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Fig. 1. Converting an adaptively refined grid (left) into a conforming hexahedral mesh requires additional refinement to fulfill the balancing and pairing
criteria. Enforcing pairing through an octree (OP) yields dense grids, both with strong (SB) and weak (WB) balancing. Our generalized pairing criterion (GP)
allows us to significantly reduce both grid and mesh size, while still guaranteeing the generation of a pure hexahedral mesh with any of the known dual
schemes [Gao et al. 2019; Livesu et al. 2021; Maréchal 2009]. The dashed line at the bottom right indicates the size of the input grid.

Due to their nice numerical properties, conforming hexahedral meshes
are considered a prominent computational domain for simulation tasks.
However, the automatic decomposition of a general 3D volume into a small
number of hexahedral elements is very challenging. Methods that create
an adaptive Cartesian grid and convert it into a conforming mesh offer
superior robustness and are the only ones concretely used in the industry.
Topological schemes that permit this conversion can be applied only if
precise compatibility conditions among grid elements are observed. Some of
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these conditions are local, hence easy to formulate; others are not and are
much harder to satisfy. State-of-the-art approaches fulfill these conditions by
prescribing additional refinement based on special building rules for octrees.
These methods operate in a restricted space of solutions and are prone to
severely over-refine the input grids, creating a bottleneck in the simulation
pipeline. In this article, we introduce a novel approach to transform a general
adaptive grid into a new grid meeting hexmeshing criteria, without resorting
to tree rules. Our key insight is that we can formulate all compatibility
conditions as linear constraints in an integer programming problem by
choosing the proper set of unknowns. Since we operate in a broader solution
space, we are able to meet topological hexmeshing criteria at a much coarser
scale than methods using octrees, also supporting generalized grids of any
shape or topology. We demonstrate the superiority of our approach for both
traditional grid-based hexmeshing and adaptive polycube-based hexmeshing.
In all our experiments, our method never prescribed more refinement than
the prior art and, in the average case, it introduced close to half the number
of extra cells.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els; Mesh models.
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1 INTRODUCTION
Solving a partial differential equation (PDE) on a discrete mesh
requires finding a good balance among geometric fidelity, numeri-
cal accuracy, and efficiency. Extremely dense meshes ensure good
geometric approximation and tight error bounds, but are compu-
tationally expensive and require significant storage and communi-
cation bandwidth. Coarse meshes ensure fast computation and re-
duce memory pressure, but approximation error grows significantly.
When generating meshes for simulations, it is therefore essential
to introduce the least number of elements that provide the wanted
accuracy, maximizing the efficiency of storage and computation.

Multiple studies in Computation Fluid Dynamics (CFD) and linear
Finite Element Methods (FEM) have shown that hexahedral meshes
perform better than tetrahedral meshes since they can yield tighter
approximation bounds at a lower cost [Benzley et al. 1995; Cifuentes
and Kalbag 1992; Erke Wang and Rauch 2004; Schneider et al. 2019;
Wang et al. 2021]. Despite its importance and decades of academic
and industrial research, the generation of hexahedral meshes con-
forming to given 3D shapes is still an open problem [Armstrong
et al. 2015; Blacker 2000; Owen 1998; Schneiders 2000a; Shepherd
and Johnson 2008; Tautges 2001].
As of today, only the solutions based on adaptive grids have

proven to meet stringent scalability and robustness requirements
for general shapes, and are the only automaticmethods implemented
in commercial software [Distene SAS 2020]. These methods build
an all-hex mesh by intersecting the input model with a Cartesian
grid defining the mesh interior, and connecting it to the surface.
Adaptive grids are employed instead of regular grids to reduce
the mesh size. However, a locally-refined grid is not a pure hex-
ahedral mesh, because spurious vertices (hanging nodes) arise at
the interface between cuboids at different refinement levels. Local
topological schemes permit to convert an adaptive grid to a conform-
ing hexmesh via dualization, connecting pairs of adjacent hanging
nodes to regularize per-vertex valences (Fig. 3). For this process to
be possible, the two following criteria must be fulfilled:

• balancing – the difference in the amount of refinement of
adjacent grid elements must not be greater than one;

• pairing – clusters of elements with equal size must have an
even number of items along all their sides.

While the balancing condition can be easily encoded as a local
constraint between pairs of adjacent grid cells, pairing is non-local,
hence much harder to deal with.
Prior methods meet these constraints by transforming the non-

local pairing condition into a more stringent local rule in a hier-
archical space partitioning. Specifically, they impose that refined
areas correspond to the internal (i.e, non leaf) nodes of a restricted
octree, and guarantee the pairing property by imposing that if the

child of an octant has been split, then its siblings having the same
octant as their parent must be split as well [Gao et al. 2019; Hu et al.
2013; Livesu et al. 2021; Maréchal 2009]. As shown in Fig. 1, this
process has a major impact on grid size. In our experiments, we
found cases where the final grid grew more than 9 times its original
size (Section 6).

Our main observation is that a considerable portion of this refine-
ment is unnecessary and could be avoided if we were able to explore
a larger space of solutions than the one considered by methods
based on octrees. A concise 2D example is given in Fig. 2: a dense
4×4 sub-grid always satisfies both balancing and pairing, regardless
of its relative position within the coarser grid. Nevertheless, if we
position the subgrid across multiple quadrants in the hierarchy, the
tree building rules will require to further split many nodes, produc-
ing a valid grid that is almost three times bigger than the original
(already valid) one.

In this article, we introduce a novel method that significantly en-
larges the space of hexmeshable adaptive grids, drastically reducing
the amount of refinement necessary for balancing and pairing. Our
key insight is that we can efficiently handle the non-local pairing
condition by controlling the refinement of grid vertices instead of
cells. This change of variable allows us to formulate the whole pair-
ing problem as an integer optimization problem subject to linear
constraints, without forcing fixed refinement patterns dictated by
octree rules. We ultimately transfer refinement information from
vertices to cells, isolating the least number of elements that must
be split to fulfill all hexmeshing topological criteria. Moreover, we
integrate this solution into an algorithm that combines pairing and
balancing without any resort to tree rules, leading to a general ap-
proach applicable to any adaptive grid, regardless of its shape or
topology.
As demonstrated in Section 6, our formulation scales well with

grid size, and can be readily adapted to a variety of situations,
including the local refinement of a polycube mapping [Gregson
et al. 2011] to improve geometric or numeric accuracy, and the
direct replacement of standard octree-based refiners in state-of-the-
art hex-meshing pipelines [Gao et al. 2019; Hu et al. 2013; Livesu
et al. 2021; Maréchal 2009]. In all these settings, our method ulti-
mately produces conforming hexmeshes much coarser than prior
grid-based solutions. In particular, our extensive experimentation
shows that, on common benchmarks, hexmeshability is ensured by
introducing, on average, about half the number of extra cells with
respect to competing octree-based solutions. To grant full repro-
ducibility and maximum adoption of our technique, we also release
our reference implementation at the following GitHub repository:
github.com/cg3hci/Gen-Adapt-Ref-for-Hexmeshing.

2 RELATED WORK
Hexmeshing is a very broad field, and a full review is out of the
scope of this article. In the following, we only focus on the methods
most closely related to ours. We refer the reader to a well-established
survey [Armstrong et al. 2015] for a broader perspective.

Grid-based methods. Pioneering work on hexahedral meshing
[Schneiders 1996; Schneiders and Bünten 1995] used a regular grid
to position a set of hexahedra fully inside the object, exploiting
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Fig. 2. Refining a regular 4 × 4 grid at a 2 × 2 minor (blue) always satisfies balancing and pairing, regardless of subgrid positioning. Methods based on rigid
trees achieve pairing by asking refined areas to correspond to inner nodes in the tree, and also ensuring that both such nodes and their siblings are fully
split [Maréchal 2009]. Left: if the dark minor aligns with the hierarchical structure, pairing is observed both in the grid and the tree. Middle: if the minor does
not align with the hierarchy, there is grid pairing but not tree pairing. Right: enforcing pairing through the tree unnecessarily refines the whole grid.

vertex projection and padding to complete the mesh with boundary
elements conforming to surface features. Adaptive grids based on
octree refinement, together with topological schemes to incorporate
the hanging nodes, were later introduced to reduce the number of
elements [Schneiders 1997, 2000a,b; Schneiders et al. 1996]. Most
of the later research in the field tackled the problem of projecting
the grid surface to the target object, a critical operation that should
secure well-shaped elements (i.e., valid for simulation) and also
preserve sharp features [Gao et al. 2019; Ito et al. 2009; Lin et al.
2015; Schneiders 1996; Schneiders and Bünten 1995; Zhang and
Bajaj 2006]. Our contribution focuses on the combinatorial problem
of defining valid all-hex connectivity and is therefore orthogonal
to this body of literature. Any existing projection techniques can
be coupled with our method to produce a complete, end-to-end,
hexmeshing pipeline.

Hexmeshing from adaptive grids. Just a few authors focused on the
problem of defining the hexmesh connectivity from a locally-refined
grid containing hanging nodes. To the best of our knowledge, all
adaptive methods use octrees, which are locally refined according
to topological [Mitchell and Vavasis 1992] or geometric criteria,
such as local thickness [Livesu et al. 2021; Maréchal 2009], sur-
face approximation [Gao et al. 2019], normal similarity [Ito et al.
2009], or a combination of those [Bawin et al. 2020]. A first wave
of methods was based on the early refinement schemes proposed
by Schneiders [1997]. However, these schemes are not exhaustive,
as they allow to produce a valid hexahedralization for only 4 out
of the 20 possible transitions. Maréchal [2009] showed that if the
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Fig. 3. Pairing and connecting hanging nodes with valence 3 arising at
the interface between adjacent cells with different refinement, yields a
new mesh where all vertices have valence 4. The dual of this mesh is a
quadrilateral mesh. The balancing and pairing criteria jointly ensure that
this transition scheme can be applied everywhere, producing a conforming
mesh. Similar schemes also exist for 3D adaptive grids [Gao et al. 2019;
Livesu et al. 2021; Maréchal 2009].

input grid satisfies both the balancing and the pairing conditions,
a full hexahedral mesh can be obtained via dualization. The result-
ing algorithm has been exploited in a commercial software called
MeshGems [Distene SAS 2020]. Similar results can also be obtained
by dualizing the grid first, and then substituting clusters of non-
hexahedral elements with a finite set of templates [Gao et al. 2019].
Very recently, Livesu and colleagues [2021] introduced a novel set of
schemes that supports a weaker definition of balancing, producing
meshes with simpler singular structure and lower element count.
Following their terminology, in the remainder of the paper we will
refer to the balancing criterion used in [Gao et al. 2019; Maréchal
2009] as strong balancing, and the one used in [Livesu et al. 2021] as
weak balancing. The two definitions differ by the notion of neigh-
borhood they adopt. For the strong case, all grid cells incident at
a face, vertex, or edge must be balanced. For the weak case, only
face-adjacent cells must be balanced. Our method is compatible with
both definitions, but since the latter performs better than the former,
we used the weak balancing version in all our experiments. To the
best of our knowledge, our work is the first to observe that the
space of adaptive grids that admit a hexmeshing is much wider than
the space of grids that can be created with octrees. By substituting
a rigid hierarchical structure with a more generic integer linear
problem, we are able to obtain meshes with much lower (and in the
worst case equal) element count, while still relying on the same set
of topological schemes.

Voxelization and polycubes. Besides adaptive methods based on
octrees, grids are also employed by hexmeshing methods that use
voxelizations [Lin et al. 2015] and polycubes [Cherchi et al. 2016;
Fang et al. 2016; Fu et al. 2016; Gregson et al. 2011; Huang et al.
2014; Livesu et al. 2013]. These methods typically do not involve
local refinement, although initial attempts to combine adaptive
meshing and polycubes have been proposed in recent literature.
Specifically, Hu et al. [2016] fit an octree in polycube space, and
use ideas from Maréchal [2009] to restore the all-hex connectivity.
Conversely, other approaches like [Cherchi et al. 2019; Xu et al.
2017] keep the sampling grid fixed, and enlarge or shrink portions
of the polycube to obtain the wanted adaptivity. Our method can
be seamlessly incorporated in the first approach, granting a lower
element count, and is superior to the latter, which imposes that the
singular structure of the mesh does not change, thus limiting the
ability to adapt the mesh to features that are not present in polycube
space (Section 6.2).
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Fig. 4. The grid in (a) does not satisfy pairing because the interface between
coarse and refined elements (in red) has an odd size. Pairing could be trivially
obtained with a global step of refinement, which doubles the size of all sides
and makes them even (b). However, this solution is highly expensive because
it quadruplicates the number of cells (in 3D, the factor is 8×). Our method
restores pairing by splitting one single cell, which is the optimal solution (c).

Other methods. A variety of alternative methods for hexahedral
meshing have been proposed over the years, including sweepings
along a given direction or guiding curve [Livesu et al. 2016; Staten
et al. 2010; Wu et al. 2018], advancing front methods [Kremer et al.
2014], dual methods [Ledoux and Weill 2008], and methods guided
by various forms of direction fields [Corman and Crane 2019; Jiang
et al. 2013; Li et al. 2012; Liu et al. 2018]. Moreover, several authors
have also proposed solutions for creating hex-dominant rather than
all-hex meshes (e.g., [Livesu et al. 2020; Ray et al. 2018]). These
approaches are orthogonal to ours, and have no methodological
overlap.

3 OVERVIEW
Our algorithm transforms an adaptive Cartesian 𝐺 into a modified
grid 𝐺 ′ that is suitable for conforming hexahedral meshing. We
do not make any assumption on the motivation of the already per-
formed refinement on𝐺 , which is related to the specific application
and may come from prior knowledge (e.g., from a domain expert).
The refinement transforming𝐺 into𝐺 ′ has, instead, the only goal to
ensure hexmeshability through the satisfaction of both the balanc-
ing and pairing conditions introduced in Section 1. This allows us to
hexmesh 𝐺 ′ by first applying known topological schemes to obtain
the all-hexahedra topology [Livesu et al. 2021], and then projecting
the mesh onto the target geometry, as detailed in Section 6.

While this problem admits infinitely many solutions, our goal is
to find the grid 𝐺 ′ that minimizes its distance from the input grid
𝐺 , according to metric

𝑑 (𝐺,𝐺 ′) =
∑
𝑐∈𝐺

|𝑟 (𝑐) − 𝑟 (𝑐 ′) | , (1)

subject to per-cell constraints 𝑟 (𝑐 ′) ≥ 𝑟 (𝑐), where 𝑟 (𝑐) and 𝑟 (𝑐 ′)
represent the amount of input and output refinement for cell 𝑐 , re-
spectively. In other words, we are looking for the minimum amount
of extra refinement that fulfills the topological conditions for hexa-
hedral meshing. We want the refinement to be minimal because, to
be efficient, the mesh must not be unnecessarily dense. At the same
time, we cannot under-refine any cell because the input density was
the outcome of a process on which we have no control.
Our solution improves over current tree-based approaches, ad-

dressing the hexmeshability conditions summarized in Section 1
with a mixed algorithmic and numerical approach.

Fig. 5. The input grid (left) does not satisfy balancing, because its top-left
and bottom-right cells have refinement one and are adjacent to cells with
refinement four. Iteratively splitting each cell adjacent to a cell smaller than
half of its size converges to a balanced grid (right). In this example, the
final grid is weakly balanced. Splitting the cell with refinement two that
is vertex-adjacent to one the cells with refinement four would produce a
strongly balanced grid.

3.1 Balancing
The balancing condition imposes that the difference in the amount
of refinement for pairs of adjacent cells must be either zero or one.
As this condition is purely local, we can easily address it algorith-
mically with an iterative approach. We progressively split grid cells
adjacent to another cell with more than one step of further refine-
ment, repeating the process until all grid cells are balanced (Fig. 5).
The local criterion can be either the strong balancing used in [Gao
et al. 2019; Maréchal 2009] or the weak balancing used in [Livesu
et al. 2021]. These two criteria only differ in the notion of per-cell
neighborhood they use, and are both compatible with our pipeline,
as already discussed in Section 2.

3.2 Pairing
A grid satisfies pairing if every cluster of face-adjacent cells with
the same size has an even number of items along all its sides (Fig. 4).
Differently from balancing, this condition necessitates to compute
span lengths and cannot be simply expressed as a set of pairwise
constraints among adjacent cells.

Our main intuition is that pairing can be more easily formulated
by changing the variables of the problem, operating on small clusters
of cells sharing a grid vertex instead of single cells. Grid vertices
have a less local view on the grid, which consists in a 2 × 2 sub-grid
in 2D, and a 2×2×2 sub-grid in 3D. In both cases, the cluster of cells
incident to a vertex has even size across all dimensions. Therefore,
if we manage to distribute refinement through grid vertices and
guarantee no overlap between the clusters associated with vertices
that carry refinement, we can ensure that all clusters of refined cells
will have even sides, thus achieving pairing.

Even if it may not seem obvious, this idea is deeply connected
with the tree rules expressed by Maréchal [2009] and used by all
octree methods. These rules essentially impose that clusters of cells
with same refinement correspond to leaf parents in the tree. But the
parent of 8 leaves can be thought of as the only grid vertex shared by
all its children. Therefore, one could interpret this operation as the
grid vertex (the parent) controlling the refinement of all its children
(the leaves). Octree-based refinement makes this operation safe, in
the sense that, by construction, there cannot exist conflicts in the
assignment, since each leaf parent controls a unique set of octants.
For the same reason, this approach is very limiting, because not all
grid nodes can be associated to parents of leaves in the tree, hence
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the number of possible solutions is restricted by the rigid octree
structure.
Our novel formulation allows us to implement the same mecha-

nism of distributing refinement through grid vertices, but lets any
grid vertex distribute refinement to its incident cells. In our ap-
proach, conflicts among adjacent vertices with overlapping minors
are not handled by grid refinement rules but with a set of carefully
crafted linear constraints. This allows us to parameterize a much
wider space of valid solutions and formulate and solve pairing as
an integer linear programming (ILP) problem.

Considering that under-refinement is not allowed, the only way
to fulfill pairing is to enlarge clusters of refined elements, splitting
their neighbors. If the input grid is assumed to be balanced, this can
never result in splitting a grid cell more than once, meaning that
the ILP we solve is actually a binary problem.
In the following, we first formalize our pairing approach as an

ILP with binary unknowns for regular grids (Section 4). Then, in
Section 5, we illustrate how this basic strategy can be extended to
adaptive grids.

4 REGULAR BINARY GRIDS
We assume a regular grid 𝐺 with prescribed binary refinement as
input, meaning that each grid cell has a Boolean flag associated with
it, which indicates whether it should be split once or kept as it is.
Our goal is to split the least amount of cells, such that the input
refinement plan is observed and the output grid satisfies the pairing
criterion. Since only two levels of refinement are possible, balancing
is satisfied by construction.

The reader may observe that the pairing problem admits a trivial
solution: since the double of any odd number is even, applying one
extra step of refinement to each cell would trivially ensure pairing
everywhere (Fig. 4). This solution is impractical, though, because it
would increase the grid size by a factor of 4 in 2D and 8 in 3D, thus
violating our minimality criterion in most situations. For instance,
we expect that, when the prescribed input refinement already yields
a grid satisfying the pairing condition, the pairing algorithm does
not prescribe any additional refinement. Notice that previous octree-
based methods fail to satisfy this basic requirement, unnecessarily
increasing the grid size.

As briefly mentioned in Section 3, we formalize the pairing prob-
lem as an ILP with binary unknowns, assigning refinement to grid
vertices 𝑣 , and letting grid cells 𝑐 accumulate refinement indirectly
from their incident vertices, according to formulation

𝑟 (𝑐 ′) =
∑
𝑣∈𝑐

𝑟 (𝑣) . (2)

where 𝑣 ∈ 𝑐 are the 8 vertices of the cell 𝑐 , 𝑟 (𝑣) are the binary
unknowns representing the per-vertex refinement, 𝑐 are the grid
cells, and 𝑟 (𝑐 ′) is the output per-cell refinement computed in post-
processing after solving the ILP. If unconstrained, this formulation
would permit each cell to receive up to eight steps of refinement.
To ensure that each cell is split at most once, we must ensure that it
receives positive refinement only from one of its incident vertices,
which in turn means that the 2 × 2 × 2 minors centered at two
grid vertices that carry positive refinement can never overlap. Fur-
thermore, to fulfill pairing, also partial tangencies between vertex

(a) Four-cell overlap (b) Two-cell overlap (c) One-cell overlap

(d) Whole-face tangent (e) Half-face tangent (f) Quarter-face tangent

(g) Whole-edge tangent (h) Half-edge tangent (i) Corner tangent

Fig. 6. Exhaustive taxonomy of all possible conflicts between the 2 × 2 × 2
minors associated to the vertices in a regular 3D grid. The configurations in
(a), (b), (c), (e), (f), and (h) are illegal, in (d), (g), and (i) are legal. The number
of combinations for each configuration, taking into account symmetry, is
indicated in each subfigure.

minors must be avoided because they introduce odd (unit length)
sides. Fig. 6 shows all the possible interactions between overlapping
or tangent vertex minors, indicating the illegal ones. In terms of ILP,
avoiding all the illegal configurations in a 3D grid translates to 98
linear constraints of the type

𝑟 (𝑣𝑖 ) + 𝑟 (𝑣 𝑗 ) ≤ 1 (3)

where 𝑣𝑖 , 𝑣 𝑗 represent the vertices corresponding to centers of the
offending minors.

These constraints alone, however, are still not sufficient to ensure
a valid output grid. To understand this, one must recall that exist-
ing dual schemes for conforming hexahedral meshing are always

1 1

1 0

01

0 0 0 0 0

1 1 1

1

0 0 0 0 0

11

positioned at the coarse side of a tran-
sition (Fig. 3), meaning that each clus-
ter of refined elements must be sur-
rounded by a buffer layer of unrefined
cells that host the necessary transi-
tions. If two refined areas are sepa-
rated by a coarser narrow bridge of
width one, it would be impossible to
install the two schemes necessary for

both clusters. We handle this situation by introducing additional
linear constraints between the centers of potentially offending clus-
ters, ensuring that only one of them has positive refinement (see
inset). In 3D, this translates to 210 pairwise linear constraints per
vertex, of the same type of those in Eq. 3.
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Summarizing, the complete formulation for binary grids becomes

min
𝑟 (𝑣)

𝐸 =
∑
𝑐∈𝐺

(∑
𝑣∈𝑐

𝑟 (𝑣) − 𝑟 (𝑐)
)

(4)

𝑠 .𝑡 .

∀𝑐 ∈ 𝐺,
∑
𝑣∈𝑐

𝑟 (𝑣) ≥ 𝑟 (𝑐)

∀𝑖 𝑗 ∈ 𝑁𝑃 𝑟 (𝑣𝑖 ) + 𝑟 (𝑣 𝑗 ) ≤ 1

where 𝑟 (𝑣) are the unknown per-vertex binary refinements, 𝑟 (𝑐) is
the known input per-cell refinement, and 𝑁𝑃 is the set of all vertices
that are adjacent according to the conflicting masks shown in Fig. 6
and in the inset above.

5 ADAPTIVE GRIDS
In adaptive grids, clusters of cells with equal size and an odd number
of items along one of their sides may occur at any level of the
refinement hierarchy (red edges in the inset below), and not only at
the boundary between cells with refinement 0 and 1, as it happens
for regular binary grids. This makes it difficult to encode the pairing

problem in a single ILP formulation, as we
did for the regular binary formulation. We
face this issue by splitting global pairing into
a sequence of simpler local problems. By re-
stricting our analysis to the portion of the
grid involving pairs of adjacent refinement
levels in the hierarchy, we can operate on a

temporary regular binary grid, and solve the pairing there. Consid-
ering an adaptive grid 𝐺 with refinement levels 𝑙max, . . . , 𝑙min, we
create a sequence of binary sub-grids involving cells with refinement

(𝑙max, 𝑙max−1), (𝑙max−1, 𝑙max−2), . . . , (𝑙min+1, 𝑙min) ,
and apply the formulation described in Section 4 to each of them,
updating the global grid after each solve. Note that, depending on
the refinement pattern, the sub-grid extracted at each level may
contain holes or may be composed of multiple connected compo-
nents. Our approach correctly handles, without modification, all
such configurations. For any pair of refinement levels (𝑙𝑖+1, 𝑙𝑖 ), the
local solve achieves pairing by promoting some of the cells with
refinement 𝑙𝑖 to level 𝑙𝑖+1. Proceeding from the finer to the coarser
levels ensures the convergence of the process. Since no new cells
with refinement greater than 𝑙𝑖+1 are created, the boundaries involv-
ing level 𝑙𝑖+1 are fully solved for in the current iteration. A simple
example of our iterative pairing procedure is shown in Fig. 8.

5.1 Optimality and independence of local solves
The proposed iterative formulation is globally optimal if, after hav-
ing solved each local ILP, no refined cell that is completely internal
in the global grid has faces exposed at the boundaries of the local
sub-grid. In fact, if this condition holds, each local grid becomes
completely disjoint from the others. Note that all sub-grids undoubt-
edly observe this condition before solving the ILP. Otherwise, cells
with refinement 𝑙𝑖+1 would be face-adjacent to cells having refine-
ment 𝑙𝑖−1 in the global grid, violating the balancing condition and
leading to a contradiction. However, there are cases where local

pairing will demand splitting cells having boundary faces, creating
an overlap with the local grid at the subsequent iteration, hence
a connection between the associated ILPs. Besides, whenever this
happens, the balancing criterion is violated. For this reason, we
interleave global balancing and local pairing, restoring the former
with the algorithmic approach described in Section 3.

5.2 Balancing policy and local grid boundary
As reported in Section 3, literature offers two alternative balancing
criteria, which both support conforming hexahedral meshing and
are compatible with our approach. Strong balancing adopts a broader
definition of neighborhood, deeming any two cells sharing a face,
edge, or vertex as adjacent. Weak balancing uses a stricter definition,
for which only cells sharing a face are adjacent. These definitions
impact our iterative pipeline because, depending on the chosen
balancing policy, cells with distant levels of refinement may or not
touch the boundary of a local grid.

Strong balancing. If the strong balancing criterion is used, any
cell in the local binary grid containing a boundary element will have
zero refinement. Indeed, this is always the case; otherwise, there
will be a refined cell in the local grid that is edge/vertex-adjacent to
some twice coarser cell not in the current grid, thus violating the
strong balancing and leading to a contradiction. Consequently, any
possible growth of refined clusters necessary to achieve pairing will
be strictly contained in the current grid, meaning that only internal
grid vertices will receive positive refinement.

Weak balancing. If weak balancing is observed, there may be
cells in the local grid that have one vertex or edge exposed on the
boundary, and may therefore be adjacent to coarser cells in the
global grid that are not part of the current computational domain.
In this case, the ILP may restore pairing by assigning refinement to
some boundary vertex in the local grid, which in turn demands to

0
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0 0

1 1

1

0

0 0 0 0

0

0
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1
1

Fig. 7. Top: the ILP solver has assigned positive refinement to a boundary
vertex in the local sub-grid. The minor associated to it must be enforced
in the global grid, otherwise pairing is not guaranteed. Bottom: in 2D, a
grid vertex may be incident to cells with up to three different levels of
refinement, therefore two splits are enough to perform this operation. In
3D, a vertex may accommodate cells with up to four different levels of
refinement, therefore the maximum number of necessary splits grows to
three.
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Fig. 8. Iterative pipeline for adaptive grid pairing. (a) input grid (pre-balanced), (b) regular sub-grid for levels of refinement 1, 2, (c) solution of the pairing in
the regular sub-grid, (d) porting of the local solution in the global grid, (e) regular sub-grid for levels of refinement 0, 1, (f) solution of the pairing in the regular
sub-grid, (g) porting of the local solution in the global grid, (h) output quadmesh.

ALGORITHM 1: Make an Adaptive Grid Hexmeshable
Input: an adaptively refined grid𝐺 , with 𝑙min, 𝑙max being the minimum and
maximum amount of cell refinement.

balancing(𝐺 ); (Fig. 5)
for 𝑖 = 𝑙max − 1 → 𝑙min do

𝐺𝑖 = binary regular subgrid(𝑖); (Fig. 8)
pairing(𝐺𝑖 );
if some boundary cell gets refined then

if boundary vertex in local solution then
impose vertex minor in the global grid; (Fig. 7)

end
balancing(𝐺 ); (Fig. 5)

end
end
return𝐺 ;

resolve the overlap between the local solution and the global grid
by splitting the coarser cells incident at such vertex (Fig. 7). This
issue can only arise at the concavities of the local sub-grid. In our
algorithm, we include an explicit check to correctly update the grid
should this happen.

Sub-grid alignment. Weak balancing allows elements with three
alternative levels of refinement to be adjacent to the same grid edge.
Our local formulation considers only two levels of refinement per
iteration. Because of this disparity, clusters of elements separated by
two levels of refinement may be misaligned. Note that the resulting

vi
vj

vk

vi vjvk
vm

Fig. 9. Areas with refinement 𝑛 and areas with refinement 𝑛 − 2 sharing
the same edge do not align, making the installation of transition schemes
in [Livesu et al. 2021] not applicable (left). We avoid this problem by impos-
ing, only when this problem occurs, the refinement of the vertex𝑉𝑚 that
controls the minor of refinement 𝑛 (right) to be equal to zero. Vertices𝑉𝑖 ,
𝑉𝑗 and𝑉𝑘 highlight the correspondences between the two images.

grid would still be perfectly balanced and paired, hence theoreti-
cally suitable for conforming hexahedral meshing, but the schemes
in [Livesu et al. 2021] do not handle this case. This issue can be
addressed either by extending the schemes in [Livesu et al. 2021],
essentially shifting them by one position along the concave edge
where the three levels of refinement meet, or by adding one ex-
tra constraint to preserve alignment across multiple iterations. We
opted for the latter solution and we proceed as described in Fig. 9.

Complete pipeline. The pseudo-code in Algorithm 1 summarizes
our entire pipeline. All in all, the choice of the strong balancing
policy simplifies each iteration, as boundary vertices in the local
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solution do not arise. At the same time, strong balancing is known
to introduce unnecessary refinement [Livesu et al. 2021], and is
therefore sub-optimal in terms of output grid size. In our experience,
we noticed that the additional checks required for the weak balanc-
ing policy produce a marginal overhead in the computation, while
securing much coarser grids. Therefore, while remaining compatible
with all methods in the prior art, we used the weak balancing policy
in all our experiments.

6 RESULTS AND APPLICATIONS
To validate our approach, we implemented a C++ prototype of our
grid processing algorithm, using CinoLib [Livesu 2019] for mesh
processing and Gurobi [2020] to solve ILPs. To grant full repro-
ducibility, upon acceptance, we will release both the source code
and the data of all our tests to the public domain, in the Github reposi-
tory github.com/cg3hci/Gen-Adapt-Ref-for-Hexmeshing. Out-
put meshes (attached to this submission as additional material) will
also be uploaded in the Hexalab online repository [Bracci et al.
2019].
To illustrate the flexibility of our method, in the following we

evaluate it in two different settings. The first use case concerns its
usage for guaranteeing the hexmeshability of an adaptive grid con-
structed using octree-based refinement in object-space (Section 6.1).
Instead, the second use case targets the generation of hexmeshes
from polycube mappings (Section 6.2).

6.1 Octree methods
These methods employ an octree to define an adaptively refined
grid that well approximates the target geometry according to some
geometric criterion, and eventually exploit the same hierarchical
structure to enforce balancing and pairing (Section 1). They obtain
a conforming hexahedral mesh by applying dual transition schemes
first, and then projecting the boundary onto the target shape with
various geometric approaches [Gao et al. 2019; Lin et al. 2015]. We
compared our technique with prominent methods in this category,
substituting the octree with our ILP formulation for the enforce-
ment of the pairing criteria. In our comparison, we considered both
well-established state-of-the-art methods using strongly balanced
grids [Gao et al. 2019; Maréchal 2009] and their recently introduced
extension to weakly balanced grids [Livesu et al. 2021].

Experimental setup. While commercial and academic software is
available for each of the techniques mentioned above, each method
uses different geometric criteria for octree splitting, and would
ultimately produce a different starting grid. We implemented a stan-
dard octree to secure a fair comparison, initializing the root to the
smallest cube containing the input object. We then iteratively split
octants until the local grid size was lower than half the local shape
thickness, measured with SDF [Shapira et al. 2008]. We used the so
generated grid as input for all methods, and reproduced results of
Maréchal [2009] and Gao et al. [2019] by applying strong balancing
and pairing through the octree hierarchy, and results in Livesu et
al. [2021] by applying weak balancing and the same octree pairing
approach. For our method, we applied the iterative strategy detailed
in Section 5, using a weak balancing policy. As a result, we obtained
three adaptive grids, that we converted into conforming hexahedral

Input OP + SB OP + WB Ours
size ∆𝑎𝑏𝑠 ∆𝑟𝑒𝑙 × ∆𝑎𝑏𝑠 ∆𝑟𝑒𝑙 × ∆𝑎𝑏𝑠 ∆𝑟𝑒𝑙 ×

Avg 12K 24,4 231% 3.3× 19,9 186% 2.9× 13,6 116% 2.1×
Max 128K 213,4 802% 9.0× 176,2 589% 6.9× 151,5 451% 5.5×

Table 1. Cumulative statistics for all meshes in our benchmark. We report
the initial grid cell count, and the absolute growth (∆𝑎𝑏𝑠 ), relative growth
(∆𝑟𝑒𝑙 ), and increase factor (×) of methods based on Octree Pairing (OP),
both with Strong Balancing (SB) andWeak Balancing (WB), and our method.
The absolute growth is the number of extra cells added to the initial grid
to fulfill hexmeshability criteria; the relative growth is the ratio of absolute
growth to the initial grid size; the increase factor is the ratio of the final cell
count to initial cell count.

meshes with the schemes proposed by Livesu et al. [2021], which
are implemented in CinoLib [Livesu 2019].

Dataset and comparisons. We considered all the models in the
dataset released by Gao et al. [2019], which comprises 202 organic
and CAD models of varying geometric and topological complexity.

We compare output grids in terms of their number of cells. Note
that, depending on the application, both the interior and the exterior
of the input object may be relevant. For example, structural FEM
analysis is mostly concerned with the interior, whereas CFD is often
used to simulate air and liquid dynamics around the object (e.g.
a plane or a boat). For this reason, in our comparison we always
consider the total number of grid elements, and not the subset of
elements strictly contained in the input shape.

In two cases, the input octree was already suitable for hexahedral
meshing, and all methods introduced no further refinement. In six
cases, the three methods introduced exactly the same amount of
refinement, producing the same output grid. Note that all these cases
correspond to overly simple shapes, which are either perfect cubes
or strongly resemble a cube (Fig. 11). In all the remaining cases (194
out of 202), our method clearly outperforms prior art, producing
grids with much lower element count (Fig. 10). Remarkably, our
performances were consistent across all models in the dataset, and
we never produced a hexmesh with more elements than the ones
produced with competing solutions [Gao et al. 2019; Livesu et al.
2021; Maréchal 2009].
Comparing input and output grid sizes, it becomes evident that,

in terms of mesh resolution, the real bottleneck in the hexahedral
meshing pipeline is not shape complexity, but rather the refinement
necessary to secure the fulfillment of the conforming hexmeshing
criteria (Table 1). For classical octree methods based on strong bal-
ancing [Gao et al. 2019; Maréchal 2009], in 88% of the cases the input
grid size was more than doubled; in 58% of the cases the size was
more than tripled; in 26% of the cases it was more than quadrupled,
and in one case the output grid was more than 9 times bigger than
the input! The recently proposed weak balancing [Livesu et al. 2021]
alleviates mesh growth, but it is still based on rigid octrees: in 86%
of the cases grid size was at least doubled; in 43% of the cases it was
at least tripled, and in 1% of the cases it was more than quadrupled.
By unlinking pairing from rigid octrees, our method performed
much better, and it at least doubled grid size in 63% of the cases;
tripled it in 6% of the cases, and only in one case it produced a mesh
with more than triple size. In Fig. 12 we directly compare the three
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Fig. 10. A random subset of models in the benchmark released by Gao et al. [2019]. From left to right, for each model we show: the input adaptive grid; the grid
obtained with octree pairing (OP) and strong balancing (SB) [Gao et al. 2019; Maréchal 2009]; the grid obtained with octree pairing and weak balancing [Livesu
et al. 2021]; our grid, and the final mesh. For each grid we report the growth factor in the to upper-right corner, measured as the ratio between grid size and
input grid size.
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Fig. 11. Six out of the eight models from the dataset released with Gao et
al. [2019], where our method and octree-based methods produced exactly
the same result. We do not show the other two models because they are
duplicates. Note that almost all meshes are perfect cubes, hence nicely fit
the structure imposed by a regular octree. For the remaining 194 models,
our method consistently produced much coarser meshes.

approaches in terms of relative growth w.r.t. input grid size. We can
conclude that, on the testing dataset, our method almost halved the
number of extra cells required by octree approaches. Considering
that numerical methods that use these meshes have a complexity
that may be quadratic in the number of degrees of freedom, halving
grid size leads to significant benefits in terms of computational cost.

Geometric projection. While the presented comparisons are purely
based onmesh size, to produce themeshes shown in Fig. 1 and Fig. 10
we had to project the boundary of the hexmesh to the target ge-
ometry. These aspects are orthogonal to the problem tackled in the
paper, but, for completeness, we report here the simplified heuris-
tics used for generating our results. We attempted to relocate each
boundary vertex to its closest point on the input geometry, and
used binary search to iteratively revert the move if some incident
hexahedral element flipped its orientation. We repeated this process
for 20 iterations and eventually applied one step of edge-cone recti-
fication [Livesu et al. 2015] to smooth the geometry and maximize
minimum per-element quality. Sharp creases in the input mesh were
detected based on dihedral angle thresholding (60◦), and mapped to
the edges of the hexmesh as described in Gao et al. [2019]. Note that
this projection system is overly simple and may fail to produce a
satisfactory result in complex cases. Nevertheless, our contributions
are purely on the combinatorial side of the hexmeshing pipeline, and
our method could be coupled with any of the existing algorithms for
robust hexmesh boundary projection, possibly increasing geometric
fidelity [Gao et al. 2019; Lin et al. 2015].

Scalability. Fig. 13 reports the running times for our algorithm as
a function of the size of the input grid in number of cells for each
of the benchmark meshes. All experiments have been performed
on a PC with an Intel Core i9 2.90GHz processor with 128GB RAM.
The timing results demonstrate that the running time is growing
approximately linearly with the number of elements in the input
mesh, with a median speed of 710 input cells/s (1644 output cells/s).
As expected, the running times are dominated by pairing, which
takes over 90% of the total running time. Around half of the pairing
time is spent setting up the problem and updating the grids, while
the other half is spent inside the Gurobi solver (47% as median value
on all benchmark meshes). Note that the size of each ILP depends
on the number of elements with same refinement, hence it is only
indirectly affected by the global size of the input grid. Our current
implementation is not optimized, andwe foresee interesting avenues
to further reduce running times. In particular, at the moment, the
solver is not warm started, and we conjecture that initializing it

with a feasible solution close to the input data could reduce running
times by a significant amount.
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Fig. 12. Relative growth of our method compared to the relative growth of
the octree method using strong balancing [Gao et al. 2019; Maréchal 2009]
(top), and weak balancing [Livesu et al. 2021] (bottom). Each blue point is a
mesh from the dataset released By Gao et al. [2019], where the horizontal
axis is the growth obtained with octree refinement, and the vertical axis
the growth achieved with our method. Except for 8 cases out of 202, where
the three methods produced exactly the same grid (points on the diagonal
lines), our growth is lower for all the remaining models. On average, we
more than halve grid size with respect to state-of-the-art strong balancing
methods [Gao et al. 2019; Maréchal 2009], and we almost halve grid size
with respect to recently introduced weak balancing ones [Livesu et al. 2021].

6.2 Polycube methods
Besides octree-based methods that operate in object space, our al-
gorithm can be directly installed into any pipeline that leverages
Cartesian grids to generate the hexmesh connectivity, securingmesh
adaptivity with minimal element count. We demonstrate this ability
by combining polycube-based hexmeshing with our approach.
Polycube methods proceed by mapping a target shape onto an

orthogonal polyhedron (or polycube [Tarini et al. 2004]), where they
generate the mesh connectivity, typically with a regular grid sam-
pling. The vertices of the so generated mesh are then mapped back
to the object space through the inverse map, producing the output
hexahedral mesh [Fang et al. 2016; Fu et al. 2016; Huang et al. 2014;
Livesu et al. 2013]. In a sense, these methods can be seen as an ex-
tension of traditional grid-based techniques [Schneiders 1996], with
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Fig. 13. Running time in seconds (vertical axis) of our algorithm as a function
of the size of the input grid in number of cells (horizontal axis).

Fig. 14. Mapping a relatively simple shape to a coarse polycube inevitably
introduces compression and stretching. Regardless of the sampling fre-
quency, a regular sampling does not compensate the map distortion, and
the resulting mesh lacks geometric fidelity (top, middle). By coupling our
generalized adaptive sampling with polycube techniques, we can produce
meshes with comparable size but much higher geometric fidelity (bottom).
Input polycube map courtesy of Aigerman and Lipman [2013]

the only difference that they operate in a carefully constructed para-
metric space, and perform the final mapping through a volumetric
parameterization, and not through a geometric approach.

Compared with octree-based approaches, polycube methods are
often able to produce hexahedral meshes with a much cleaner struc-
ture and higher geometric quality [Gregson et al. 2011; Livesu et al.
2020]. Nevertheless, current polycube techniques are much less

Fig. 15. Mapping a complex shape to a coarse polycube introduces extreme
distortion, at the point that major features in the input shape cannot be
recovered with a regular sampling (left, middle). We adaptively refined the
polycube grid with our method, splitting hexahedra until the distance in the
input shape of any two points that map inside the same hexahedron was
smaller than 1/50 of the bounding box diagonal. With this approach, we
were able to introduce all the necessary elements and singular vertices to
reproduce all fingers, while bounding the global mesh size (right). The output
mesh counts only 25K hexahedra, and despite the huge map distortion, the
average and minimum scaled Jacobian are 0.65 and 0.1, respectively. The
mesh is therefore perfectly suitable for analysis. The input polycubemapwas
initialized with PolyCut [Livesu et al. 2013]; flipped tetrahedral elements
were fixed with the approach of Garanzha et al. [2021]. The output hexmesh
was eventually smoothed with Edge-Cone Rectification [Livesu et al. 2015].

robust and make strong assumptions on the underlying polycube
structure and volumetric map. In fact: (i) polycubes are expected to
explicitly encode all the relevant features of the object, ensuring that
the mesh connectivity adapts to them; (ii) the map is assumed to be
ideal, meaning that it does not contain significant distortion, so that
a regular grid sampling in polycube space translates to a uniform
hexahedral mesh. These two requirements are unrealistic in many
practical scenarios, and the latter is even intrinsically impossible
to achieve if the input object is a triangle-like or cone-like shape,
which could never be mapped to a cuboidal domain without severe
geometric compression or stretching.
By combining polycube mappings with our adaptive sampling

strategy, we were able to produce quality meshes even starting from
very coarse polycubes and highly distorted maps. In Fig. 14 and
Fig. 15 we show two extreme examples produced with our hybrid
approach, where we mapped the Max Planck head and a hand to
the simplest possible polycube: a cube. As shown in the figures, a
regular grid sampling would easily produce a mesh that is geometri-
cally unfaithful or lacks important features. Our adaptive approach
allowed us to densely sample the portions of the cube where many
elements in the input mesh collapsed, counterbalancing map distor-
tion and providing a valid mesh that is suitable for analysis. Since
our technique does not rely on a rigid octree structure, it can be
applied to any polycube, regardless of its geometric complexity or
topology (Fig. 16).
While these are just two toy examples, we believe that this ap-

proach offers interesting directions for further research, as it clearly
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Fig. 16. Adaptively refined polycube map of a grid with non-trivial topology.
Our method puts no constraints on the shape or topology of the grid. The
original map was computed with PolyCut [Livesu et al. 2013] and then
processed with our method.

indicates that the total complexity of the polycube-based hexmesh-
ing problem could be better distributed across the various building
blocks of the pipeline. By being smarter in the grid sampling step,
we can contextually release some of the strict (and sometimes im-
possible) requirements for the first parts, where the topology of
the orthogonal polyhedron and the associated map are generated.
Considering that the biggest obstacle for a wider (e.g., industrial)
adoption of these techniques lies in the inability to deliver robust
algorithms, this hybrid approach could help to increase robustness
significantly.

7 CONCLUSION
In this work, we studied the topological mechanisms that permit
transforming a generic adaptively refined grid into a grid that is
compatible with conforming hexahedral meshing. As clearly shown
in our experiments, minimizing the amount of refinement to achieve
balancing and pairing is a true bottleneck for the hexmeshing
pipeline. Furthermore, it is a surprisingly rich problem, which poses
a variety of challenges that we exhaustively addressed in our for-
mulation. Prior works based on octree splitting rules work in a very
tight space of solutions. They are fast and easy to implement, but
often impose a huge amount of unnecessary refinement.

In this article, we have proposed a novel formulation that signifi-
cantly enlarges the space of hexmeshable adaptive grids by moving
from the application of fixed hierarchical rules to the definition of
ILPs. While our approach is a bit slower and less straightforward
to implement than previous octree-based solutions, it outperforms
them in any other aspect, producing much coarser grids that ensure
better performances during further mesh processing. Considering
the typical applications in which hexahedral meshes are involved,
where mesh generation is run once and for all on high-performance
machines, and computation time is less important than the quality
of the output, we believe that our findings provide neat advantages
and will be readily adopted by practitioners in the field.
Even though our method proved to be superior than previous

solutions, there is still space for further improvement. In particular,

even thoughwe operate in a bigger space than octree-basedmethods,
our vertex-based formulation does not cover the full set of valid
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input outputsolutions. A failure exam-
ple is shown in the inset
aside (top), where a closed
ring of refined elements is
thickened because it has
uneven width. This refine-
ment is unnecessary be-
cause the ring is closed and
no side with an odd size
is exposed, but our local
formulation is not able to
catch the global arrange-
ment in a closed cycle. In-
terestingly, our iterative solution based on local sub-grids may pro-
duce closed rings with unit width (inset, bottom), but only if the
ring contains coarser elements at one side and finer elements at the
other side. This is because we process grid elements from finer to
coarser, and local grids may partially overlap. We conjecture that
this limitation could be fully addressed by using an alternative for-
mulation that assigns refinement through edges instead of vertices.
However, the grid minor associated with an edge has size 2 × 1 in
2D and 2 × 2 × 1 in 3D, hence there is an odd side which makes
the fulfillment of the pairing condition problematic. At present, we
cannot guarantee that such a formulation does or does not exist,
and we leave this as a direction for future works. Developing a
single-pass global solver would permit us to always converge to the
global optimum. However, we have shown that expressing the solu-
tion in terms of variables associated with the input grid elements
seems impossible, because some relevant pieces of the grid will
arise only after refinement, suggesting that an interleaved approach
that updates the grid in between one solve and the other may be
unavoidable. We do not have formal proof for this, but this seems
a major obstacle that is hard to overcome. Finally, we believe our
generalized approach could be extended to alternative techniques
that use Cartesian grids to generate all-hex connectivities, such as
methods based on frame fields [Liu et al. 2018]. The extension is
non-trivial though, because rotational transitions that directly con-
nect cells not face-adjacent in the grid must be taken into account,
also addressing the singularities they generate in the final mesh.
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