0 C1 C2

Figure 8: A 2D example of our subdivision propagation system. We
ask adjacent elements (e.g., x1,x2) to split the same number of times,
and elements at the base of a cone (e.g., x1,x3) to split once more
than the elements at the tip of the same cone (x0,x3,x4). By solving
the resulting ILP problem we know how many times we need to split
each element in the mesh to make it conforming.

6. Projection and Finalization

As already mentioned in Section 3 the projection phase is the same
used in [ULP∗15]. We briefly recap it here just for completeness.
We first use ray-casting to inflate the boundary of the hexa mesh,
so as to map it to the input triangle-mesh; we then optimize the
resulting mapping using the abstract domains technique introduced
in [TPP∗11]. Please refer to [ULP∗15, TPP∗11] for further details.

Once the surface ofH has been mapped onto the target surface
M, we optimize the position of internal vertices, by minimizing the

Without padding With padding

Figure 10: Prior to padding boundary elements may have more than
one facet exposed on the surface. If these facets are coplanar the
element will become degenerate, with no chances of optimization as
at least six vertices will be constrained on the surface. We therefore
add a padding layer. This ensures that each element will have at
most one facet exposed (four vertices), thus leaving enough degrees
of freedom for the subsequent mesh optimization.

following quadratic energy
n

∑
i

∑
j∈N(i)

‖vi− v j‖2

Here N(i) is the volumetric one ring of the vertex vi. Minimizing
the energy above requires the resolution of a sparse linear system
Ax = b in the least square sense, according to the normal equation
ATAx = AT b.

The hexahedral meshes so generated have good average quality
but can, and in general do, contain inverted elements, that is, non-
convex hexahedra [Knu00]. Even a single inverted element makes a
mesh unusable for applications [PTS∗07], therefore a further opti-
mization step aimed at removing inverted elements is needed. Since
the focus of this work is the generation of a high quality topology,
we rely on standard optimization tools for the improvement of per
element quality. Notice that separating the generation of the connec-
tivity from the optimization of the embedding is a classical approach
in hex-mesh generation [LSVT15].

In order to improve mesh quality we first add a pillowing (or
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padding) layer, extruding the surface quads to form a shell of hexa-
hedra surrounding the outer surface of the hexahedral mesh [GSZ11].
After pillowing, each element of the mesh will have at most four ver-
tices on the surface. Consequently, at least four vertices per element
will be free to move in the interior, guaranteeing enough degrees
of freedom for the subsequent quality optimization (Figure 10).
We then apply the edge-cone rectification algorithm [LSVT15] to
remove all the inverted elements from the mesh and improve on
both minimum and average quality (see Table 1). For the edge-cone
rectification algorithm we always used the same parameters, that
is: automatic estimation of the target edge-length, attraction to the
surface weight (α) equal to 20 and attraction to the sharp features
(β) equal to 0.

7. Results

We have implemented our algorithm as a single threaded C++ ap-
plication and we run our tests on a MacBook Air equipped with a
1.7GHz Intel Core i5 and 4GB of RAM. The running times of our
method vary from 1.5 seconds for a simple shape like CACTUS to
approximately 1 minute for a complex shape like WARRIOR. Alter-
native meshing strategies such as [HJS∗14, LVS∗13] are one order
of magnitude slower.

For the computation of the curve-skeletons we used different algo-
rithms, specifically: ARMADILLO, BIG BUDDY, BLOCK, CACTUS,
CLEF, DINOPET, DINOSAUR, OCTOPUS, SANTA, BLOOD, VESSEL

and WARRIOR were skeletonized using the 3D-from-2D approach
described in [LS15, LS13, LGS12]; FERTILITY and ROCKER ARM

were skeletonized using the mean curvature approach described
in [TAOZ12]. In the latter case, we manually simplified the skeleton,
merging nearby branching nodes to better reflect the logical struc-
ture of the shape (we used Skeleton Lab [BMU∗16] for each such
editing). This operation was not necessary for the skeletons com-
puted with [LS15, LS13, LGS12] as they already embed heuristics
for the automatic collapse of spurious branches.

We tested our method on a wide range of objects (Fig-
ures 1, 2, 9, 12); next to each model we show the tubular structure
we used to drive the meshing process. The meshes produced by
our method embed a volume decomposition that reflects the logi-
cal structure of the input shape and naturally align with its main
features. As acknowledged in [Bla01] a good alignment with the
features of a shape leads to superior results in the simulations. Fur-
thermore, recent studies have shown that simplifying the singularity
graph of a hexahedral mesh by aligning its singular vertices helps to
keep the resolution lower and at the same time improves the mesh
quality [GDC15]. Our method builds upon the quad layout genera-
tion algorithm proposed in [ULP∗15] so it naturally aligns singular
vertices in a meaningful way, providing as-coarse-as-possible sin-
gularity layouts that turn into high quality, boundary conforming,
hexahedral meshes (see yellow lines in the top closeup in Figure 1).

We summarize our results in Table 1, where we also com-
pare against the skeleton-based method proposed in [LLD12],
two PolyCube-based methods [HJS∗14, LVS∗13], one frame field-
based method [LLX∗12], an Octree-based method [Mar09] and the
recently published Generalized Sweeping [GMD∗15] and CVIF
[LJLJ15] methods. For each model we report: the mesh resolution

Figure 11: The head of the WARRIOR meshed with PolyCut (left),
our method without applying the resolution scaling step (center)
and applying it (right).

(for both input and output), and the minimum and average quality
of the output hex-mesh and the average distance from the input sur-
face. We evaluate quality using the Scaled Jacobian (SJ), a popular
metric that measures the deviation of each element from a perfect
cube [PTS∗07]; the SJ is defined within the range [−1,1] with one
being optimal and negative values denoting inverted elements. None
of the models shown throughout the paper contains inverted ele-
ments (i.e., min SJ > 0), this is a fundamental minimum requirement
for many applications involving hexahedral meshes [Bla01].

Since we use [LSVT15] in the final step of our method (Section 6),
for the sake of a fair comparison we optimized the meshes of our
competitors with the same technique, whenever possible. Exceptions
to this rule are: the Generalized Sweeping [GMD∗15] and Frame
Field [LLX∗12] approaches, for which we report the quality from
the orginal papers as with [LSVT15] it was impossible to improve
any further; and CVIF [LJLJ15] and the skeleton-based approaches
[LLD12], for which we did not have the geometry available. Notice
that both [LJLJ15] and [LLD12] already employ some optimization
strategy to finalize their meshes, therefore we believe that the values
reported in Table 1 truly reflect the potential of the connectivity
generated by their meshing strategies.

From the qualitative point of view the performance of
our algorithm matches the parameterization-based methods
[HJS∗14, LVS∗13, LLX∗12] and outperforms Generalized Sweep-
ing [GMD∗15], grid-based [LJLJ15, Mar09] and skeleton-based
[LLD12] algorithms. Our method achieved average SJ above 0.9 for
the majority of the models we produced, outperforming previous
skeleton-based methods like [LLD12], whose hexahedral meshes
hardly exceed 0.8 average SJ.

Another important feature that emerged from our tests is the
ability to keep the resolution low, an important criterion for fast
simulations. As can be noticed in Table 1 we produced the coarsest
hex-meshes in the majority of the comparisons. From this point of
view the worst performances come from the Octree [Mar09] and
voxel-based CVIF [LJLJ15] methods.
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PolyCut

Ours
PolyCut Ours

Figure 12: Mapping to an axis aligned domain strongly limits the ability to represent off axis features; most of the spikes of the WARRIOR are
not caught by the polycube, resulting in a poor meshing that hardly matches the original geometry (left). Our tubular structure nicely follows
each and every spike, generating a better meshing (right).

We also propose some visual comparison against a polycube-
based method (i.e., PolyCut [LVS∗13]). As one can notice, in Fig-
ure 2, polycube-based methods may not align with the surface of
the model, placing unnecessary singularities that prevent the edges
to align with the limbs of the CACTUS. This property, called sur-
face conformity, serves to promote the placement of high quality
elements close to the boundary of the model and it is an impor-
tant factor to ensure accurate simulations [RG11]. The connectivity
generated by our method nicely aligns with both the limbs and the
core of the shape enabling the placement of high quality elements
nearby the boundary of the shape. Our method is also able to gen-
erate a connectivity that nicely fits the assembly of spikes in the
knees, elbows and shoulders of the WARRIOR (Figure 12). We note
that, because of the rigid structure of the parametric domain, such
a meshing is impossible to achieve with a polycube-based method.
As it can be noticed in the closeup in Figure 12, some of the spikes
are not caught by the polycube, resulting in a hexahedral mesh that
hardly fits the target geometry.

In Figure 11 we make a sample visual comparison also with our
method once the resolution scaling is applied. As one can see from
the picture on the right, our complete method obtains a reasonable
compromise between element regularity (for which PolyCut is opti-
mal) and alignment with the features (for gaining the optimum on
this we should not apply the reduction scheme).

Finally, although out of the scope of our method, we run some
preliminary tests on mechanical parts. As one can notice in Fig-
ure 13, we have been able to produce full hexahedral meshes for our
test models, but we still fail at aligning the edge flow with the sharp
edges and features of the shapes. In the future, we plan to improve
our meshing strategy by taking into account the alignment to sharp
features, so as to be able to embrace a broader range of shapes.

8. Conclusions

We have introduced a skeleton-based algorithm for the automatic
generation of structured hexahedral meshes of tubular shapes, and

Figure 13: Some preliminary test on three mechanical parts: ROCK-
ERARM (top left), BLOCK (right) and CLEF (bottom). Although out
of the scope of this work our method could produce full hexahedral
meshes for each model, but it still fails at aligning the meshing to
sharp features; something that we plan to work on in the future.

we have also presented novel techniques for the control of the reso-
lution of the hexahedral mesh, both across and along the skeleton
curves. To reach this goal we exploit the properties of the curve-
skeleton, using it as a proxy to derive structural information about
3D shapes, as in [ULP∗15]. We then use such information to con-
struct volumetric meshes that nicely align with the branching struc-
ture of the target shape. The method is easy to code. It does not
require any user parameter and it generates quality meshes for any
3D model that admits a skeletal representation.

8.1. Limitations and further works

This method is inherently limited in its scope by the class of shapes
that admit a skeletal representation. Although this is not a real lim-
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Model #Tris #Hexa avg/min SJ Avg dist
ARMADILLO

PolyCut† 30K .90/.14
Ours 331K 4K .88/.21 3.7×10−5

BIG BUDDY

Ours 27K 15K .90/.32 4.5×10−5

BLOCK

PolyCut† 3K .87/.25
Octree-based† 20K .91/.27
Ours 5K 4K .81/.36 8.7×10−6

CACTUS

PolyCut† 8K .94/.42
Ours 11K 4K .92/.52 2.1×10−6

CLEF

Octree-based† 10K .90/.34
Ours 3K 2K .86/.29 2.9×10−5

DINOPET

Ours 9K 18K .92/.18 5.3×10−5

DINOSAUR

Ours 47K 9K .91/.41 4.7×10−5

FERTILITY

`1 PolyCubes† 18K .94/.42
PolyCut† 54K .86/.34
Skel-based§ 16K .75/.08
CVIF§ 107K .90/.04
Frame-field‡ 14K .91/.35
Gen.Sweep‡ 20K .82/.18
Ours 33K 8K .90/.50 2.6×10−5

OCTOPUS

Ours 66K 5K .88/.11 4.4×10−4

ROCKERARM

`1 PolyCubes† 24K .96/.59
PolyCut† 57K .96/.58
Frame-field † 11K .94/.57
Gen.Sweep‡ 11K .83/.11
CVIF§ 63K .90/.06
Ours 20K 19K .91/.16 6.2×10−5

SANTA

Skel-based§ 15K .72/.08
CVIF§ 73K .88/.04
Ours 13K 26K .94/.37 2.2×10−4

BLOOD VESSEL

Ours 60K 5K .88/.32 9.0×10−4

WARRIOR

PolyCut† 24K .94/.14
Ours 27K 19K .90/.29 8.7×10−5

† optimized with [LSVT15]
‡ data from the original paper, we could not improve on quality any further using [LSVT15]
§ data from the original paper, models not available

Table 1: Summary of our results. From left to right: number of input
triangles, number of output hexahedra, average and minimjm Scaled
Jacobian (compute using the Verdict Library [SEK∗07]), average
deviation from the input surface (measure using Metro [CRS98]).
We compare against: `1 PolyCubes [HJS∗14], PolyCut [LVS∗13],
Frame-field based [LLX∗12], Skeleton-based [LLD12], Generalized
Sweeping [GMD∗15], CVIF [LJLJ15] and Octree-based [Mar09]
all-hexahedral meshing techniques. For each model, we highlight in
bold both the lowest resolution and the highest min/avg quality.

itation for biological shapes like humanoids, animals, vessels and
plants, we would like to be more general and embrace a wider class
of shapes. We are therefore looking for other shape descriptors or
shape understanding processes that can be exploited to derive struc-
tural information about general 3D shapes, to be used to accomplish
tasks like surface and volume remeshing.

Similarly to polycubes, the hexahedral meshes generated by our
method have a simple block structure that does not conform to a
frame field [FXBH16, LLX∗12]. As a consequence, the twisting
component along the skeleton curves can hardly be controlled, pos-
sibly leading to poor meshing results.

The method also inherits the limitations of [ULP∗15] regard-
ing the alignment to sharp features. As it is mainly intended for
biologically-inspired shapes, at the moment the preservation of
sharp features is not addressed.
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