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Abstract—Any closed manifold of genus g can be cut open to form a topological disk and then mapped to a regular polygon with 4g

sides. This construction is called the canonical polygonal schema of the manifold, and is a key ingredient for many applications in
graphics and engineering, where a parameterization between two shapes with same topology is often needed. The sides of the 4g−gon
define on the manifold a system of loops, which all intersect at a single point and are disjoint elsewhere. Computing a shortest system of
loops of this kind is NP-hard. A computationally tractable alternative consists of computing a set of shortest loops that are not fully disjoint
in polynomial time using the greedy homotopy basis algorithm proposed by Erickson and Whittlesey [1], and then detach them in post
processing via mesh refinement. Despite this operation is conceptually simple, known refinement strategies do not scale well for high
genus shapes, triggering a mesh growth that may exceed the amount of memory available in modern computers, leading to failures. In
this paper we study various local refinement operators to detach cycles in a system of loops, and show that there are important
differences between them, both in terms of mesh complexity and preservation of the original surface. We ultimately propose two novel
refinement approaches: the former greatly reduces the number of new elements in the mesh, possibly at the cost of a deviation from the
input geometry. The latter allows to trade mesh complexity for geometric accuracy, bounding deviation from the input surface. Both
strategies are trivial to implement, and experiments confirm that they allow to realize canonical polygonal schemas even for extremely
high genus shapes where previous methods fail.

Index Terms—Topology, polygonal schema, cut graph, homology, homotopy
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1 INTRODUCTION

Any closed orientable surface with genus g has exactly
2g classes of homotopically independent loops. A system
of loops containing one loop from each such class is also
a homotopy basis [1]. If cut along its homotopy basis the
surface becomes a topological disk, hence it can be flattened
to the plane. In particular, if all loops emanate from a single
source and are disjoint elsewhere, cutting the surface yields
a polygon with 4g sides, called the canonical polygonal schema
of the surface [2] (Figure 1, right). This construction is a
topological invariant, hence any two shapes with same genus
share the same polygonal schema, which can be used as
a medium to initialize a cross parameterization between
them [3], [4], [5]. For practical reasons cut graphs made of
shortest (geodesic) paths are often preferred [6], [7]. However,
this latter condition makes the problem NP-hard. A practical
alternative consists in computing in polynomial time a
shortest system of loops that possibly overlap at some mesh
edge, using the greedy homotopy basis algorithm proposed
in [1], and then detach such loops in post processing via
mesh refinement. Despite apparently trivial, this refinement
operation hides some difficulty. In fact, for high genus shapes
the system will contain a big number of loops, which will
largely snap to the same chains of edges, requiring massive
mesh refinement to fully detach them.

To better understand this observation, we recall that the
2g loops of a discrete manifold with genus g should all
intersect at a unique mesh vertex. For these loops to be fully
disjoint, such vertex should have at least 4g incident chains of
edges. For example, in a manifold with genus 100 the system
of loops should centered at a mesh vertex with at least 400
neighbors. Having a mesh with such a connectivity is in
practice extremely unlikely to happen. In fact, it is known
that the average vertex valence for triangle meshes is equal

to 6, which means that already for a manifold with genus 2
the chances that all loops in the basis will be fully disjoint
are tiny, and mesh refinement is necessary.

Li and colleagues [3] proposed to use edge splits to detach
loops in a greedy homotopy basis, but their refinement
scheme does not scale well on high genus shapes, and in
our tests it failed in 25% of the cases because the mesh
became so big that it did not fit the memory available in
our machine (Section 5). In this short paper we analyze
alternative refinement strategies to detach loops in a given
homotopy basis. Our main result consists in showing that
the vertex split operator introduces far less new elements
in the mesh, exhibiting a much better scalability on shapes
with extremely high genus. Despite cheaper, the vertex split
may occasionally introduce deviation from the input mesh.
We therefore propose two alternative refinement strategies:
the first one simply substitutes the edge split with the vertex
split, significantly reducing mesh growth; the second one
takes also geometry into account, and tries to use as many
vertex splits as possible, switching to the costly edge split
only when the former would introduce excessive deviation
from the reference geometry. Experiments confirm that
our refinement strategies outperform previous techniques,
turning this strong theoretical framework into a practical
algorithm to robustly initialize canonical polygonal schemas
for shapes of any complexity.

2 BACKGROUND AND PRIOR WORKS

Before providing a precise formulation of our problem, we
briefly introduce basic notions from computational topology
and discuss previous works, also fixing the notation.
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Fig. 1. Left: the greedy homotopy basis algorithm generates a system where loops are not fully disjoint (`0 and `1 merge at the black circle on top,
`0 and `3 merge at the black circle in the middle, `2 and `3 merge at the black circle at the bottom). Middle: merging points are iteratively pushed
towards the origin of the basis (black square) until they all vanish to it. Right: the associated canonical polygonal schema.

Fig. 2. A cross parameterization between a torus and its polycube
(computed with [8]). Maps between any two homotopic shapes can
be obtained by firstly projecting each shape to its canonical polygonal
schema (left,right), and then using it as a medium to travel from one
shape to the other (middle). Note that there are 4g possible ways to
overlap the canonical polygons of two manifolds with genus g.

A 2−manifold M is a topological space where each
point is locally homeomorphic to R2. In the discrete setting,
manifolds are typically represented as triangle meshes. With
abuse of notation, in remainder of the paper we will use the
symbol M to denote both the manifold and its combinatorial
realization. The interpretation will become evident from the
context.

Any discrete manifold M can be cut through a subset
of its edges to form a topological disk. This set of edges is
called the cut graph of M , and its nodes and arcs define the
points and edges of a 2D polygon, called polygonal schema of
M [9]. The canonical polygonal schema is a mapping of M
to a regular polygon with 4g sides, where g is the genus of
M . The cut graph associated to such a schema designs on
M a system of 2g loops L = {`0, `1, . . . , `2g} that are fully
disjoint except at a common vertex, called the origin (or root)
of the system. The corners of the 4g−gon are the images of
the origin, and the edges are images of the loops, which are
ordered according to the gluing scheme

`0, `1, `0, `1, . . . , `2g−1, `2g, `2g−1, `2g ,

with `i and `i being two copies of a loop li ∈ L (Figure 1). The
canonical polygonal schema has two fundamental properties:

• it is a topological invariant, meaning that two mani-
folds with same genus map to the same polygon (up

to a rotational degree of freedom);
• it is optimal, in the sense that among all the possible

polygonal schemas, the canonical polygon has the
least number of edges (i.e. there exists no k−gon with
k < 4g that is the cut graph of a manifold M with
genus g [10])

Polygonal schemas play a central role in computer
graphics, where they are at the basis of numerous ap-
plications, such as texture mapping [11], remeshing [12],
compression [13], and morphing [14], to name a few. In
particular, the properties of the canonical schema make it
an appealing starting point to initialize a mapping between
two shapes with same genus [3], [4], [5]. In fact, as shown
in Figure 2, given two manifolds M1,M2 with genus g, and
denoting with ΦM1

and ΦM2
their one-to-one maps to the

canonical polygon P4g :

ΦM1 : M1 ↔ P4g

ΦM2 : M2 ↔ P4g
,

a cross parameterization Φ : M1 ↔ M2 can be obtained
through the composition

Φ = ΦM1
◦ Φ−1M2

.

Topologists and pratictioners in computer graphics have
widely investigated the problem of computing cut graphs
for discrete manifolds. Typically, the goal is to find the cut
graph with minimal length, or the one that contains the least
number of edges. Erickson and Har-Peled showed that both
problems are NP-hard, and proposed a greedy algorithm to
compute a O(log2 g)−approximation of the minimum cut
graph in O(g2n log n) [9]. The so generated cut graphs may
not be canonical. Dey and Shipper [10] propose a linear time
method to compute a polygonal schema using a breadth-first
search on the dual graph. Their cut-graph is not guaranteed
to be shortest, and may not yield the canonical schema
as well. In [15] Colin de Verdière and Lazarus propose a
polynomial time algorithm that inputs a system of loops, and
shrinks it in order to find the shortest system of loops in the
same homotopy class. To mimic the continuous framework,
the authors ”allow the loops to share edges and vertices in the
mesh, provided that they can be spread apart on the surface with
a thin space so that they become simple and disjoint except at the
origin”. The authors do not explain how this operation can
be performed, and what impact it has on mesh size. In this
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paper we focus on this very specific problem, aiming to find
the mesh refinement strategy with minimal impact on the
input manifold, both in terms of number of discrete elements
and geometric fidelity. In [7] and [2] methods to compute
system of loops that realize a canonical polygonal schema
are presented. As already acknowledged by Lazarus and
colleagues in their final remarks ”the obtained loops look too
much jaggy and complex to be of any use for practical applications.
More work needs to be done in this direction taking into account
the geometry of the surface” [7]. Dey and colleagues [6] propose
a method based on persistent homology to robustly detect
all handle and tunnel loops in a discrete mesh. This methods
uses geodesic paths to grant geometry awareness, but does
not produce a polygonal schema. Jin and colleagues [16] also
use geodesics, and rely on the the Hyperbolic Ricci Flow to
define the polygonal schema. Problems arising from multiple
cuts that snap to the same mesh edges are not taken into
account. At the time of writing, the greedy homotopy basis
algorithm of Erickson and Whittlesey [1] can be considered
to be the state of the art for computing arbitrary polygonal
schemas on discrete manifolds. Their method uses the tree-
cotree decomposition [17], and is guaranteed to find the
shortest system of loops centered at a given mesh vertex
in O(n log n), and – by testing each point in the mesh
– the globally shortest system of loops in O(n2 log n). It
is interesting to notice that while the computation of the
shortest cut graph is NP-hard, the shortest system of loops is
easy to compute. The difference between these entities relies
in how lengths are computed: in a cut graph, each edge in
the cut counts once; in a system of loops, each edge counts
as many times as the number of loops in the system that
traverse it. It follows that the systems of loops computed
with the greedy homotopy basis algorithm are practically
useful (because they are shortest), but do not allow to realize
a canonical schema (because multiple loops snap to the
same mesh edges), hence cannot be used to initialize a cross
parameterization between two manifolds.

The use of mesh refinement to detach loops in a given
homotopy basis is mentioned in a few aforementioned
papers, although only [3] provided an actual algorithm. A
similar method was possibly proposed already in [2], but the
manuscript misses some technical details, and the algorithm
is hardly reproducible. To the best of the author’s knowledge,
no alternative refinement schemes have ever been proposed
in previous literature.

3 PROBLEM STATEMENT AND OVERVIEW

Given a discrete manifold M with genus g, our objective is
to generate a cut graph that realizes a canonical polygonal
schema of M , enabling a map to a regular 4g−gon. Our algo-
rithm inputs M and a system of loops L = {`0, `1, . . . , `2g}.
Loops in L are assumed to all emanate from the same
origin O(L), but may not be fully disjoint, thus violating
the necessary condition to realize a canonical schema, that is⋂

`i∈L
`i = O(L) . (1)

Our method outputs a refined manifold M ′ and a new
system of loops L′, such that L′ satisfies Equation 1, and
the refinement of M ′ is minimal. Without loss of generality,

we assume that the input L is computed with the greedy
homotopy basis algorithm [1]. This is just a practical choice
to ensure that loops are shortest. The method works also if
loops are not shortest paths, provided that if at some point
two loops merge, they follow the same path until they reach
the origin O(L).

3.1 General Algorithm

To devise a refinement algorithm we start from a basic obser-
vation: loops in the system may be partially overlapping, but
can never be entirely coincident. This is ensured by the fact
that L is a system of loops in the sense of [15], hence it is also
a cut graph of M . If two loops were coincident, M \L would
not be a topological disk, thus L could not be a cut graph in
the first place. It follows that if two loops share a portion of
their path towards the origin of the system, there should be a
mesh vertex where they begin to coincide. We call this point
a merging vertex. Figure 3 (left) shows an example of merging
vertex where two loops collapse into a single discrete path
that takes to the origin of the system. Note that the number
of loops incident to a merging vertex can be much higher (for
a manifold with genus g the worst case scenario is 2g − 1).
Moreover, each incoming path can be either a single loop or
a bundle of multiple loops that already joined at a previous
merging vertex. From a computational perspective there is
no difference between these cases, single loops or bundles of
loops can all be locally detached using the same refinement
operators.

The main idea of the algorithm is to iteratively push each
merging vertex one step forward towards the origin of the
system of loops O(L), until all merging points converge to it
and Equation 1 is satisfied. In the initialization step, all the
merging vertices in L are identified and stored in a queue Q.
Then, merging vertices vm are iteratively extracted and the
mesh is locally refined, making sure that all incoming loops
traverse the one ring of vm along a dedicated path. After
refinement, the merging point of all such loops has moved
to a new mesh vertex which was originally in the one ring of
the current vm. If such a point is not the origin of the system
of loops, it is added to the queue. The algorithm stops when
Q is empty. At that point there won’t be any merging vertex
in L but O(L), thus Equation 1 is satisfied, and a canonical
polygonal schema of the refined manifold M ′ along the
newly generated system L′ can be computed (Figure 1). Note
that the algorithm above does not provide any detail on
how the local refinement is performed. There are several
options, which produce different results in terms of number
of new elements inserted in the mesh, and geometric distance
between M and M ′. In Section 4 we present all the possible
alternatives, discussing pros and cons of each strategy.

4 LOCAL REFINEMENT OPERATORS

In this section we explore all the alternative ways to split the
elements of a simplicial mesh to detach a set of loops around
a merging vertex. The basic ingredients for this operation
are illustrated in Figure 4. The refinement strategy based
on the edge split operator discussed in Section 4.1 was
already presented in [3]. To the best of our knowledge, the
alternatives presented in Section 4.2 and 4.4 are novel.
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Fig. 3. Left: loops `i, `j meet together at a merging vertex vm. From that point on, they travel together towards the origin of the loop system, O(L).
Edges incident to vm that are traversed by `i, `j can be locally oriented such that there is one outgoing edge eout, traversed by `i, `j , and two
ingoing edges, traversed by one loop each (see black arrows). Rotating from eout in both directions until the first ingoing edges are found defines two
fans of mesh elements (CW and CWW). Middle: using the edge split to to locally detach `i and `j around vm using the CWW fan and the CW fan.
Right: same result, obtained using the vertex split operator.

Fig. 4. The three possible refinement operators for a triangle mesh. Left:
splitting vertex v along its incident edges e0, e1; middle: splitting edge e
at its midpoint; right: split a triangle t into three sub triangles.

The typical configuration is the one shown in Figure 3,
where two loops, `i, `j meet at merging vertex and, from that
point on, proceed together towards the origin of the system
of loops O(L). Edges traversed by some loop can be locally
oriented, such that there is one outgoing edge eout that points
towards the origin of the system, and two (or more) ingoing
edges vin, which all converge to the merging vertex. Rotating
from the outgoing edge eout clock-wise and counter clock-
wise towards the first ingoing edges, defines two ordered
fans of mesh elements. These are the two alternative domains
that can be used to locally refine the mesh, defining two
disjoint paths for `i and `j within the umbrella of their
merging vertex vm. In the following sub-sections we will
detail how each splitting operator can be used to perform
such operation.

4.1 Edge Split

Considering a merging vertex vm and the ordered fan of
edges E = {e1, . . . , en} in between an ingoing edge ein
and an outgoing edge eout, a unique path connecting the
associated ingoing vertex vin and the outgoing vertex vout
can be obtained by splitting all edges in E. Denoting with vi
the splitting point of edge ei, the path {vin, v0, . . . , vn, vout}

is entirely defined within the triangle fan span by E, and is
also completely disjoint from any other path connecting vin
and vout. Figure 3 (middle) shows its application to the CCW
and CW fans of edges around the merging point vm. Note
that splitting the CCW edge fan introduces 2 new vertices
and 4 new triangles, whereas splitting the CW edge fan
introduces 1 new vertex and 2 new triangles. In the general
case, the mesh grows linearly with the size of the edge
fan, and the growth amounts to |E| new vertices, and 2|E|
new triangles. Since there are always two alternative edge
fans to be split (CW or CCW), to minimize mesh growth it is
preferable to always split the fan with smallest size. Note that
the edge split requires that |E| > 0. If the fan of elements in
between ein, eout contains only one triangle and zero edges,
loops can be locally split only with the vertex or the triangle
split operators.

4.2 Vertex split
Considering the same edge fan E = {e0, e1, . . . , en} around
a merging vertex vm, a unique path connecting vin and
vout can also be obtained by splitting vm along the ingoing
and outgoing edges ein, eout that bound E. Figure 3 (right)
shows an application of this refinement scheme to the CCW
and CW fans around the merging point vm. Note that in
both cases the number of new mesh elements amounts to 1
new vertex and 2 new triangles. Differently from the edge
split case, this growth is invariant and does not depend
on the local complexity of the mesh. Although preferable
from a topological point of view, the vertex split operator
has a geometric limitation: depending on the geometry of
the mesh, the two new triangles incident to the new edge
(vm, v

′
m) will not adhere to the original mesh, introducing a

deviation from the target geometry. An example of failure
case is depicted in Figure 5. In general, any time the fan of
triangles span by E is not planar, the vertex split operator
introduces such a deviation.

4.3 Triangle split
Differently from the edge split and the vertex split operator,
the triangle split operator can be used to locally detach a pair
of loops if and only if the ingoing and the outgoing edges
share the same triangle. In that case, adding a new vertex
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Fig. 5. Detaching loops `i, `j around their merging vertex vm using the
vertex split operator unavoidably deviates from the mesh. Denoting with
v′m the split copy of vm, the two triangles incident to edge (vm, v′m)
deviate from the reference geometry, unless vm and v′m coincide. In
such case, both triangles will be degenerate.

Fig. 6. Splitting triangle v
(i)
in , vm, vout locally detaches loops `i, `j . Note

that `i is not a shortest loop, because |v(i)in − vout| < |v(i)in − vm| +
|vm − vout|. Also note that the triangle split is conceptually equivalent to
splitting vertex vm along the edges e

(i)
in , eout.

inside the triangle and connecting it to the three corners with
new edges generates an alternative path from the ingoing
vertex vin and the outgoing vertex vout, without passing from
the merging vertex vm (Figure 6). Note that this operation
is equivalent to performing a vertex split of vm along the
edges ein, eout. Also note that if the input system of loops is
shortest – as in the case of [1] – this configuration will never
occur. If fact, due to the triangular inequality

|vin − vout| < |vin − vm|+ |vm − vout|

the path {vin, vout} will always be shorter than the path
{vin, vm, vout}, hence vm would not be a merging vertex.
Considering its limited applicability and the fact that, even
when usable, the triangle split is equivalent to the vertex
split, this is not a suitable operator to detach loops in a cut
graph.

4.4 Hybrid split

Considering the ability of the vertex split to introduce less
elements in the mesh, but also its lack of geometric fidelity if
the edge fan is not locally planar, we introduce here a fourth
option which consists in a hybrid operator that uses as many

vertex splits as possible to reduce mesh growth, and switches
to the costly edge split to avoid excessive deviation from
the surface. The method is extremely simple, and seamlessly
integrates in the global detaching algorithm described in
Section 3.1. Given a merging vertex, we first check whether
the CW or CCW fans of elements aside the outgoing edge are
planar. If so, we split the merging vertex along the ingoing
and outgoing edges that bound such fan (Section 4.2). If none
of the fans are roughly planar, we locally refine the mesh
using the edge split operator (Section 4.1.)

To measure planarity we simply consider the maximum
angle between the normals ni,nj of two triangles i, j in the
fan of triangles

arg max
i,j

∠(ni,nj) (2)

If the angle above evaluates zero, the fan is planar and the
vertex split operator can be used without introducing any
deviation from the input surface. In all other cases some
deviation from the reference geometry will occur. Assuming
the mesh is planar and the vertex split operator is used,
positioning the new vertex v′m in the one ring of the merging
vertex vm is also critical to ensure that no triangle will flip its
orientation in the refined mesh. Making sure that v′m stays
inside the polygon defined by the boundaries of the edge fan
is not enough, because such polygon may be non convex (ein
and eout may form a concave angle). We practically solve
this issue by initializing the new point as

v′m = (1− λ)vm + λve

where λ is initially set to 0.75, and ve is the vertex opposite
to vm along the edge e, which is median in the edge fan
being split. If any of the triangles incident to v′m is flipped,
we halve λ and update its position, until a valid position
is found. Such a position always exists if ein, eout do not
coincide.

In practice, we use the vertex split operator even when
the fan of elements is roughly planar. To do so we simply
test Equation 2 with a threshold angle of 5 degrees, which
we empirically found to provide a good balance between
the amount of vertex splits executed and surface deviation.
Users can easily trade mesh size for geometric fidelity by
acting on this parameter.

5 RESULTS AND DISCUSSION

In this section we analyze the performances of the three
refinement strategies presented in Section 4. We considered a
set of 75 triangle meshes, mostly gathered from the Thingi10K
dataset [18]. Since we are interested in the scalability of
refinement operators we focused our analysis on high
genus meshes, including just a few low genus models for
completeness. Overall, the genus g varies from 2 to 632 (with
average 157), and the initial mesh size varies from 1K to
370K vertices (with average 35K). Our experimental setup
is as follows: for each model we first compute a generic
system of loops centered at a random mesh vertex with [1].
We then apply the three refinement algorithms to detach all
loops except at their basis, producing three alternative cut
graphs that admit a canonical polygonal schema (Figure 7).
Assuming an infinite amount of memory, all the refinement
operators are guaranteed to converge to a canonical cut
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Fig. 7. A few results from our testing dataset, obtained by applying the hybrid splitting scheme. From top to bottom we show: input shape, system of
loops, and associated canonical polygonal schema (using the Tutte embedding for interior points). The three numbers at the bottom report: genus,
number of loops in the system, sides of the canonical polygon.
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Fig. 8. Scatter plot of all the models in our test set that were successfully
processed with all three refinement operators. Mesh growth is measured
as the ratio between the number of points in the refined mesh and in the
input mesh. To better inspect results and differences between the various
approaches we use a log scale for the vertical axis.

graph. We run our software prototypes as single threaded
applications on a MacBook Pro with 16GB of RAM, aborting
processes that consume a bigger amount of memory and
considering them as failure cases.

In terms of mesh growth, experimental results confirm
our hypothesis and clearly show the ability of the vertex split
to introduce far less new mesh elements than the edge split
(Figure 8). With the edge split operator the ratio between the
number of vertices in the refined mesh and in the original
one stayed in between 1.03 and 2229 (from 5.5K to 12.2M
vertices for a mesh with genus 448). Conversely, for the
vertex split operator the same ratio is always lower than
7.5 (from 5.7K to 41.4K vertices for a mesh with genus 451).
Moreover, the edge split strategy started to consistently fail
for meshes with genus higher than 180, with only three
exceptions (g = 191, 378, 448). Overall, we counted a total
of 19 failures (25% of the dataset), while the vertex split
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Fig. 9. Running times for all the models in our test set that were
successfully processed with all three refinement operators. The vertical
axis is in log scale.

succeeded in producing a valid cut graph for all the meshes
in the dataset, always using less than 10GB of RAM. The
hybrid split stays in between, with a vertex ratio that grew
up to 476 (from 9.7K to 64.6K vertices for a mesh with
genus 568), and failed on three very high genus shapes
(g= 358, 451, 697), succeeding on all the others (4% failure
rate). Overall, the average vertex ratio was 2.66 for the vertex
split, 38.66 for the hybrid split, and 240.18 for the edge split.

Running times are heavily influenced by mesh growth.
The vertex split refinement is the fastest to compute, followed
by the hybrid split and with the edge split at least one order
of magnitude slower (Figure 9). Overall, timings vary from
0.007s to 32.9s for the vertex split (average 2.3s), from 0.007s
to 431s for the edge split (average 61.4s), and from 0.1s to 34s
for the hybrid split (average 4.9s).

As can be noticed from the growth and time analysis
numbers fluctuate, and do not monotonically grow with
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Fig. 10. Mesh growth obtained by using the edge split and vertex split
operators to refine a greedy homotopy basis of a sequence of polycubes
with increasing genus.

the genus. Although this might seem counter intuitive, it is
actually not surprising and can be explained by observing
that the mesh genus is just one the factors that impact the
performances. The other factors are: the initial resolution
of the mesh, the type of connectivity (i.e. the distribution
of vertex valences), the geometry, and also the position of
the root of the system, which affects how shortest loops
wind around the handles and how much they tend to
accumulate on specific areas of the mesh, requiring more or
less refinement to detach them.

To better isolate the impact of mesh genus we also
conducted a second experiment: we constructed a sequence
of synthetic meshes with growing genus, obtained by con-
catenating multiple occurrences of the polycube shown
in Figure 2. We fixed the root of the system of loops at
a prescribed vertex, and applied the three mesh splitting
schemes for a sequence of meshes going from genus 1 to
50. Results are presented in Figure 10 and clearly show that
the vertex split operator grows linearly with mesh genus,
whereas the edge split has a super quadratic growth. This
difference in the asymptotic behaviour can be explained
by observing that to detach n loops around a merging
vertex the edge split may introduce up to n(n + 1)/2 new
vertices, whereas the vertex split always introduces n vertices
(Figure 11). Moreover, if the portion of loop connecting
the merging vertex with the origin of the system counts
m vertices, the same operation will be repeated at each such
point, leading to a O(mn2) complexity for edge split, and
O(mn) for the vertex split.

For the geometric fidelity, the edge split is the only
operator that guarantees no deviation from the reference
geometry. For the vertex split, we observed that when
many loops concentrate in a single chain of edges and
the refinement insists on the same area, surface deviation
accumulates, creating visible artifacts. In the worst case we
found that the Hausdorff distance was 0.2 w.r.t. the diagonal
of the bounding box, whereas the average distance was
3e-2 across all the runs. The hybrid split allows to better

,...,,...,

Fig. 11. Processing of a dense merging vertex: if the vertex split operator
is used (CW fan, cyan area) detaching n loops requires the insertion of
n new mesh vertices. If the edge split operator is used (CWW fan, yellow
area) detaching n loops requires the insertion of n(n+ 1)/2 new mesh
vertices.

H 1× 10−4 3× 10−4 6× 10−4 1× 10−3 3× 10−3 6× 10−3

% 3.1 18.7 47.1 70.8 92.1 99.9
TABLE 1

Average results obtained by processing all models in our dataset with a
modified hybrid operator that always attempts to use a vertex split, and
switches to the edge split if the newly inserted vertex would increase the
Hausdorff distance H above a given threshold. In the top line we indicate
the threshold on surface deviation, and in the bottom line the average

percentage of vertex splits executed w.r.t. the total amount of splits.

control surface deviation, and in all our tests the average and
Hausdorff distances were consistently below 4e-5 and 1e-3,
respectively. Even though our heuristic based on the planarity
check proved to be effective at bounding surface deviation,
there are countless alternative options to combine edge and
vertex splits to reduce mesh growth while satisfying some
user prescribed requirement. We chose the planarity check
because it naturally preserves sharp creases and the local
smoothness or planarity of the shape (e.g. for the polycube
case).

Another natural alternative consists in directly bounding
the Hausdorff distance, always attempting a vertex split, and
reverting it switching to the edge split if the surface deviation
grows above a given threshold. We implemented this option
using VCG [19] to compute the two sided Hausdorff distance,
and tested it against all the models in our dataset. In Table 1
we report the average percentage of vertex splits successfully
executed (i.e. not reverted) for growing bounds on the
maximal distance between the input and refined meshes.

6 CONCLUSIONS AND FUTURE WORKS

We showed that although theoretically correct, detaching
cycles in a system of loops using the edge split operator
triggers a mesh growth that explodes with genus, leading to
numerous failures in practice. In alternative we propose two
novel refinement operators. The first one simply substitutes
the edge split with a vertex split, obtaining much better
performances in terms of running times, memory footprint
and mesh growth, at the cost of a possible deviation from the
reference geometry. The second one addresses this limitation,
and proposes to use as many vertex splits as possible,
switching to the costly edge split only when significative
surface deviation occurs. Numerous valid heuristics could be
used to decide how to combine these operators. We showed
the effectiveness of a heuristic based on a testing local mesh



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

planarity, and also implemented an alternative strategy based
on a direct control on the Hausdorff distance.

We support our claims with a variety of results, obtained
on discrete manifolds that span from low to extremely high
genus, and from smooth to CAD-like shapes. The proposed
algorithms are based on well established local operators for
simplicial meshes. These operators are already implemented
in many geometry processing toolkits, making our results
easy to reproduce. Nevertheless, we release a reference
implementation of all the splitting methods presented in
this paper (including the basic edge split strategy) inside
Cinolib [20].

Despite conceptually simple, we believe that this work
makes one step forward towards the robust and computation-
ally affordable generation of cross maps between complex
shapes. Interesting results have already been presented for
disk-like topologies [21], and we expect more and more
papers to come in future years. In the same spirit of recent
works for the robust computation of planar maps, which
start with Tutte’s embedding and then cure distortion [22],
[23], [24], we foresee a similar pipeline for cross maps
between shapes, where manifolds are first cross mapped via
their canonical schema, and then the polygon is evolved to
minimize distortion. Note that this problem is much harder:
partly because distortion minimization should consider the
composition of two maps that overlap to one another, but
more importantly because there are 4g alternative ways to
overlap two 4g−gons (i.e., which handle maps to which?),
which makes it a problem with mixed discrete and con-
tinuous degrees of freedom for which, to the best of our
knowledge, no effective solution is available in literature.
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